高中数学三角函数知识点总结

合集下载

高中数学三角函数知识点总结

高中数学三角函数知识点总结

高中数学三角函数知识点总结1.特殊角的三角函数值:sin 00= 0 cos 00= 1 tan 00= 0sin300=21 cos300=23tan300=33sin 045=22cos 045=22tan 045=1sin600=23cos600=21 tan600=3sin900=1 cos900=0 tan900无意义2.角度制与弧度制的互化:,23600π= ,1800π= 1rad =π180°≈57.30°=57°18ˊ. 1°=180π≈0.01745(rad )003004560900120 0135 01501802703606π 4π 3π 2π 32π 43π 65π π23π π23.弧长及扇形面积公式弧长公式:r l .α= 扇形面积公式:S=r l .21α----是圆心角且为弧度制。

r-----是扇形半径4.任意角的三角函数设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α=r y 余弦cos α=r x 正切tan α=xy(2) 各三角函数值在各象限的符号:sinα·cscα cosα·secα tanα·cotα5.同角三角函数的基本关系:(1)平方关系:s in 2α+ cos 2α=1。

(2)商数关系:ααcos sin =tan α (z k k ∈+≠,2ππα)6.诱导公式:记忆口诀:2k παα±把的三角函数化为的三角函数,概括为:奇变偶不变,符号看象限。

()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭.口诀:正弦与余弦互换,符号看象限.7正弦函数、余弦函数和正切函数的图象与性质(1).“五点法”描图(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为: (0,0), ⎝ ⎛⎭⎪⎫π2,1, (π,0),⎝ ⎛⎭⎪⎫32π,-1, (2π,0) (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为: (0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1) (2).三角函数的图象和性质函数性质y=sin x y=cos x y=tan x定义域R R{x|x≠kπ+π2,k∈Z}图象值域[-1,1][-1,1]R对称性对称轴:x=kπ+π2(k∈Z);对称中心:(kπ,0)(k∈Z)对称轴:x=kπ(k∈Z);对称中心:(kπ+π2,0) (k∈Z)对称中心:⎝⎛⎭⎪⎫kπ2,0(k∈Z)周期2π2ππ单调性单调增区间:[2kπ-π2,2kπ+π2](k∈Z);单调减区间:[2kπ+π2,2kπ+3π2](k∈Z)单调增区间:[2kπ-π,2kπ] (k∈Z) ;单调减区间:[2kπ,2kπ+π](k∈Z)单调增区间:(kπ-π2,kπ+π2)(k∈Z)奇偶性奇函数偶函数奇函数(3).一般地对于函数f(x),如果存在一个非零的常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期)对函数周期性概念的理解周期性是函数的整体性质,要求对于函数整个定义域范围的每一个x值都满足f(x +T)=f(x),其中T是不为零的常数.如果只有个别的x值满足f(x+T)=f(x),或找到哪怕只有一个x 值不满足f (x +T )=f (x ),都不能说T 是函数f (x )的周期. 函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为:2π|ω| y =tan(ωx +φ)的最小正周期为:π|ω|(4).求三角函数值域(最值)的方法:求三角函数的最值问题就是通过适当的三角变换或代数换元,化归为基本类的三角函数或代数函数,利用三角函数的有界性或常用的求函数最值的方法去处理.基本类型1)sin y a x b =+(或cos y a x b =+)型,利用|sin |1x ≤(或|cos |1x ≤),即可求解,此时必须注意字母a 的符号对最值的影响.2)sin cos y a x b x =+型,引入辅助角ϕ,化为)y x ϕ=+,利用函数|sin()|1x ϕ+≤即可求解.3)2sin sin y a x b x c =++(或2cos cos y a x b x c =++)型,可令sin t x =(或cos t x =),||1t ≤,化归为闭区间上二次函数的最值问题. 4)sin sin a x b y c x d +=+(或cos cos a x by c x d+=+)型,解出sin x (或cos x )利用|sin |1x ≤(或|cos |1x ≤)去解;或用分离常数的方法去解决.5)sin cos a x b y c x d +=+(或cos sin a x by c x d+=+)型,可化归为sin()()x g y ϕ+=去处理;或用万能公式换元后用判别式法去处理;当a c =时,还可以利用数形结合的方法去处理.6)对于含有sin cos ,sin cos x x x x ±的函数的最值问题,常用的方法是令sin cos ,||x x t t ±=≤将sin cos x x 转化为t 的关系式,从而化归为二次函数的最值问题.7)在解含参数的三角函数最值问题中,需对参数进行讨论.(5).求三角函数的单调区间时,应先把函数式化成形如y =A sin(ωx +φ) (ω>0)的形式,再根据基本三角函数的单调区间,求出x 所在的区间.应特别注意,应在函数的定义域内考虑.注意区分下列两题的单调增区间不同;利用换元法求复合函数的单调区间(要注意x 系数的正负号) (1)y =sin ⎝ ⎛⎭⎪⎫2x -π4;(2)y =sin ⎝ ⎛⎭⎪⎫π4-2x .8、三角函数公式:两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotAcotB 1cotAcotB -+降幂公式: 升幂公式 : 1+cos α=2cos 22αcos 2α22cos 1α+=1-cos α=2sin 22αsin 2α22cos 1α-=倍角公式tan2A =A tan 12tanA2-Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)半角公式sin(2A )=2cos 1A -cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=AA cos 1cos 1-+ tan(2A )=A A sin cos 1-=AA cos 1sin + 和差化积sina+sinb=2sin2b a +cos 2ba - sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]-------------------------------------------------------------------------------------------- 三角函数 积化和差 和差化积公式 记不住就自己推,用两角和差的正余弦: cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC (5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1万能公式sina=2)2(tan 12tan2a a + cosa=22)2(tan 1)2(tan 1a a +- tana=2)2(tan 12tan2aa-其它公式a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=ab ] a•sin(a)-b•cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=ba ] 1+sin(a) =(sin2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a)2其他非重点三角函数csc(a) =asin 1 sec(a) =a cos 19.正弦定理 :2sin sin sin a b cR A B C===. 余弦定理:2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.三角形面积定理.111sin sin sin 222S ab C bc A ca B ===.初等函数的图形幂函数的图形指数函数的图形反三角函数的图形反三角函数的性质。

