天然气轻烃回收工艺流程
燃气调峰和轻烃回收的管道天然气液化流程

三 、管道天然气液化流程
在调压站的调压过程中 ,天然气有很大的压力 降 。因此 ,可以在用气低谷时充分利用这部分压力 能 ,使用膨胀制冷工艺将管网中的一部分天然气液 化制成 L N G 并储存起来 ,充当起一个大用户的角 色 ;在用气高峰时 ,再将储存的 L N G 气化输入管网 , 以达到调峰的目的 。另一个好处是 ,天然气的液化 过程中 ,C2 + 轻烃比甲烷先液化出来 ,因而可以起到 回收轻烃的作用 。 目前 ,国内外收的管道天然气液化流程. 天然气工业 ,2006 ,26 (5) :1302132. 摘 要 管道天然气的长途输送一般都采用高压管输的方式 ,高压天然气经各地的调压站降压后才能供应给 普通用户使用 ,调压过程中会有大量的压力能损失 。为解决城市燃气用户特有的用气不均匀性问题 ,介绍了一种 利用高压天然气调压过程的压力能膨胀制冷的管道天然气液化流程 。应用该流程可以将管道里的一部分天然气 液化制成 L N G 并储存起来 ,在用气高峰时将储存的 L N G 再汽化以增加供气量 ,满足下游用户的需求 。这样能够 增强燃气企业的“调峰”能力 ,有利于天然气管网的平稳运行 。同时 ,利用该流程还可以回收天然气中的轻烃资源 , 为石化工业提供优质的化工原料 。 主题词 城市 燃气 调峰 调压站 天然气 液化 液化天然气 汽化 轻烃回收 原料
压储罐储气 、高压管网储气 、L N G 液化工厂储气等 , 和膨胀制冷工艺这 3 种 。阶式制冷工艺和混合制冷
以上几种储气方式的投资费用比较结果见表 1[2] 。 工艺其天然气液化所需的冷量都是通过冷剂的制冷
从表 1 可看出 ,各种储气方式中以修建地下储 循环来提供的 ,而膨胀制冷工艺则是利用原料天然
在各地的天然气接收门站 ,需要根据用户的供 气压力要求将主干管线的超高压天然气进行降压后
轻烃回收基本知识

轻烃回收基本知识1、天然气:主要由碳氢化合物组成的气体混合物,并含有少量的惰性气体。
主要成分:甲烷、乙烷、丙烷、正(异)丁烷、正(异)戊烷等烷烃,及少量的二氧化碳、氮气、硫化氢等。
2、富气:(湿气)甲烷含量在低于90%以上、丙烷以上成分含量大于10%以上的天然气,称为富气。
(通常指未处理的伴生气或原料气)3、干气:甲烷含量大于90%以上的天然气,成为干气。
(通常指轻烃装置处理后的外输气)4、轻烃回收:对伴生气经过加工处理,获得液体轻烃的过程。
5、原油稳定:对(未处理)原油进行加工脱出易挥发组分。
主要脱出溶解在原油中的戊烷以下的易挥发组分6、油田混合烃(液化石油气):主要成分丙烷、正(异)丁烷。
(冬、夏季乙烷、戊烷含量有标准要求)7、轻质油:主要有戊烷以上成份组成液体混合物。
8、回收轻烃的手段:提高气体分离压力和降低气体分离温度。
(升压、降温)9、原油稳定回收轻烃的手段:本站采用降压(负压)、升温.(负压稳定)10、影响干燥器脱水效果的主要因素(1)天然气的温度和湿度(2)天然气的流动速度(3)吸附剂层的高度及再生的完善程度11、吸附剂使用后(反复再生)变劣的主要原因(1)吸附剂的表面被碳、聚合物、化合物所覆盖(2)由于半融熔是部分细孔破坏而消失(3)由于化学反应使结晶细粒遭到破坏。
12、吸附剂失效的危害造成天然气的露点升高,低温区形成水化物,使低温设备、管线冻堵,引起系统压力升高造成事故。
(丛压力差的大小判断分析并及时采取解冻处理)问题处理13、稳定气与伴生气的有效(回收)成分区别:一般稳定气比伴生气高3倍左右。
优先处理稳定气。
