IGBT降压斩波电路设计

合集下载

IGBT升降压斩波电路设计

IGBT升降压斩波电路设计

电力电子技术课程设计报告课题名称IGBT升降压斩波电路设计专业班级学号学生指导教师指导教师职称评分完成日期:2015年1月13日摘要直流斩波电路作为将直流电变成另一种固定电压或可调电压的DC-DC 变换器,诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路。

直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。

全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。

升降压斩波电路综合了升压电路和降压电路的优点,可以在一个电路中同时实现升压和降压,简化了电路结构。

而全控型器件IGBT的使用为外部自动控制提供了巨大便利,因此其使用围在直流斩波电路中很广泛,对其做研究有很好的使用意义。

本文首先比较了两种具有升降压功能的DC/DC变换电路,具体地分析了两种DC/DC变换器的设计(拓扑结构、工作模式和储能电感参数设计),详细地阐述了该DC/DC 变换器控制系统的原理和实现,通过MATLAB软件中的Simulink部分建模仿真,最后给出了测试结果。

关键词:直流斩波;升降压;IGBT;全控型目录目录 (2)1 设计任务要求 (2)1.1 设计任务 21.2 设计要求 2 2方案选择 (2)2.1方案一 22.2方案二 23 电路设计 (2)3.1 主电路设计 23.2 驱动电路设计 23.3保护电路 24 仿真控制 (2)5心得体会 (2)参考文献 (2)附录1 程序清单 (2)附录2 元件清单 (2)答辩记录 (2)1 设计任务要求1.1 设计任务IGBT升降压斩波电路设计(纯电阻负载)设计条件:(1)输入直流电压,Ud=50V;(2)输出功率:300W(3)开关频率5KHZ(4)占空比10%-50%(5) 输出电压脉率:小于10%1.2 设计要求1,分析题目要求,提出2-3种实现方案,比较并确定主电路结构和控制结构方案;2,设计主电路原理图,触发电路原理图,并设置必要的保护电路;3,参数计算,选择主电路及保护电路元件参数4,利用仿真软件MATLAB等进行电路优化;5,最好可以建模并仿真完成相关的设计电路。