高中数学三角函数与解析几何知识点总结

高中数学三角函数与解析几何知识点总结

高中数学三角函数与解析几何知识点总结一、三角函数基本概念1. 弧度制和角度制的转换在三角函数的计算中,我们一般使用弧度制表示角度。

弧度制是指以单位圆上的弧长表示角度的一种计量方式。

角度制是指以度数表示角度的计量方式。

它们之间的转换关系是π 弧度 = 180°。

2. 三角函数的定义三角函数包括正弦函数 sin(x),余弦函数 cos(x),正切函数 tan(x) 等。

正弦函数 sin(x) 表示直角三角形的斜边与斜边所对的角的比值。

余弦函数 cos(x) 表示直角三角形的邻边与斜边的比值。

正切函数 tan(x)表示直角三角形的斜边与邻边的比值。

3. 各种三角函数的性质三角函数具有周期性、奇偶性等性质。

其中,正弦函数和余弦函数的最小正周期是2π,正切函数的最小正周期是π。

二、三角函数的图像与性质1. 正弦函数与余弦函数的图像正弦函数和余弦函数的图像都是连续的、周期性的波形。

正弦函数的图像在原点上方和下方交替变动,而余弦函数的图像在原点的上方和下方相交。

2. 正弦函数与余弦函数的性质正弦函数和余弦函数都具有振幅、周期、相位差等性质。

振幅表示波形的最大纵向范围,而周期表示波形重复的最小距离。

相位差表示两个波形的起始位置之间的差异。

三、三角函数的基本关系及其应用1. 三角函数之间的基本关系正弦函数和余弦函数之间存在着基本关系 sin²(x) + cos²(x) = 1。

这个关系也被称为三角恒等式,可以用来推导其他三角函数之间的关系式。

2. 三角函数在解析几何中的应用三角函数在解析几何中有广泛的应用,用于表示和计算线段、直线、平面等几何图形的性质。

例如,利用三角函数可以求解两条直线的夹角、直线与平面的夹角以及直线在平面上的投影等。

四、解析几何基本概念1. 二维坐标系与平面几何在解析几何中,我们常常使用二维坐标系来描述平面上的点和图形。

二维坐标系由 x 轴和 y 轴组成,原点是坐标系的起始位置。

高中数学-三角函数知识点总结

高中数学-三角函数知识点总结

三角函数知识点一、三角函数知识点 1.角的定义:(1)00~0360角的定义:从一点O 出发的两条射线OB OA ,所形成的图形叫做角,这点O 叫做角的顶点,射线OB OA ,叫做角的两边(2)任意角的定义:角可以看成是平面内一条射线绕着它的端点从一个位置OA 旋转到另一个位置OB 所形成的图形,端点O 叫做角的顶点,射线OA 叫做角的始边,射线OB 叫做角的终边2.规定:(1)正角:按逆时针方向旋转形成的角叫正角 (2)负角:按顺时针方向旋转形成的角叫负角 (3)零角:一条射线不作任何旋转形成的角叫零角这样,我们就把角的概念推广到了任意角,包括正角,负角,零角 注:角的度量需注意:既要考虑旋转方向,又要考虑旋转量3.终边相同的角:所有与α终边相同的角连同α在内组成的集合{}Z k k S ∈⋅+==,3600αββ 4.象限角和轴线角:将角放在直角坐标系中,让角的顶点与原点重合,角的始边与x 轴非负半轴重合,则(1)象限角:角的终边落在第几象限,则称该角为第几象限角 (2)轴线角:角的终边落在坐标轴上,则称该角为轴线角 5.1º的角的定义:规定周角的3601为1度的角,记作:01,这种用度作为单位来度量角的单位制叫做角度制6.1弧度角的定义:我们把长度等于半径长的弧所对的圆心角叫做1弧度的角,记作1rad ,读作:1弧度,这种以弧度为单位来度量角的制度叫做弧度制7.弧度数(1)我们规定,正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零 (2)半径为R 的圆的圆心角α所对的弧长为l ,则角α的弧度数为Rl=α,角α的正负由α终边的旋转方向决定注:弧度制与角度制区别:(1)弧度制是以“弧度”为单位来度量角的单位制,角度制是以“度”为单位来度量角的单位制,1弧度≠1度(2)1弧度是弧长等于半径长的圆弧所对的圆心角的大小,而1度是周角的3601所对的圆心角的大小(3)弧度制是十进制,它的表示是用一个实数表示,而角度制是六十进制; (4)以弧度和度为单位的角,都是一个与半径无关的定值 8.弧度制与角度制的换算(1)弧度制与角度制下的一些特殊角①角度制下零度的角:00,弧度制下零度的角:0rad , 区别数值相同,单位不同 ②角度制下平角:0180,弧度制下平角:πrad ③角度制下周角:0360,弧度制下平角:2πrad (2)弧度制与角度制的换算①角度化成弧度:=0360 π2 ,0180 π2 ,01 01745.0 ②弧度化成角度:π2 0360 ,π 0180 ,rad 1 '01857 注:角度和弧度互化9.扇形的弧长公式和面积公式(1)角度制下扇形的弧长公式:180Rn l π=;扇形的面积公式:3602R n S π=(2)弧度制下扇形的弧长公式:R l α=;扇形的面积公式:Rl R S 21212==α10.