14、影响装置轻烃产量的因素(1)原料气中的有效成分(2)原料气量(3)分离压力、温度(4)脱乙烷塔(脱乙烷气的效果)(5)轻质油中的丁烷以下成分含量(液化气塔混合烃分离效果)15、轻烃装置增加轻烃产量的措施(1)优先处理稳定气(2)提高处理量(满负荷运行)(3)提高分离器压力、降低分离温度(4)降低脱乙烷气中的有效成分(5)减少轻质油中丁烷以下成分含量(切割效果)16、脱乙烷塔压高的原因(1)塔温高(2)脱乙烷气量少17、脱乙烷气的影响(1)易造成塔操作压升高(2)轻烃储罐压力高18、稳定装置增加轻烃产量的措施(1)提高稳定塔进料温度、降低塔压(2)提高原油稳定量(3)增加补气量(4)降低正负压冷凝器温度19、液化气塔压力建立不起来的原因:(1)塔底、顶温度场未建立起来(2)脱乙烷塔脱出气中丙烷多(3)回流量小及温度低(4)回流罐卸压阀内漏或失控。
天然气处理工艺全解

2018年10月10日7时14分
23
化学溶剂法
工业应用:
我国第一套采用MDEA配方溶液的脱硫脱碳装置已于 2003年底在长庆气田第三净化厂(以下简称三厂)建成投产 ,实际运行情况良好,达到了设计预期效果。该装置处理 量为300×104m3/d,原料气为含硫含碳的天然气。原料气 进装置压力为5.5~5.8 MPa,温度为3~18℃。三厂原料气 来自长庆气田靖边气区的酸性天然气,原料气中CO2含量 为5.286%,H2S含量为0.028%,CO2/H2S高达188.8 (均为设 计值)。
2018年10月10日7时14分 17
化学溶剂法
选择性胺法的工艺特点:
1. 溶液有较高的H2S负荷。 2. H2S净化度的变化较为灵敏。
3. 选择性胺法的能耗低。选择性胺法不仅由于溶液H2S负 荷高而循环量低从而可降低能耗,而且单位体积溶液再生所 需蒸汽量也显著低于常规胺法。
4. 装置处理能力增大。选择性胺法因操作的气液比(气液 比是指单位体积溶液处理的气体体积数,单位m3/m3)较高, 从而可提高装置处理能力。 5. 选择性胺法抗污染的能力较弱。由于MDEA的碱性较常 规醇胺为弱,一些杂质、特别是强酸性杂质进入溶液后对其 净化能力的影响也就大于其它醇胺。所以选择性胺法装置的 溶液更需精心维护,防止外来杂质污染溶液。
2018年10月10日7时14分 19
化学溶剂法
MDEA配方溶液
MDEA 配方溶液系以MDEA为主剂、在溶液中加有改善 其某些性能的化学剂。当天然气中含少量H2S且CO2/ H2S比 值较高,但CO2含量不是很高且不需深度脱除CO2 时,就可 考虑采用合适的MDEA配方溶液。 MDEA配方溶液是一种高效气体脱硫脱碳溶液,它通过在 MDEA溶液中复配不同的化学剂来增加或抑制MDEA 吸收 CO2的动力学性能。 因此,有的配方溶液可比MDEA具有更高的脱硫选择性 ,有的配方溶液也可比其他醇胺溶液具有更好的脱除CO2 效果。
450万吨年轻烃回收装置工艺分析

1 轻烃回收装置预期产品轻烃回收装置的产品分别是:吸收塔顶富含C 2组分的干气、脱乙烷塔顶富含C 2组分干气、C 3H 8、C 4H 10、正丁烷、石脑油、C 5轻石脑油。
2 工艺技术路线2.1 采用三塔分馏工艺轻烃回收部分通常采用“吸收-脱丁烷-脱乙烷”的后脱乙烷流程,原料适应性强,可以在脱丁烷塔前后分别加工C 5含量不同的原料。
同时,在装置原料性质变化、操作波动时,具有灵活的调节手段,操作时根据原料的性质,甚至可以单独切除脱乙烷塔。
作为全厂性的轻烃回收装置,加工原料复杂,特别是需要加工大量的来自柴油加氢裂化装置和蜡油加氢裂化装置的粗液化气,这些液化气C 5+含量较少,C 2含量高,不需要进脱丁烷塔二次重沸分离C 5,只需要进脱乙烷塔脱除C 2即可。
同时,采用“吸收-脱丁烷-脱乙烷”的后脱乙烷流程具有原料适应性强、抗波动能力强等优点。
由于常减压蒸馏装置的初馏塔采用了提压操作方式,常减压的轻烃可以通过液化石油气组分溶解在初顶油中以液体的形态进行回,同时液化气吸收塔的设置也可以回收柴油加氢裂化装置、蜡油加氢裂化装置、渣油加氢装置和重整装置来的酸性尾气中的轻烃。