IGBT降压斩波电路设计解读

IGBT降压斩波电路设计解读

IGBT降压斩波电路设计解读首先,需要明确电路中的主要元件,包括IGBT晶体管、电感、电容和负载电阻。

IGBT晶体管是一种结合了普通MOSFET和双极型晶体管的半导体元件,可用作开关。

电感和电容则构成了滤波电路,用于减小电流和电压的纹波。

负载电阻是电路的输出负载,用于消耗电能。

IGBT降压斩波电路的工作原理如下:输入直流电压经过输入电感和滤波电容后,进入IGBT晶体管。

IGBT晶体管根据控制信号开关,将输入电压的波形转换为脉冲状的输出电压。

然后,经过输出电感和输出滤波电容进一步滤波,最后通过负载电阻供给负载。

控制信号由控制电路生成,通过与电压、电流进行反馈控制来实现输出电压的稳定调节。

在设计IGBT降压斩波电路时,需要考虑以下几个方面:1.输入电压范围:确定所需的输入电压范围,以便确定合适的IGBT和电感、电容参数。

2.输出电压和电流需求:根据负载的电压和电流需求,选择合适的负载电阻和电感、电容参数。

3.电路保护措施:考虑过压、过流等保护措施,以保护电路和负载。

4.控制电路设计:设计一个稳定可靠的控制电路,通过采样反馈信号对输出电压进行精确控制。

5.散热设计:IGBT晶体管的工作产生热量,需要适当散热,保证电路的稳定性和长寿命。

IGBT降压斩波电路的设计可以采用计算和仿真相结合的方法。

首先,使用电路分析工具进行理论计算,根据输入电压、输出电压和负载电流的需求计算出电感、电容和负载电阻的参数。

然后,使用电路仿真软件进行验证,模拟电路工作的波形和性能。

根据仿真结果进行调整和优化,直至满足设计要求。

除了设计之外,IGBT降压斩波电路的实际搭建和测试也是至关重要的。

在搭建电路时,应注意电路布局的合理性,减小信号干扰和串扰。

在测试时,可以测量输入输出电压、电流和负载电阻,通过对比实测数据和设计理论值来验证电路性能。

综上所述,IGBT降压斩波电路设计涉及多个方面的考虑,包括输入输出电压、电流需求、保护措施、控制电路设计和散热设计等。

IGBT降压斩波电路设计

IGBT降压斩波电路设计

IGBT降压斩波电路设计
首先,我们需要确定电路的输入和输出电压。

根据要求,我们假设输
入电压为Vin,输出电压为Vout。

接下来,我们选择合适的IGBT和二极管。

IGBT是一种功率开关器件,具有较高的开关速度和额定电流能力。

二极管则用于反向电压的导通,以
避免IGBT在关断时产生负压。

在设计电路时,我们需要考虑到IGBT和二极管的额定电压和电流。

根据这些参数,我们可以选择合适的元器件,并计算电路中需要的电阻值
和电容值。

```
Vin


┌─┴─┐
│IGBT│
└┬─┬┘
││D1
││
││
┴┴
┌─┴─┐
│IGBT│
└─┬─┘


Vout
```
在这个电路中,IGBT1和IGBT2交替导通,通过调整其导通比例和频率来控制输出电压。

为了保证电路的稳定性,我们可以使用负载电流的反馈控制技术,通过测量负载电流来实时调整IGBT的导通比例。

这样可以避免负载电流过大或过小,保证电路的安全运行。

为了提高电路的效率,我们可以使用高频交流变压器来提高功率传输效率。

变压器可以将输入电压转换为所需的输出电压,并且可以通过变换比例调整输出电压。

此外,在设计电路时,还需要考虑到电路的保护机制。

例如,可以使用过流保护和过温保护来避免电路的过电流和过热情况。

总结起来,IGBT降压斩波电路设计需要考虑电路的输入输出电压、元器件的选择、稳定性、效率和保护机制等因素。

通过合理的设计,可以实现稳定高效的电源供应。

IGBT降压斩波电路设计..

IGBT降压斩波电路设计..

目录摘要 (1)1前言 (1)2方案确定 (2)3主电路设计 (2)3.1 主电路方案 (2)3.2 工作原理 (3)3.3参数分析 (4)4控制电路设计 (5)4.1 控制电路方案选择 (5)4.2 工作原理 (6)4.3 控制芯片介绍 (7)5驱动电路设计 (9)5.1 驱动电路方案选择 (9)5.2工作原理 (10)6保护电路设计 (11)6.1 过压保护电路 (11)6.1.1主电路器件保护 (11)6.1.2负载过压保护 (12)6.2 过流保护电路 (13)7系统仿真及结论 (14)7.1 仿真软件的介绍 (14)7.2仿真电路及其仿真结果 (14)心得体会 (16)参考文献 (17)致谢 (18)IGBT降压斩波电路设计摘要:直流-直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流电变流电路和间接直流电变流电路。