角度制下和弧度制下轴线角和象限角的集合 (1)轴线角的集合①终边在x 轴的非负半轴上{}Z k k x x ∈⋅=,3600={}Z k k x x ∈=,2π②终边在x 轴的非正半轴上{}Z k k x x ∈+⋅=,18036000={}Z k k x x ∈+=,2ππ ③终边在x 轴上{}Z k k x x ∈⋅=,1800={}Z k k x x ∈=,π④终边在y 轴的非负半轴上{}Z k k x x ∈+⋅=,9036000={}Z k k x x ∈=,2π ⑤终边在y 轴的非正半轴上{}Z k k x x ∈-⋅=,9036000={}Z k k x x ∈+=,2ππ⑥终边在y 轴上{}Z k k x x ∈+⋅=,9018000=⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,2ππ⑦终边在坐标轴上{}Z k k x x ∈⋅=,900=⎭⎬⎫⎩⎨⎧∈=Z k k x x ,2π (2)象限角的集合①第一象限角的集合{}Z k k x k x ∈+⋅<<⋅,90360360000=⎭⎬⎫⎩⎨⎧∈+<<Z k k x k x ,222πππ②第二象限角的集合{}Z k k x k x ∈+⋅<<+⋅,180360903600000=⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,222ππππ③第三象限角的集合{}Z k k x k x ∈+⋅<<+⋅,2703601803600000=⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,2322ππππ④第四象限角的集合{}Z k k x k x ∈+⋅<<+⋅,3603602703600000=⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,22232ππππ ={}Z k k x k x ∈⋅<<-⋅,36090360000=⎭⎬⎫⎩⎨⎧∈<<-Z k k x k x ,222πππ11.两角的终边对称结论(1)α与β的终边关于x 轴对称Z k k ∈=+,2πβα (2)α与β的终边关于y 轴对称Z k k ∈+=+,2ππβα (3)α与β的终边关于原点轴对称Z k k ∈++=,2ππβα (4)α与β的终边共线Z k k ∈+=,πβα(5)α与β的终边关于直线x y =对称Z k k ∈+=+,22ππβα(6)α与β的终边关于直线x y -=对称Z k k ∈+=+,232ππβα (7)α与β的终边互相垂直Z k k ∈++=,2ππβα12.三角函数定义:(1)任意角的三角函数定义1:设角α的顶点与原点重合,始边与x 轴的非负半轴重合,角α的终边上任意一点P 的坐标为),(y x ,它到原点的距离022>+=y x r ,则 ①比值r y 叫做角α的正弦,记作αsin ,即=αsin r y ②比值r x 叫做角α的余弦,记作αcos ,即=αcos r x ③比值x y 叫做角α的正切,记作αtan ,即=αtan x y ④比值y x 叫做角α的余切,记作αcot ,即=αcot yx (2)任意角的三角函数定义2:设角α的顶点与原点重合,始边与x 轴的非负半轴重合,角α的终边与单位圆的交点为P ),(y x ,则 ①=αsin y ②αcos x ③=αtan xy④=αcot y x三角函数都是以角为自变量,以比值为函数值的函数,又由于角与实数是一一对应的,所以三角函数也可以看作是以实数为自变量的函数13.三角函数的定义域和值域三角函数定义域值域αsin =yR ]1,1[- αcos =y R]1,1[-αtan =y⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,2ππR αcot =y{}Z k k x x ∈≠,πR14.三角函数值在各象限的符号αsin αcos αtan记法1:正弦上正,余弦右正,正切一三正 记法2:一全正,二正弦,三正切,四余弦 15.诱导公式:公式一:终边相同的角的同一三角函数值相等角度制下 弧度制下=+⋅)360sin(0αk αsin =+)2sin(απk αsin =+⋅)360cos(0αk αcos =+)2cos(απk αcos =+⋅)360tan(0αk αtan =+)2tan(απk αtan =+⋅)360cot(0αk αcot =+)2cot(απk αcot公式二:角度制下 弧度制下=+)180sin(0ααsin - =+)sin(απαsin - =+)180cos(0ααcos - =+)cos(απαcos - =+)180tan(0ααtan =+)tan(απαtan =+)180cot(0ααcot =+)cot(απαcot公式三:角度制下 弧度制下=-)180sin(0ααsin =-)sin(απαsin =-)180cos(0ααcos - =-)cos(απαcos - =-)180tan(0ααtan - =-)tan(απαtan - =-)180cot(0ααcot - =-)cot(απαcot -公式四:角度制下 弧度制下=-)sin(ααsin - =-)sin(ααsin - =-)cos(ααcos =-)cos(ααcos =-)tan(ααtan - =-)tan(ααtan - =-)cot(ααcot - =-)cot(ααcot -公式五:角度制下 弧度制下=-)90sin(0ααcos =-)2sin(απαcos=-)90cos(0ααsin =-)2cos(απαsin-)90tan(0ααcot =-)2tan(απαcot=-)90cot(0ααtan =-)2cot(απαtan公式六:角度制下 弧度制下=+)90sin(0ααcos =+)2sin(απαcos=+)90cos(0ααsin - =+)2cos(απαsin -=+)90tan(0ααtan - =+)2tan(απαtan -=+)90cot(0ααcot - =+)2cot(απαcot -公式七:角度制下 弧度制下=+)270sin(0ααcos - =+)23sin(απαcos -=+)270cos(0ααsin =+)23cos(απαsin=+)270tan(0ααcot - =+)23tan(απαcot -=+)270cot(0ααtan - =+)23cot(απαtan -公式八:角度制下 弧度制下=-)270sin(0ααcos - =-)23sin(απαcos -=-)270cos(0ααsin - =-)23cos(απαsin -=-)270tan(0ααcot =-)23tan(απαcot=-)270cot(0ααtan - =-)23cot(απαtan -记忆口诀:奇变偶不变符号看象限 16.部分特殊角的三角函数:αcos21 22 23 1αtan/3-1-33- 017.三角函数线:(1)有向线段:当角α的终边不在坐标轴上时,我们把MP 、OM 、AT 都看成带有方向的线段,这种带方向的线段叫有向线段规定:与坐标轴相同的方向为正方向(2)这几条与单位圆有关的有向线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线注:(1)正弦线、余弦线、正切线分别解释了正弦函数x y sin =,余弦函数x y cos =、正切函数x y tan =的几何意义(2)正弦线、余弦线、正切线的方向与坐标轴正方向相同时,对应的三角函数值为正,与坐标轴正方向相反时,对应的三角函数值为负 18.同角三角函数的关系:(1)平方关系:1cos sin 22=+αα (2)商数关系:=αtan ααcos sin 、=αcot ααsin cos (3)倒数关系:1cot tan =αα 注意公式的变形:(1)1cos sin 22=+x x ⇒x x 22cos 1sin -=、x x 22sin 1cos -= (2)⇒=αααcos sin tan =αsin ααcos tan 、⇒=αααsin cos cot =αcos ααsin cot (3)ααααααcos sin ,cos sin ,cos sin -+的关系:①=+2)cos (sin ααααcos sin 21+ ②=-2)cos (sin ααααcos sin 21- ③=-++22)cos (sin )cos (sin αααα219.正弦函数x y sin =、余弦函数x y cos =、正切函数x y tan =的图像和性质 函数x y sin = x y cos = x y tan =图形定义域 RR⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,2ππ值域]1,1[-]1,1[-R最值当Z k k x ∈+=,22ππ时,有最大值当Z k k x ∈-=,22ππ时,有最大值当Z k k x ∈=,2π时,有最大值当Z k k x ∈+=,22ππ时,有最大值无最大值无最小值单调性在Zk k k ∈+-],22,22[ππππ上递增在Zk k k ∈++],232,22[ππππ上递减在Z k k k ∈-],2,2[πππ上递增在Z k k k ∈+],2,2[πππ上递减在Zk k k ∈+-),2,2(ππππ上递增奇偶性 奇函数偶函数奇函数周期性π2=Tπ2=Tπ=T 对称性关于Z k k x ∈+=,2ππ对称关于点Z k k ∈),0,(π中心对称关于Z k k x ∈=,π对称 关于点Zk k ∈+),0,2(ππ中心对称关于点Z k k ∈),0,2(π中心对称20.三角函数周期结论(1)函数B x A y ++=)sin(ϕω(其中0,≠ωA )的周期=T ωπ2函数B x A y ++=)cos(ϕω(其中0,≠ωA )的周期=T ωπ2函数)tan(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ (2)函数)sin(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ 函数)cos(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ 函数)tan(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ (3)函数B x A y ++=)sin(ϕω(其中0,,≠B A ω)的周期=T ωπ2函数B x A y ++=)cos(ϕω(其中0,,≠B A ω)的周期=T ωπ221.