高中数学三角函数知识点总结(非常好用)
高考三角函数知识点总结

高考三角函数知识点总结一、基本概念和性质1.弧度制:单位圆上的弧所对应的圆心角的大小定义为该弧的弧度。
1弧度等于圆周的1/2π。
2. 三角函数:正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)、余切函数cot(x)、正割函数sec(x)和余割函数csc(x)。
3.三角恒等式:包括同角三角恒等式、余角三角恒等式、反三角函数同角恒等式等。
4.周期性:正弦函数、余弦函数、正割函数和余割函数的周期都是2π;正切函数和余切函数的周期是π。
二、基本关系式1.正弦函数:在直角三角形中,正弦函数是指对于一个锐角三角形,三角形的对边和斜边的比值。
- sin(x) = a / c,其中a是对边,c是斜边。
- sin(x) = y / r,其中y是斜边在y轴上的投影,r是半径。
2.余弦函数:在直角三角形中,余弦函数是指对于一个锐角三角形,三角形的邻边和斜边的比值。
- cos(x) = b / c,其中b是邻边,c是斜边。
- cos(x) = x / r,其中x是斜边在x轴上的投影,r是半径。
3.正切函数:在直角三角形中,正切函数是指对于一个锐角三角形,三角形的对边和邻边的比值。
- tan(x) = a / b,其中a是对边,b是邻边。
- tan(x) = y / x,其中y是斜边在y轴上的投影,x是斜边在x轴上的投影。
4.余切函数:余切函数是正切函数的倒数。
- cot(x) = 1 / tan(x)。
5.正割函数:在直角三角形中,正割函数是指对于一个锐角三角形,三角形的斜边和邻边的比值的倒数。
- sec(x) = 1 / cos(x)。
6.余割函数:在直角三角形中,余割函数是指对于一个锐角三角形,三角形的斜边和对边的比值的倒数。
- csc(x) = 1 / sin(x)。
三、平面内角与弧度制之间的关系1.弧度制与度数之间的转换:-弧度=度数×π/180-度数=弧度×180/π2.弧度制下的角的性质:-一个圆上的圆心角的弧度数等于该弧所对应的弧的弧度数。
高中三角函数知识点归纳总结(通用10篇)

高中三角函数知识点归纳总结(通用10篇)高中数学三角函数知识点总结:三倍角公式篇一sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)高中数学三角函数知识点总结:三倍角公式推导篇二sin3a=sin(2a+a)=sin2acosa+cos2asina高中数学三角函数知识点总结:半角公式篇三tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)高中数学三角函数知识点总结:辅助角公式篇四Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))高中数学三角函数知识点总结:和差化积篇五sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)高中三角函数知识点归纳篇六1.做高中数学题的时候千万不能怕难题!有很多人数学分数提不动,很大一部分原因是他们的畏惧心理。
高中三角函数知识点整理

高中三角函数知识点整理三角函数是数学中重要的概念,存在于高中数学课程中,是几何、代数、微积分等领域的基础知识。
下面整理了高中三角函数的重要知识点,希望对学生们的学习有帮助。
一、三角函数的基本概念1.弧度制:角的度量单位,一个角所对应的弧长等于半径的长度时,这个角的大小为1弧度。
2.角的三要素:顶点,始边,终边,顶点为角的端点,始边为角的起始边,终边为角的结束边。
3.弧度与角度的转换:角度数×π/180=弧度。
4.等角:具有相同角度的两个角是等角。
5. 正弦:给定一个锐角∠A,对于 A 的任何弧 B,就有 sin A = sin B。
二、正弦、余弦和正切函数1. 正弦函数:在数轴上,根据半径 r 的终端点 (x, y),它的正弦函数值定义为 y / r,可以表示为sinθ。
2. 余弦函数:在数轴上,根据半径 r 的终端点 (x, y),它的余弦函数值定义为 x / r,可以表示为cosθ。
3. 正切函数:在数轴上,根据半径 r 的终端点 (x, y),它的正切函数值定义为 y / x,可以表示为tanθ。
4.三角函数的性质:正弦和余弦函数的值在-1到1之间,正切函数的值没有限制。
三、三角函数的基本性质1.三角函数的周期性:正弦和余弦函数周期为2π,正切函数周期为π。
2.函数图像:正弦函数和余弦函数的图像为曲线,正切函数的图像为直线。
3.函数值的变化:正弦函数和余弦函数的值在一个周期内从-1到1变化,正切函数在不同区间内的值无限制变化。
4. 正弦函数和余弦函数的图像对称:sin(-θ) = -sinθ,cos(-θ) = cosθ。
5. 周期性的性质:sin(θ + 2πn) = sinθ,cos(θ + 2πn) =cosθ,n为整数。
6. 三角函数的诱导公式:sin(α + β) = sinαcosβ +cosαsinβ,cos(α + β) = cosαcosβ - sinαsinβ。
高中数学三角函数知识点