直接直流电变流电路也称斩波电路,它的功能是将直流电变为另一固定电压或可调电压的直流电,一般是指直接将直流电变为另一直流电,这种情况下输入与输出之间不隔离。

间接直流变流电路是在直流变流电路中增加了交流环节,在交流环节中通常采用变压器实现输入输出间的隔离,因此也称带隔离的直流-直流变流电路或直-交-直电路。

直流斩波电路的种类有很多,包括六种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路。

Cuk斩波电路,Sepic斩波电路和Zeta斩波电路,利用不同的斩波电路的组合可以构成符合斩波电路,如电流可逆斩波电路,桥式可逆斩波电路等。

利用相同结构的基本斩波电路进行组合,可构成多相多重斩波电路。

关键字:IGBT 直流斩波降压斩波1前言随着电力电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多。

伴随着人们对开关电源的进一步升级,低电压,大电流和高效率的开关电源成为研究趋势。

开关电源分为AC/DC和DC/DC,其中DC/DC变换已实现模块化,其设计技术和生产工艺已相对成熟和标准化。

IGBT升降压斩波电路设计

IGBT升降压斩波电路设计

电力电子技术课程设计报告课题名称升降压斩波电路设计IGBT专业班级学号学生姓名指导教师指导教师职称评分完成日期:2015年1月13日摘要直流斩波电路作为将直流电变成另一种固定电压或可调电压的 DC-DC 变换器,诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路。

直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。

全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。

升降压斩波电路综合了升压电路和降压电路的优点,可以在一个电路中同时实现升压和降压,简化了电路结构。

而全控型器件IGBT的使用为外部自动控制提供了巨大便利,因此其使用范围在直流斩波电路中很广泛,对其做研究有很好的使用意义。

本文首先比较了两种具有升降压功能的DC/DC变换电路,具体地分析了两种DC/DC变换器的设计(拓扑结构、工作模式和储能电感参数设计),详细地阐述了该DC/DC变换器控制系统的原理和实现,通过MATLAB软件中的Simulink部分建模仿真,最后给出了测试结果。

关键词全控型; IGBT升降压;直流斩波;:目录目录 (1)1 设计任务要求 (1)1.1 设计任务 1 1.2 设计要求22方案选择 (2)2.1方案一22.2方案二 23 电路设计 (3)3.1 主电路设计3 3.2 驱动电路设计33.3保护电路 44 仿真控制 (5)5心得体会 (5)参考文献 (6)附录1 程序清单 (6)附录2 元件清单 (7)答辩记录 (7)1 设计任务要求1.1 设计任务IGBT升降压斩波电路设计(纯电阻负载)设计条件:(1)输入直流电压,Ud=50V;(2)输出功率:300W(3)开关频率5KHZ(4)占空比10%-50%10%输出电压脉率:小于 (5)1.2 设计要求1,分析题目要求,提出2-3种实现方案,比较并确定主电路结构和控制结构方案;2,设计主电路原理图,触发电路原理图,并设置必要的保护电路;3,参数计算,选择主电路及保护电路元件参数4,利用仿真软件MATLAB等进行电路优化;5,最好可以建模并仿真完成相关的设计电路。

IGBT降压斩波电路设计

IGBT降压斩波电路设计

目录摘要 (1)1前言 (1)2 方案确定 (2)3主电路设计 (2)3.1 主电路方案 (2)3.2 工作原理 (3)3.3参数分析 (4)4控制电路设计 (5)4.1 控制电路方案选择 (5)4.2 工作原理 (6)4.3 控制芯片介绍 (7)5驱动电路设计 (9)5.1 驱动电路方案选择 (9)5.2工作原理 (10)6保护电路设计 (11)6.1 过压保护电路 (11)6.1.1 主电路器件保护 (11)6.1.2 负载过压保护 (12)6.2 过流保护电路 (13)7系统仿真及结论 (14)7.1 仿真软件的介绍 (14)7.2仿真电路及其仿真结果 (14)心得体会 (16)参考文献 (17)致谢 (18)IGBT降压斩波电路设计摘要:直流-直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流电变流电路和间接直流电变流电路。