函数B x A y ++=)sin(ϕω)0,0(>>ωA 的图像的作法(1)图像变换法:函数B x A y ++=)sin(ϕω的图像可由正弦函数x y sin =经过一系列的变换得到:①先平移变换,再周期变换:x y sin =———————————→)sin(ϕ+=x y —————————→)sin(ϕω+=x y——————————→)sin(ϕω+=x A y ——————————→B x A y ++=)sin(ϕω ②先周期变换,再平移变换:x y sin =———————————→)sin(x y ω=——————————→)sin(ϕω+=x y——————————→)sin(ϕω+=x A y ——————————→B x A y ++=)sin(ϕω (2)五点作图法:函数B x A y ++=)sin(ϕω的图像画法:一个周期内起关键作用的五个点的横坐标可由=+ϕωx ππππ2,23,,2,0得到 22.函数变换结论: (1)平移变换01左右平移:①将函数)(x f y =的图象向左移a 个单位得函数)(a x f y +=的图象 ②将函数)(x f y ω=的图象向左移a 个单位得函数))((a x f y +=ω的图象02上下平移:将函数)(x f y =的图象向上移b 个单位得函数b x f y +=)(的图象(2)伸缩变换①函数)(x f y ω=的图象可由函数)(x f y =的图象上每一点的纵坐标不变,横坐标变为原来的ω1倍得到 ②函数)(x Af y =的图象可由函数)(x f y =的图象上每一点的横坐标不变,纵坐标变为原来的A 倍得到 (3)翻折变换①函数)(x f y =的图象可将函数)(x f y =的图像y 轴右侧的图像保留,y 轴左侧的图像由y 轴右侧的图像沿y 轴翻折得到②函数)(x f y =的图象可将函数)(x f y =的图像在x 轴上方的图像保留,x 轴下方的图像沿x 轴翻折到x 轴上方得到 23.两个函数的对称性结论(1)函数)(x f y -=与)(x f y =的图象关于x 轴对称 (2)函数)(x f y -=与)(x f y =的图象关于y 轴对称 (3)函数)(x f y --=与)(x f y =的图象关于原点对称 (4)函数)(1x fy -=与)(x f y =的图象关于x y =对称(5)函数)2(x a f y -=与)(x f y =的图象关于a x =对称(6)函数)2(x a f y --=与)(x f y =的图象关于点)0,(a 对称24.函数)sin(ϕω+=x A y 和)cos(ϕω+=x A y )0,0(>>ωA 的奇偶性结论 (1)函数)sin(ϕω+=x A y 为奇函数⇔Z k k ∈=,πϕ(2)函数)sin(ϕω+=x A y 为偶函数⇔Z k k ∈+=,2ππϕ(3)函数)cos(ϕω+=x A y 为奇函数⇔Z k k ∈+=,2ππϕ(4)函数)cos(ϕω+=x A y 为偶函数⇔Z k k ∈=,πϕ 二、三角变换25.两角和与差的正弦余弦正切公式:(1)=+)sin(βαβαβαsin cos cos sin +,记作)(βα+ S (2)=-)sin(βαβαβαsin cos cos sin -,记作)(βα- S (3)=+)cos(βαβαβαsin sin cos cos -,记作)(βα+C (4)=-)cos(βαβαβαsin sin cos cos +,记作)(βα-C (5)=+)tan(βαβαβαtan tan 1tan tan -+,记作)(βα+T(6)=-)tan(βαβαβαtan tan 1tan tan +-,记作)(βα-T26.二倍角的正弦、余弦、正切公式 (1)=α2sin ααcos sin 2(2)=α2cos αα22sin cos -=1cos 22-α=α2sin 21-(3)=α2tan αα2tan 1tan 2- 注:二倍角公式的变形:(1)=+2)cos (sin ααααcos sin 21+;=-2)cos (sin ααααcos sin 21-(2)升幂缩角公式:=+αcos 12cos 22α;=-αcos 12sin 22α(3)降幂扩角公式:=α2sin 22cos 1α-;=α2cos 22cos 1α+ =α2sin 2α2cos 1-;=α2cos 2α2cos 1+27.半角公式:(1) =2sinα22cos 1α-±=2cosα22cos 1α+±=2tanααα2cos 12cos 1+-±(2)=2tanαααsin cos 1-=ααcos 1sin +28.辅助角公式: (1)=+θθcos sin b a )sin(22ϕ++x b a ,其中=ϕsin 22b a b +,=ϕcos 22b a a +(2)=+θθcos sin b a )cos(22ϕ-+x b a ,其中=ϕsin 22ba a +,=ϕcos 22ba b +29.万能公式=α2sin αα2tan 1tan 2+ =α2cos αα22tan 1tan 1+- =α2tan αα2tan 1tan 2- 30.积化和差公式=βαcos sin )]sin()[sin(21βαβα-++=βαsin cos )]sin()[sin(21βαβα--+ =βαcos cos )]cos()[cos(21βαβα-++ =βαsin sin )]cos()[cos(21βαβα--+-31.和差化积公式=+βαsin sin 2cos2sin2βαβα-+=-βαsin sin 2sin2cos2βαβα-+=+βαcos cos 2cos2cos2βαβα-+=-βαcos cos 2sin2sin2βαβα-+-。