通过采用上述工艺,可以使该单元避免设置压缩机,从而避开因有压缩机而带来的流程复杂、操作不便、投资高、噪音大、能耗高、机械故障多、设备维修困难等问题。
此外,由于轻烃回收单元处理多个装置的物料,采用无压缩机回收轻烃,也为其他相关装置的平稳运行提供了更好的保障。
0 引言恒力石化450万吨/年轻烃回收装置于2019年12月建成投产,装置的原料为来常减压的液态烃石脑油、渣油加氢气体、重整含硫燃料气及蜡油加氢含硫液化气等[1]。
轻烃回收单元包含液化气吸收、脱丁烷和脱乙烷;液化气分离单元包含脱丙烷、脱异丁烷。
轻烃回收单元集中对全厂的常减压装置、加氢装置、连续重整装置等液态烃石脑油和含烃类气体进行处理,以回收其中高附加值轻烃组分;液化气分离部分将轻烃回收部分的液化气进一步分离成C 3H 8和C 4H 10,原料性质如表1所示。
轻烃回收工艺技术及其进展

轻烃回收工艺技术及其进展轻烃是一类石油化工产品,主要包括烷烃和烯烃两大类,是石油炼制和化工生产过程中的重要中间品和原料。
随着石油的日益枯竭和环境污染问题的日益严重,轻烃回收工艺技术成为了必然的发展趋势。
为了提高轻烃的回收率和降低对环境的影响,人们也在不断地研究和改进轻烃回收工艺技术。
本文将介绍轻烃回收工艺技术及其进展。
一、轻烃回收工艺技术概述轻烃回收工艺技术是指将石油炼制和化工生产中产生的尾气中的轻烃进行回收和再利用的工艺。
轻烃主要包括乙烯、丙烯、丁烯等,这些轻烃在正常情况下会随着尾气一起排放到大气中,不仅造成能源的浪费,还会对环境造成严重污染。
采用轻烃回收工艺技术对轻烃进行回收和再利用,是一种节能减排的重要手段。
目前,常见的轻烃回收工艺技术主要包括吸附法、压缩法、凝析法、膜分离法等。
吸附法是指通过吸附剂将轻烃从尾气中吸附出来,然后再进行脱附和回收。
压缩法是指通过采用压缩机将尾气中的轻烃压缩成液体,然后进行分离和回收。
凝析法是指通过降温将尾气中的轻烃凝析成液体,然后进行分离和回收。
膜分离法是指通过膜的选择性通透性,将尾气中的轻烃和其他组分进行分离和回收。
1. 吸附法吸附法是一种成熟的轻烃回收工艺技术,其主要优势是操作简单、成本低、回收效率高。
近年来,随着吸附剂的研究不断深入,吸附法在轻烃回收领域取得了显著的进展。
目前,国内外已经开发出了一系列高性能的吸附剂,其吸附速度和吸附容量均得到了显著提高。
结构优化和表面处理等技术的应用,使得吸附剂的选择性和循环利用率得到了显著提高。
吸附法在轻烃回收工艺技术中的应用前景十分广阔。
2. 压缩法压缩法是一种传统的轻烃回收工艺技术,其主要优势是操作稳定、回收效率高。
在近年来,人们在研究压缩机和分离设备的还不断地优化压缩法的操作参数和工艺流程,使得压缩法的回收效率和能耗得到了显著提高。
随着压缩机和分离设备的智能化和自动化程度的不断提高,压缩法在轻烃回收领域的应用前景也将更加广阔。
天然气轻烃回收分析

天然气轻烃回收分析摘要:天然气是一种常见资源,其与人民群众日常生活及工业发展具有密切联系。
天然气中含有一定程度的丁烷、乙烷及烃类,故而为满足商品气与管输气对烃露点具有的各项要求,全面提高化学原料质量,有效回收天然气凝液或将其分离成丁烷及乙烷等,本文通过实际调查与分析文献资料,围绕天然气类型对轻烃回收产生的影响展开探讨,并重点对天然气轻烃回收目的及方法进行研究,以期可以为作业人员开展工作提供可靠依据。
关键词:轻烃回收;天然气;影响;方法引言:在社会对天然气的需求不断提高的背景下,由于轻烃回收是天然气处理与加工的重要内容,且能够对人民群众日常生活及工业发展产生直接影响,故而其逐渐受到社会关注。