直接直流电变流电路也称斩波电路,它的功能是将直流电变为另一固定电压或可调电压的直流电,一般是指直接将直流电变为另一直流电,这种情况下输入与输出之间不隔离。

间接直流变流电路是在直流变流电路中增加了交流环节,在交流环节中通常采用变压器实现输入输出间的隔离,因此也称带隔离的直流-直流变流电路或直-交-直电路。

直流斩波电路的种类有很多,包括六种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路。

Cuk斩波电路,Sepic斩波电路和Zeta斩波电路,利用不同的斩波电路的组合可以构成符合斩波电路,如电流可逆斩波电路,桥式可逆斩波电路等。

利用相同结构的基本斩波电路进行组合,可构成多相多重斩波电路。

关键字:IGBT 直流斩波降压斩波1前言随着电力电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多。

伴随着人们对开关电源的进一步升级,低电压,大电流和高效率的开关电源成为研究趋势。

开关电源分为AC/DC和DC/DC,其中DC/DC 变换已实现模块化,其设计技术和生产工艺已相对成熟和标准化。

IGBT降压斩波电路设计

IGBT降压斩波电路设计

1引言1.1 直流斩波电路的意义及功能直流斩波电路的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流-直流变换器。

直流斩波电路一般是指直接将直流电变为另一直流电的情况,不包括直流-交流-直流的情况。

直流变换电路的用途非常广泛,包括直流电动机传动、开关电源、单相功率因数校正,以及用于其他领域的交直流电源。

斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等。

IGBT降压斩波电路就是直流斩波中最基本的一种电路,是用IGBT作为全控型器件的降压斩波电路,用于直流到直流的降压变换。

IGBT降压斩波电路由于易驱动,电压、电流容量大在电力电子技术应用领域中有广阔的发展前景,也由于开关电源向低电压,大电流和高效率发展的趋势,促进了IGBT降压斩波电路的发展。

1.2 本人所做的工作这里首先讨论了降压斩波电路主电路的工作原理及器件的参数选择、额定参数计算,并设计了PWM(脉冲宽度调制)控制方式的降压电路,并应用Matlab的可视化仿真工具Simulink,对该降压斩波主电路进行了建模,并对仿真结果进行了分析,既避免了繁琐的绘图和计算过程,又尝试得到了一种直观、快捷分析直流变换电路的新方法。

2 系统总体方案1.1设计课题IGBT直流降压斩波电路设计1.2课程设计目的1.加深理解《电力电子技术》课程的基本理论2.掌握电力电子电路的一般设计方法,具备初步的独立设计能力3.学习MATLAB仿真软件及各模块参数的确定1.3设计要求1.电源电压:直流U d =100V2.输出功率:400W3.占空比5.0=α4.开关频率5KHz5.L=100mH 2.4 主电路及其原理降压斩波电路的原理图如图2-1所示。

该电路使用一个全控型器件V ,图中为IGBT,若采用晶闸管,需设置使晶闸管关断的辅助电路。

图2-1中,为在V 关断时给负载中的电感电流提供通道,设置了续流二极管VD 。

若负载中无反电动势时,只需令E M =0。

IGBT升降压斩波电路设计

IGBT升降压斩波电路设计

电力电子技术课程设计报告课题名称IGBT升降压斩波电路设计专业班级学号学生姓名指导教师指导教师职称评分完成日期:2015年1月13日摘要直流斩波电路作为将直流电变成另一种固定电压或可调电压的DC-DC 变换器,诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路。

直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。

全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。

升降压斩波电路综合了升压电路和降压电路的优点,可以在一个电路中同时实现升压和降压,简化了电路结构。

而全控型器件IGBT的使用为外部自动控制提供了巨大便利,因此其使用范围在直流斩波电路中很广泛,对其做研究有很好的使用意义。

本文首先比较了两种具有升降压功能的DC/DC变换电路,具体地分析了两种DC/DC变换器的设计(拓扑结构、工作模式和储能电感参数设计),详细地阐述了该DC/DC变换器控制系统的原理和实现,通过MATLAB软件中的Simulink部分建模仿真,最后给出了测试结果。