高中三角函数知识点总结

高中三角函数知识点总结

高中三角函数知识点总结三角函数是数学中的重要概念,它在几何学、物理学和工程学等领域都具有广泛应用。

在高中数学中,三角函数的学习是一项重要的内容,掌握了三角函数的基本概念和性质,能够熟练运用三角函数解决问题,对于学生后续学习和职业发展都具有良好的帮助。

本文将对高中三角函数的知识点进行详细介绍,包括正弦函数、余弦函数、正切函数、割函数、余割函数和反三角函数等。

一、平面内的角度与弧度1. 角度角度是用来衡量两条射线之间夹角大小的单位,常用°表示。

一个完整的圆周的角度为360°。

根据圆周角度的定义,可知所有角度都可以转化为小于360°的角。

2. 弧度弧度是表示角度大小的另一种单位,用rad表示。

弧度的定义是通过角所对的弧长与半径之比来确定。

一个完整的圆周的弧度为2πrad,即360°=2πrad。

3. 弧度与角度的转化弧度与角度之间的转化公式为:θ(rad) = θ(°) * π/180,θ(°) = θ(rad) *180/π。

二、三角函数的定义1. 正弦函数(sine function)正弦函数是一种周期性的函数,用sin表示。

对于一个给定角度θ,其正弦值定义为单位圆上对应点的y坐标值,即sinθ = y/r。

2. 余弦函数(cosine function)余弦函数也是一种周期性的函数,用cos表示。

对于给定角度θ,其余弦值定义为单位圆上对应点的x坐标值,即cosθ = x/r。

3. 正切函数(tangent function)正切函数是一种周期性的函数,用tan表示。

对于给定角度θ,其正切值定义为正弦值与余弦值的比值,即tanθ = sinθ/cosθ。

4. 割函数(secant function)割函数是余弦函数的倒数,用sec表示。

对于给定角度θ,其割值定义为1除以余弦值,即secθ = 1/cosθ。

5. 余割函数(cosecant function)余割函数是正弦函数的倒数,用csc表示。

高中数学三角函数知识点总结实用版

高中数学三角函数知识点总结实用版

高中数学三角函数知识点总结实用版三角函数是数学中一个重要的分支,它在几何学、物理学等领域中都有广泛应用。

在高中数学中,三角函数是一个重要的章节,它涉及到三角函数的定义、性质、图像与性质、复变函数等方面。

下面将对高中数学中的三角函数知识点进行总结。

一、基本概念与定义1.引入概念:角的概念、终边、正角和负角;2.弧度制:弧长的定义、弧度与角度之间的转换、弧度制角的定义、角度制角与弧度制角之间的转换;3.三角函数的定义:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数的概念与定义。

二、三角函数的性质1.三角函数的定义域和值域;2.三角函数的周期性与奇偶性;3.三角函数的性质:周期性、奇偶性、对称性、界值性、单调性等;4.三角函数的诱导公式:正弦函数与余弦函数、正切函数与余切函数的诱导公式;5.三角函数的和差化积公式与积化和差公式。

三、三角函数图像与性质1.函数值与角度的关系图(函数图像);2.正弦函数与余弦函数的图像及其性质:函数图像、周期、奇偶性、单调性、界值性、对称轴等;3.正切函数与余切函数的图像及其性质:函数图像、周期、奇偶性、单调性、界值性、对称性等;4.函数变换:函数图像的平移、伸缩与翻转。

四、三角函数的运算1.三角函数的运算:和差角公式、积化和差公式、倍角公式、半角公式等;2.三角函数的解析式:三角函数的通解与特解;3.三角函数方程与恒等式:解三角函数方程、证明三角函数恒等式等;4.三角函数在解决实际问题中的应用:例如三角函数在三角形中的应用、航空、航海、电路等问题。

五、复变函数与欧拉公式1.复数的定义与运算:实部、虚部、共轭复数等;2.欧拉公式:复指数函数、欧拉公式的数学表达与几何解释;综上所述,高中数学中的三角函数知识点包括了基本概念与定义、三角函数的性质、三角函数图像与性质、三角函数的运算、复变函数与欧拉公式等方面内容。

了解和掌握这些知识点,对于学好高中数学以及在实际中的应用都非常重要。

高中数学三角函数知识点总结

高中数学三角函数知识点总结

高中数学三角函数知识点总结 人教版必修四(个人编写 未经权威认证 如发现与其他资料不符请咨询专业人士)百度文库 fjghk● 任意角的分类:正角、负角、零角 / 象限角、轴线角 ● 象限角的集合:第一象限的角的集合{α|2k π <α<2k π+π2 ,k ∈Z };第二象限的角的集合{α|2k π+π2 <α<2k π+π,k ∈Z};第三象限的角的集合{α|2k π+π<α<2k π+3π2 ,k ∈Z};第四象限的角的集合{α|2k π+3π2<α<2k π+2π,k ∈Z}。