由于天然气类型及数量等方面与轻烃回收经济性具有直接关系,故而为保障经济效益,必须充分明确天然气类型与轻烃回收之间的关系,明确轻烃目的,并结合规范要求及实际状况采取有效的轻烃回收方法,该点对工业发展具有积极的促进意义。
1.天然气类型对轻烃回收产生的影响通过实际调查可以发现,天然气可根据不同性质划分为三种类型,分别是伴生气、气藏气及凝析气,由于不同类型具有不同的组成部分,故而天然气类型对天然气中能够进行回收的烃类组成及数量具有决定性作用。
从现实角度出发,可发现气藏气的主要组成部分是甲烷,更重烃类及乙烷的含量相对较少,因此仅在气体中乙烷及更重烃类回收作为产品,且经济效益明显较高的情况下,才可进行轻烃回收。
针对我国青海、长庆等气区而言,其部分天然气属于干天然气,即天然气的乙烷及更重烃类的含量相对较少,故而在开展相应工作的过程中,必须严格做好技术经济论证,以此明确是否进行回收凝液[1]。
针对长庆气区及塔里木气区而言,其部分天然气属于湿天然气,即天然气含少量C5+重烃,因此为确保进入到输气管道内部的气体烃露点符合规范要求,必须对低温分离法进行科学利用,以此脱除少量的C5+重烃,该项措施的主要目的是对天然气的烃露点进行控制。
油田伴生气轻烃的回收工艺技术

一、引言随着可持续发展成为全球性意识,循环经济使人类实现可持续发展的梦想成为可能。
循环经济倡导的是一种与环境和谐的经济发展理念和模式,以实现资源使用的减量化、产品的反复使用和废物的资源化为目标。
由于减量化旨在减少进入生产和消费过程的物质量,从源头节约资源使用和减少污染物的排放,提高了资源生产率和能源利用效率。
二、油田伴生气概念油田伴生气俗称瓦斯气,是一种伴随石油从油井中出来的气体,主要成分是甲烷、乙烷,也含有相当数量的丙烷、丁烷、戊烷等。
用作燃料和化工原料。
也叫油田气、油气。
面对环境保护政策的日趋严格,以及能源日益紧张的情况,油田伴生气的回收利用越来越受到人们重视。
三、轻烃的基本概念轻烃也称为天然气凝液,由C2以上的烃类组份组成的混合物,主要包括C2~C6的烃类组分,常用的产品有液化石油气(LPG)、稳定轻烃(轻油)、轻石脑油等。
四、轻烃回收的基本概念轻烃回收就是指将天然气中的凝液通过一定的技术进行收集并得到相应的产品的过程称。
该过程所生产的产品包括液化石油气和稳定轻油及其它馏分。
是优质的燃料和宝贵的化工资源。
近年来油气田轻烃回收作为各油田绿色发展的重要支撑,越来越受到重视,在回收技术水平上都取得了长足的进步。
五、伴生气的回收工艺与技术伴生气中轻烃回收的工艺过程实质上是多组分气液两相平衡体系。
在一定的温度和压力下, 系统达到气液平衡状态时, 气体的液化程度可以用亨利定律表示:K = yi / xi式中: K 表示平衡常数yi 表示气相中 某种组分的摩尔含量xi 表示液相中某种组分的摩尔含量六、轻烃的回收基本原理在平衡时, 所有组分的汽化率等于冷凝率, 气相和液相的组分不发生变化。
在特定的制冷温度和压力下的多组分气液两相体系中, 欲得到更多的凝析液, 就必须破坏现有平衡状态。
冷凝分离法是通过加压、降温, 使平衡常数K值变小, 体系的平衡点向泡点移动, 从而使更多的气体冷凝。
另一种方法是可以通过减少液体中某种组分的摩尔含量xi , 进而减小其气化驱动力, 由于一定温度、压力下平衡常数不变, 所以气相中该组分开始冷凝, 并趋进于新的平衡点。
轻烃制冷回收工艺

轻烃制冷回收工艺摘要:自20世纪80年代以来,国内外以节能降耗、提高轻烃收率及减少投资为目的,对NGL 回收装置的工艺方法进行了一系列的改进,出现了许多新的工艺技术从天然气中回收的轻烃是优质的燃料,也是宝贵的化工原料,具有较高的经济价值。
制冷工艺主要采用冷剂循环制冷、膨胀机制冷、冷剂制冷与膨胀机制冷相结合的混合制冷,单级膨胀机制冷工艺应用广泛,深冷装置较少,装置能耗高,自控水平较低。