关键词:直流斩波;升降压; IGBT;全控型目录目录 (1)1 设计任务要求 (2)1.1 设计任务21.2 设计要求2 2方案选择 (3)2.1方案一32.2方案二33 电路设计 (5)3.1 主电路设计53.2 驱动电路设计63.3保护电路84 仿真控制 (9)5心得体会 (11)参考文献 (12)附录1 程序清单 (13)附录2 元件清单 (14)答辩记录 (15)1 设计任务要求1.1 设计任务IGBT升降压斩波电路设计(纯电阻负载)设计条件:(1)输入直流电压,Ud=50V;(2)输出功率:300W(3)开关频率5KHZ(4)占空比10%-50%(5) 输出电压脉率:小于10%1.2 设计要求1,分析题目要求,提出2-3种实现方案,比较并确定主电路结构和控制结构方案;2,设计主电路原理图,触发电路原理图,并设置必要的保护电路;3,参数计算,选择主电路及保护电路元件参数4,利用仿真软件MATLAB等进行电路优化;5,最好可以建模并仿真完成相关的设计电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录摘要 (1)1前言 (1)2方案确定 (2)3主电路设计 (2)3.1 主电路方案 (2)3.2 工作原理 (3)3.3参数分析 (4)4控制电路设计 (5)4.1 控制电路方案选择 (5)4.2 工作原理 (6)4.3 控制芯片介绍 (7)5驱动电路设计 (9)5.1 驱动电路方案选择 (9)5.2工作原理 (10)6保护电路设计 (11)6.1 过压保护电路 (11)6.1.1主电路器件保护 (11)6.1.2负载过压保护 (12)6.2 过流保护电路 (13)7系统仿真及结论 (14)7.1 仿真软件的介绍 (14)7.2仿真电路及其仿真结果 (14)心得体会 (16)参考文献 (17)致谢 (18)IGBT降压斩波电路设计摘要:直流-直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流电变流电路和间接直流电变流电路。

直接直流电变流电路也称斩波电路,它的功能是将直流电变为另一固定电压或可调电压的直流电,一般是指直接将直流电变为另一直流电,这种情况下输入与输出之间不隔离。

间接直流变流电路是在直流变流电路中增加了交流环节,在交流环节中通常采用变压器实现输入输出间的隔离,因此也称带隔离的直流-直流变流电路或直-交-直电路。

直流斩波电路的种类有很多,包括六种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路。

Cuk斩波电路,Sepic斩波电路和Zeta斩波电路,利用不同的斩波电路的组合可以构成符合斩波电路,如电流可逆斩波电路,桥式可逆斩波电路等。

利用相同结构的基本斩波电路进行组合,可构成多相多重斩波电路。

关键字:IGBT 直流斩波降压斩波1前言随着电力电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多。

伴随着人们对开关电源的进一步升级,低电压,大电流和高效率的开关电源成为研究趋势。

开关电源分为AC/DC和DC/DC,其中DC/DC变换已实现模块化,其设计技术和生产工艺已相对成熟和标准化。

DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。

斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等。

IGBT降压斩波电路就是直流斩波中最基本的一种电路,是用IGBT作为全控型器件的降压斩波电路,用于直流到直流的降压变换。

IGBT是MOSFET与双极晶体管的复合器件。

它既有MOSFET易驱动的特点,又具有功率晶体管电压、电流容量大等优点。

其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十千赫兹频率范围内,故在较高频率的大、中功率应用中占据了主导地位。

所以用IGBT作为全控型器件的降压斩波电路就有了IGBT易驱动,电压、电流容量大的优点。

2方案确定电力电子器件在实际应用中,一般是由控制电路,驱动电路,保护电路和以电力电子器件为核心的主电路组成一个系统。

由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断来完成整个系统的功能,当控制电路所产生的控制信号能够足以驱动电力电子开关时就无需驱动电路。