● 轴线角的集合:终边在x 轴的正半轴上的角的集合 {α|α=2k π,k ∈Z}; 终边在x 轴的负半轴上的角的集合 {α|α=2k π+π,k ∈Z}; 终边在x 轴上的角的集合 {α|α=k π,k ∈Z}; 终边在y 轴的正半轴上的角的集合 {α|α=2k π+π2 ,k ∈Z};终边在y 轴的负半轴上的角的集合 {α|α=2k π-π2 ,k ∈Z};终边在y 轴上的角的集合 {α|α=k π+π2 ,k ∈Z};终边在坐标轴上的角的集合 {α|α=π2k ,k ∈Z};终边在直线y=x 上角的集合 {α|α=k π+π4,k ∈Z};终边在直线y=-x 上角的集合 {α|α=k π-π4 ,k ∈Z};终边在直线y=x 上角的集合 {α|α=k π+π3,k ∈Z};● 弧长公式:L=|α|·r扇形面积公式:S= 12α·r2● 同角三角函数基本关系:平方关系:sin 2α+cos 2α=1商数关系:tan α=sin αcos α● 诱导公式:sin (π+α)=-sin α cos (π+α)=-cos α tan (π+α)=tan α sin (π-α)=sin α cos (π-α)=-cos α tan (π-α)=-tan α sin (2π+α)=sin α cos (2π+α)=cos α tan (2π+α)=tan α sin (2π-α)=-sin α cos (2π-α)=cos α tan (2π-α)=-tan α sin (-α)=-sin α cos (-α)=cos α tan (-α)=-tan α sin (π2 +α)=cos α cos (π2 +α)=-sin αsin (π2 -α)=cos α cos (π2 -α)=sin αsin (3π2 +α)=-cos α cos (3π2 +α)=sin αsin (3π2 -α)=-cos α cos (3π2-α)=-sin α● 平移变换:对函数y =A sin(ωx +ϕ)+k (A >0, ω>0, ϕ≠0, k ≠0),其图象的基本变换有:(1)振幅变换(纵向伸缩变换):是由A 的变化引起的.A >1,伸长;A <1,缩短. (2)周期变换(横向伸缩变换):是由ω的变化引起的.ω>1,缩短;ω<1,伸长. (3)相位变换(横向平移变换):是由φ的变化引起的.ϕ>0,左移;ϕ<0,右移.(4)上下平移(纵向平移变换): 是由k 的变化引起的.k >0, 上移;k <0,下移 ● 三角恒等变换:两角和与差的三角函数关系: sin(α±β)=sin α·cos β±cos α·sin β cos(α±β)=cos α·cos β sin α·sin β βαβαβαtan tan 1tan tan )tan(⋅±=±三角函数的图像及性质。

高考数学三角函数知识点总结

高考数学三角函数知识点总结

高考数学三角函数知识点总结高中数学第四章-三角函数考试内容:本章主要内容包括角的概念的推广,弧度制,任意角的三角函数,单位圆中的三角函数线,同角三角函数的基本关系式,正弦、余弦的诱导公式,两角和与差的正弦、余弦、正切,二倍角的正弦、余弦、正切,正弦函数、余弦函数的图像和性质,周期函数,函数y=Asin(ωx+φ)的图像,正切函数的图像和性质,已知三角函数值求角,正弦定理,余弦定理,斜三角形解法。

考试要求:1.理解任意角的概念、弧度的意义能正确地进行弧度与角度的换算。

2.掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义。

3.掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式。

4.能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明。

5.理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A.ω、φ的物理意义。

6.会由已知三角函数值求角,并会用符号arcsinx\arc-cosx\arctanx表示。

7.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形。

8.“同角三角函数基本关系式:sin2α+cos2α=1,sinα/cosα=tanα,tanα•cosα=1”。

三角函数知识要点:1.与角α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):β|β=k×360°+α,k∈Z2.终边在x轴上的角的集合:β|β=k×180,k∈Z3.终边在y轴上的角的集合:β|β=k×180+90,k∈Z4.终边在坐标轴上的角的集合:β|β=k×90°,k∈Z5.终边在y=x轴上的角的集合:β|β=k×180°+45°,k∈Z6.终边在y=-x轴上的角的集合:β|β=k×180°-45°,k∈ZSIN\COS三角函数值大小关系图:1、2、3、4表示第一、二、三、四象限一半所在区域XXXα与角β的终边关于x轴对称,则角α与角β的关系:α=360°k-β1.若角α与角β的终边关于y轴对称,则角α与角β的关系为:α=360k+180-β。