在深冷回收装置中,以冷剂制冷作为辅助冷源,膨胀机制冷作为主冷源的混合制冷方法,因制冷温度低,液烃回收率高,对气源条件变化适应性强,将得到推广和应用。
从天然气中回收的轻烃是优质的燃料,也是宝贵的化工原料,具有较高的经济价值。
本文通过采用轻烃回收工艺方法和工艺过程结合在一起进行研究在工艺设计中,针对不同的原料状况,应积极采用和开发新工艺、新技术以达到节能降耗、提高轻烃收率、有效的利用能量、降低消耗起着关键性的作用。
关键词:轻烃回收膨胀机制冷天然气1 烃回收工艺在气体处理厂内,通过改变气体条件,破坏各组分间的平衡,在达到新的平衡状态时会有一些组分凝析、另一些组分蒸发,从而实现从天然气内回收液态烃。
改变的条件可能是压力或温度,也可能是将不同的物质引入气流,更可能是上述三种方法的结合。
早期从天然气内回收液态烃的方法是采用压缩和冷却。
工程师们发现,压缩天然气至较高压力并冷却至接近环境温度,会从气流中形成并分离出一定数量的烃液,还知道采用平衡蒸发常数和天然气(组分)分析能预测烃液的回收量。
压缩和冷却工艺一直是最简单的方法。
然而,这种方法却不如后来开发的一些方法有效。
压缩和冷却法常受周围空气或使用冷却水的制约。
用制冷进一步降低气流温度并回收更多的液体产品,是传统压缩和冷却方法合乎逻辑的发展。
用氨或烷为制冷剂的机械制冷系统是最早使用的制冷类型。
当然,在早期的尝试中曾遇到许多与生成水合物有关的问题。
在气体深冷(蒸发)器以及深冷器下游的分离器内发生过冰冻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轻烃回收工艺主要有三类:油吸收法;吸附法;冷凝分离法。
当
前主要采用冷凝分离法实现轻烃回收。
1、吸附法
利用固体吸附剂(如活性氧化铝和活性炭)对各种烃类吸
附容量不同,而,将吸附床上的烃类脱附,经冷凝分离出
所需的产品。
吸使天然气各组分得以分离的方法。
该法一
般用于重烃含量不高的天然气和伴生气的加工办法,然后
停止吸附,而通过少量的热气流附法具有工艺流程简单、
投资少的优点,但它不能连续操作,而运行成本高,产品
范围局限性大,因此应用不广泛。
2、油吸收法
油吸收法是基于天然气中各组分在吸收油中的溶解度差异,而使不同的烃类得以分离。
根据操作温度的不同,
油吸收法可分为常温吸收和低温吸收。
常温吸收多用于中
小型装置,而低温吸收是在较高压力下,用通过外部冷冻
装置冷却的吸收油与原料气直接接触,将天然气中的轻烃
洗涤下来,然后在较低压力下将轻烃解吸出来,解吸后的
贫油可循环使用,该法常用于大型天然气加工厂。
采用低
温油吸收法C3 收率可达到( 85~90%),C2 收率可达到
(20~60%)。
油吸收法广泛应用于上世纪 60 年代中期,但由于其工艺流
程复杂,投资和操作成本都较高,上世纪 70 年代后,己
逐步被更合理的冷凝分离法所取代。
上世纪80 年代以后,我国新建的轻烃回收装置己较少采用油吸收法。
3、冷凝分离法
(1)外加冷源法
天然气冷凝分离所需要的冷量由独立设置的冷冻系统提供。
系统所提供冷量的大小与被分离的原料气无直接关系,故又
可称为直接冷凝法。
根据被分离气体的压力、组分及分离的
要求,选择不同的冷冻介质。
制冷循环可以是单级也可以是
多级串联。
常用的制冷介质有氨、氟里昂、丙烷或乙烷等。
在我国,丙烷制冷工艺应用于轻烃回收装置还不
到 10 年时间,但山于其制冷系数较大,制冷温度为(-35~
-30℃),丙烷制冷剂可由轻烃回收装置自行生产,无刺激
性气味,因此近儿年来,该项技术迅速推广,我国新建的
外冷工艺天然气轻烃回收装置基本都采用丙烷制冷工艺,
一些原设计为氨制冷工艺的老装置也在改造成丙烷制冷工
艺。
(2)自制冷法①节
流制冷法
节流制冷法主要是根据焦耳 -汤姆逊效应,较高压力的原料