根据降压斩波电路设计任务要求设计主电路、控制电路、驱动及保护电路,设计出降压斩波电路的结构框图如图1所示。

图1降压斩波电路结构框图在图1结构框图中,控制电路是用来产生降压斩波电路的控制信号,控制电路产生的控制信号传到驱动电路,驱动电路把控制信号转换为加在开关控制端,可以使其开通或关断的信号。

通过控制开关的开通和关断来控制降压斩波电路的主电路工作。

控制电路中的保护电路是用来保护电路的,防止电路产生过电流现象损害电路设备。

3主电路设计3.1 主电路方案根据所选课题设计要求设计一个降压斩波电路,可运用电力电子开关来控制电路的通断即改变占空比,从而获得我们所想要的电压。

这就可以根据所学的buck 降压电路作为主电路,这个方案是较为简单的方案,直接进行直直变换简化了电路结构。

而另一种方案是先把直流变交流降压,再把交流变直流,这种方案把本该简单的电路复杂化,不可取。

至于开关的选择,选用比较熟悉的全控型的IGBT 管,而不选半控型的晶闸管,因为IGBT 控制较为简单,且它既具有输入阻抗高、开关速度快、驱动电路简单等特点,又用通态压降小、耐压高、电流大等优点。

3.2 工作原理根据所学的知识,直流降压斩波主电路如图2所示:图2 主电路图直流降压斩波主电路使用一个全控器件IGBT 控制导通。

用控制电路和驱动电路来控制IGBT 的通断,当t=0时,驱动IGBT 导通,电源E 向负载供电,负载电压0u =E ,负载电流0i 按指数曲线上升。

电路工作时波形图如图3所示:图3 降压电路波形图 t O O O E O t t tE M i G t t T i G t on t off i o i 1i 2I 10I 20t 1u o a)b)O O T E E i t on t off i o t x i 1i 2I 20t 1t 2u o当1t t =时刻,控制IGBT 关断,负载电流经二极管D V 续流,负载电压0u 近似为零,负载电流指数曲线下降。

为了使负载电流连续且脉动小,故串联L 值较大的电感。

至一个周期T 结束,再驱动IGBT 导通,重复上一周期的过程。

当电力工作于稳态时负载电流在一个周期的初值和终值相等,负载电压的平均值为:i i i t t U U U U t t Tα===+on on o on off t on 为IGBT 处于通态的时间;t off 为处于断态的时间;T 为开关周期;α为导通占空比。

通过调节占空比α使输出到负载的电压平均值U o 最大为E ,若减小占空比α,则U o 随之减小。

由此可知,输出到负载的电压平均值U o 最大为U i ,若减小占空比α,则U o 随之减小,由于输出电压低于输入电压,故称该电路为降压斩波电路。

3.3参数分析主电路中需要确定参数的元器件有IGBT 、二极管、直流电源、电感、电阻值的确定,其参数确定如下:(1)电源要求输入电压为100V 。

(2)电阻因为当输出电压为200V 时,假输出电流为20A 。

所以由欧姆定律可得负载电阻值为1Ω。

(3)IGBT 由图3易知当IGBT 截止时,回路通过二极管续流,此时IGBT 两端承受最大正压为100V ;而当α=1时,IGBT 有最大电流,其值为5A 。

故需选择集电极最大连续电流c I =A 10,反向击穿电压V B vceo 200=的IGBT ,而一般的IGBT 都满足要求。

(4)二极管 其承受最大反压100V ,其承受最大电流趋近于20A ,考虑2倍裕量,故需选择V U N 200≥,A I N 20≥的二极管。

(5)电感 L=100mH ;o0I U R =(6)开关频率f=5KHz(7)电容设计要求输出电压纹波小于1%4控制电路设计4.1 控制电路方案选择控制电路需要实现的功能是产生控制信号,用于控制斩波电路中主功率器件的通断,通过对占空比的调节达到控制输出电压大小的目的。