三角函数知识点归纳总结

三角函数知识点归纳总结

三角函数是高中数学中的重要内容,涉及到三角函数的定义、性质、图像、公式等方面的知识。

下面是对三角函数知识点的归纳总结:一、三角函数的定义1. 正弦函数(sin):在直角三角形中,对边与斜边的比值。

2. 余弦函数(cos):在直角三角形中,邻边与斜边的比值。

3. 正切函数(tan):在直角三角形中,对边与邻边的比值。

4. 余切函数(cot):在直角三角形中,邻边与对边的比值。

5. 正割函数(sec):在直角三角形中,斜边与邻边的比值。

6. 余割函数(csc):在直角三角形中,斜边与对边的比值。

二、三角函数的性质1. 奇偶性:sin和cos函数是奇函数,tan和cot函数是偶函数。

2. 周期性:sin和cos函数的周期为2π,tan和cot函数的周期为π。

3. 值域:sin和cos函数的值域为[-1, 1],tan和cot函数的值域为实数集。

4. 单调性:sin和cos函数在每个周期内单调递增或递减,tan和cot函数在每个周期内单调递增。

5. 对称性:sin和cos函数关于原点对称,tan和cot函数关于坐标轴对称。

三、三角函数的图像1. 正弦函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。

2. 余弦函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。

3. 正切函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。

4. 余切函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。

5. 正割函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。

6. 余割函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。

四、三角函数的基本公式1. 和差公式:sin(a+b) = sina * cosb + cosa * sinb;cos(a+b) = cosa * cosb - sina * sinb;tan(a+b) = (tana + tanb) / (1 - tana * tanb);cot(a+b) = (1 / tana + 1 / tanb) / (1 / tana * 1 / tanb - 1);sec(a+b) = secab / (cosa * cosb - sina * sinb);csc(a+b) = cscab / (cosa * cosb + sina * sinb)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学三角函数知识点总结
1. 三角函数基本概念
•三角函数是以正弦、余弦、正切等函数为代表,研究角与边的关系的数学工具。

•正弦函数(sin)、余弦函数(cos)、正切函数(tan)等为常见的三角函数,可以在单位圆上的坐标值来表示。

2. 角度与弧度的转换
•角度(度)是最常见的衡量角的单位,圆周等分为360度。

•弧度(rad)是数学家们更常用的单位,圆周等分为2π弧度。

•公式:弧度 = (角度÷ 180) × π
3. 三角函数的周期性特点
•正弦函数和余弦函数的周期都是2π。

•正切函数的周期是π,即tan(x) = tan(x + nπ),其中 n 为整数。

4. 三角函数的基本性质
4.1 正弦函数(sin)
•值域:[-1, 1]
•奇偶性:奇函数,即 sin(-x) = -sin(x)
•对称轴:过原点的直线 y = 0
4.2 余弦函数(cos)
•值域:[-1, 1]
•奇偶性:偶函数,即 cos(-x) = cos(x)
•对称轴:垂直 y 轴过原点的直线
4.3 正切函数(tan)
•定义域:除去x = (2n + 1)π/2,其中 n 为整数
•奇偶性:奇函数,即 tan(-x) = -tan(x)
•呈现周期性,每个周期为π
5. 三角函数的图像及性质
5.1 正弦函数(sin)
•图像为连续的波浪线,过原点且最高点和最低点在 y 轴上下方向上一致。

•呈现奇函数性质,对称轴为过原点的直线 y = 0。

•周期为2π,即sin(x) = sin(x + 2nπ),其中 n 为整数。

5.2 余弦函数(cos)
•图像为连续的波浪线,最高点和最低点在 y 轴上下方向分别为1和-1。

•呈现偶函数性质,对称轴为垂直 y 轴过原点的直线。

•周期为2π,即 cos(x) = cos(x + 2nπ),其中 n 为整数。

5.3 正切函数(tan)
•图像呈现周期性分布,每个周期为π。

•定义域为除去x = (2n + 1)π/2,其中 n 为整数。

•呈现奇函数性质,过原点且最高点和最低点在 y 轴上下方向上一致。

6. 三角函数的基本关系
6.1 三角函数的互逆关系
•正弦函数和余弦函数互为逆函数,即 sin(cos(x)) = cos(sin(x)) = x。

•正切函数的反函数为反正切函数,即 tan(arctan(x)) = arctan(tan(x))
= x。

6.2 三角函数的相等关系
•两个角的正弦值相等,则这两个角互为同义角。

•两个角的余弦值相等,则这两个角互为同义角。

•两个角的正切值相等,则这两个角互为同义角。

7. 三角函数的常用公式
7.1 正弦函数(sin)
•二倍角公式:sin(2x) = 2sin(x)cos(x)
•半角公式:sin^2(x) = (1 - cos(2x))/2
•和差公式:sin(x ± y) = sin(x)cos(y) ± cos(x)sin(y)
7.2 余弦函数(cos)
•二倍角公式:cos(2x) = cos^2(x) - sin^2(x)
•半角公式:cos^2(x) = (1 + cos(2x))/2
•和差公式:cos(x ± y) = cos(x)cos(y) ∓ sin(x)sin(y)
7.3 正切函数(tan)
•二倍角公式:tan(2x) = (2tan(x))/(1 - tan^2(x))
8. 三角函数在三角恒等式中的应用
•三角恒等式是指由三角函数的基本关系和常用公式得出的等式,常用于解决三角方程和化简复杂的三角表达式。

•常见的三角恒等式有和差化积公式、倍角公式、半角公式等。

以上是高中数学中关于三角函数的知识点总结。

通过理解和掌握这些基本概念、性质、关系以及常用公式,可以更好地解决与三角函数相关的问题,提高数学的应用能力。

相关文档
最新文档