气通过节流阀降压膨胀,使原料气冷却并部分液化,以达到
分离原料气的目的。
该方法具有流程简单、设备少、投资少
的特点,但此过程效率低,只能使少量的重烃液化,
故只有在气体有压力能可利用,处理量小,气体重烃含量
少和收率要求不高时才选用此方法。
②透平膨胀机制冷法
采用透平膨胀机制冷法的前提条件是有自由压力能供利用
的场合。
当具有一定压力的天然气通过透平膨胀机时,其
膨胀过程近似于等嫡膨胀过程,获得膨胀功的同时,气流
的温度将急剧下降。
因此,气流中的烃组分将被冷凝下来。
膨胀机制冷法的特点是流程简单,设备数量少,维护费用低,公用工程消耗低,占地面积小,因此近年来采用的较多。
但是当处理量过小时不宜采用,因为此时膨胀机效率
较低,可考虑采用热分离机。
③热分离机制冷法
热分离机装置的流程与透平膨胀机装置类似,主要
差别是主冷设备不同,它是利用高能动力气体由转动(或静止 )的喷嘴分配进入末端封闭的容器,形成压缩、膨胀,
由动能转变为热能的多变过程。
压缩时放出的热量由周围
环境吸收掉,而膨胀时则相似于等嫡过程使气体降温而达
到制冷的目的。
热分离机具有结构简单,维修方便,省人省电,允许带液工作的特点,适用于小气量、带液量大和气源压力较高的场所。
但是国内开发应用的热分离机制冷技术,由于热分离效率低、适应性差、技术性能差、质量不过关等原因,
在我国仍处于工业试验阶段。
(3)混合制冷法
为了最大限度地从天然气中回收轻烃,要求的温度更低,单一的制冷法一般难以达到,即便有时膨胀机制冷能
达到温度,但由于出口带液问题,对富气仍是不适用的,
这时往往采用混合制冷法,即冷冻循环的多级化和混合冷
剂制冷以及膨胀机加外冷的方式来实现。
目前,轻烃回收
工艺上应用最多的是外加冷剂循环制冷作为辅助冷源,膨
胀制冷作为主冷源,并采取逐级冷冻和逐级分离出凝液的
工艺措施来降低冷量消耗和提高冷冻深度,以达到较高的
冷凝率,回收原料气中绝大部分丙烷组份,达到回收目的。
这种方法具有许多优点:1)有两个冷源,因此运转适应性
较大,即使外加制冷系统发生故障,装置也能在保持较低
收率情况下继续运行。
2)混合制冷法中的外加制冷系统比
外加冷源法要简单、容量小 ;外加冷源解决高沸点较重烃类
冷凝问题,膨胀制取的冷量用在较低温度位。
3)此种流程
组合即可提高乙烷、丙烷收率,又可大大减少装置的能耗。
轻烃回收新工艺
1.3.
2.1 气体过冷工艺 (GSP)和液体过冷工艺 (LSP)
此工艺是对工业标准单级膨胀制冷工艺(ISS)和多级膨胀制冷工艺 (MTP)的改进。
采用GSP 工艺可在保持较高
C2 烃类收率的情况下,使原料气中C2 的容许含量高于膨
胀制冷工艺的容许含量,而且功耗较低。
1.3.
2.2 直接换热工艺 (DHX)
DHX 工艺是埃索资源公司首先提出并在JudyCreek 工厂实
践,叮收率由原来的72%增加到 95%。
实践证明,在不回
收乙烷的情况下,利用 DHX工艺可很容易地对现有的膨胀
制冷流程加以改造,多数情况下所用投资较少。
1.3.
2.3 混合冷剂制冷工艺
与传统的单组分冷剂或阶式制冷法相比,混合冷剂制冷
(MRC)法采用的冷剂可根据冷冻温度的高低配制冷剂的组
分与组成一般是以乙烷、丙烷为主。
当压力一定时,混合
冷剂在一个温度范围内随着温度逐渐升高而逐步汽化,因
而在换热器中与待冷冻的天然气的传热温差很小,故其用
效率很高。
当原料气与外输干气压差甚小,或在原料气较
富的情况下,采用混合冷剂制冷法的工艺更为有利。
1.3.3 国内外轻烃回收技术的发展趋势
国内外轻烃回收技术将以低温分离法为主,向投资少、
深分离、高效率、低能耗、橇装化、自动化的方向发展。
目前通用的工艺流程
1、加拿大改良油吸收法轻烃回收新工艺
2、冷剂制冷与膨胀机制冷相结合的混合制冷
3、 DHX 换热工艺。