斩波电路有三种控制方式:1.保持开关周期T不变,调节开关导通时间t on,称为脉冲宽度调制或脉冲调宽型;2.保持导通时间不变,改变开关周期T,成为频率调制或调频型;3.导通时间和周期T都可调,是占空比改变,称为混合型。

因为斩波电路有这三种控制方式,又因为PWM控制技术应用最为广泛,所以采用PWM控制方式来控制IGBT的通断。

PWM控制就是对脉冲宽度进行调制的技术。

这种电路把直流电压“斩”成一系列脉冲,改变脉冲的占空比来获得所需的输出电压。

改变脉冲的占空比就是对脉冲宽度进行调制,只是因为输入电压和所需要的输出电压都是直流电压,因此脉冲既是等幅的,也是等宽的,仅仅是对脉冲的占空比进行控制。

对于控制电路的设计其实可以有很多种方法,我选用一般的PWM发生芯片来进行连续控制。

对于PWM发生芯片,我选用了SG3525芯片,其引脚图如图4所示,它是一款专用的PWM控制集成电路芯片,它采用恒频调宽控制方案。

图4SG3525引脚图其11和14脚输出两个等幅、等频、相位互补、占空比可调的PWM 信号。

脚6、脚7 内有一个双门限比较器,内设电容充放电电路,加上外接的电阻电容电路共同构成SG3525 的振荡器。

振荡器还设有外同步输入端(脚3)。

脚1 及脚2 分别为芯片内部误差放大器的反相输入端、同相输入端。

该放大器是一个两级差分放大器。

根据系统的动态、静态特性要求,在误差放大器的输出脚9和脚1之间一般要添加适当的反馈补偿网络,另外当10脚的电压为高电平时,11和14脚的电压变为10输出。

4.2 工作原理由于SG3525的振荡频率可表示为 :)37.0(1d t t R R C f += 4.1 式中:t C , t R 分别是与脚5、脚6相连的振荡器的电容和电阻;d R 是与脚7相连的放电端电阻值。

根据任务要求需要频率为40kHz ,所以由上式可取t C =0.01μF , t R = Ωk 1,d R =Ω600。

可得f=40kHz ,满足要求。

图5 控制电路SG3525有过流保护的功能,可以通过改变10脚电压的高低来控制脉冲波的输出。

因此可以将驱动电路输出的过流保护电流信号经一电阻作用,转换成电压信号来进行过流保护,同理也可以用10端进行过压保护,如图5所示10端外接过压过流保护电路。

当驱动电路检测到过流时发出电流信号,由于电阻的作用将10脚的电位抬高,从而11、14脚输出低电平,而当其没有过流时,10脚一直处于低电平,从而正常的输出PWM波。

SG3525还有稳压作用。

1端接芯片内置电源,2端接负载输出电压,通过1端的变位器得到它的一个基准电位,从而当负载电位发生变化时能够通过1、2所接的误差放大器来控制输出脉宽的占空比,若负载电位升高则输出脉宽占空比减小,使得输出电压减小从而稳定了输出电压,反之则然。

调节变位器使得1端得到不同的基准电位,控制输出脉宽的占空比,从而可使得输出电压为50-80V 范围。

4.3 控制芯片介绍本控制电路是以SG3525为核心构成,SG3525为美国Silicon General公司生产的专用,它集成了PWM控制电路,其内部电路结构及各引脚功能如图6所示,它采用恒频脉宽调制控制方案,内部包含有精密基准源,锯齿波振荡器,误差放大器,比较器,分频器和保护电路等.调节Ur的大小,在11,14两端可输出两个幅度相等,频率相等,相位相差, 占空比可调的矩形波(即PWM信号).然后,将脉冲信号送往芯片HL402,对微信号进行升压处理,再把经过处理的电平信号送往IGBT,对其触发,以满足主电路的要求。

图6 SG3525A芯片的内部结构(1)基准电压调整器基准电压调整器是输出为5.1V ,50mA ,有短路电流保护的电压调整器。

相关文档
最新文档