高中数学三角函数知识点一、基础概念1. 三角函数三角函数是数学中的一种函数,用来描述一个直角三角形中各边和角度之间的关系。
三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)、余切函数(cot)、正割函数(sec)和余割函数(csc)。
2. 角度制和弧度制角度制是指用度数来描述角度大小的一种测量方法,以“度”作为单位。
1圆周角等于360度,1度等于60分,1分等于60秒。
弧度制是指用弧长来描述角度大小的一种测量方法,以“弧度”作为单位。
1圆周角等于2π弧度,1弧度等于圆的半径所对应的弧长的长度。
3. 函数的周期与函数值域函数的周期是指函数在一段区间内重复出现的最小长度。
正弦函数和余弦函数的周期都是2π,正切函数和余切函数的周期都是π,正割函数和余割函数的周期都是π。
函数的值域是指函数所有可能的输出值所组成的集合。
正弦函数和余弦函数的值域都是[-1,1],正切函数的值域是(-∞,∞),余切函数的值域也是(-∞,∞),正割函数的值域是[1,∞),余割函数的值域也是[-∞,-1]∪[1,∞)。
4. 常用三角函数的图形正弦函数的图形是一条周期为2π、在x=π/2处取得最大值1,在x=3π/2处取得最小值-1的正弦曲线。
余弦函数的图形是一条周期为2π、在x=0处取得最大值1,在x=π处取得最小值-1的余弦曲线。
正切函数的图形是一条周期为π、在x=π/2+kπ(k∈Z)处有一个无穷大的跳跃,且在x=kπ(k∈Z)处取值为0的正切曲线。
5. 三角函数的基本关系式正弦函数和余弦函数之间满足关系式sin(x)=cos(x-π/2),cos(x)=sin(x+π/2)。
正切函数和余切函数之间满足关系式tan(x)=1/cot(x),cot(x)=1/tan(x)。
二、三角函数的运算1. 三角函数的加减法公式sin(x±y)=sinxcosy±cosxsinycos(x±y)=cosxcosy∓sinxsinytan(x±y)=(tanx±tany)/(1∓tanxtany)cot(x±y)=(cotxcoty∓1)/(cotx±coty)2. 三角函数的积化和差公式sinx+siny=2sin((x+y)/2)cos((x-y)/2)sinx-siny=2cos((x+y)/2)sin((x-y)/2)cosx+cosy=2cos((x+y)/2)cos((x-y)/2)cosx-cosy=-2sin((x+y)/2)sin((x-y)/2)3. 三角函数的倍角公式和半角公式sin2x=2sinxcosxcos2x=cos^2x-sin^2xtan2x=(2tanx)/(1-tan^2x)sin(x/2)=±√[(1-cosx)/2]cos(x/2)=±√[(1+cosx)/2]tan(x/2)=±√[(1-cosx)/(1+cosx)]4. 三角函数的反函数sin(-1)x:[-1,1]→[-π/2,π/2]cos(-1)x:[-1,1]→[0,π]tan(-1)x:(-∞,∞)→(-π/2,π/2)cot(-1)x:(-∞,∞)→(0,π)三、三角函数的应用1. 三角函数在几何中的应用在直角三角形中,正弦函数和余弦函数可以用来计算任意两边和一个角的关系。
三角函数知识点归纳总结

三角函数是高中数学中的重要内容,涉及到三角函数的定义、性质、图像、公式等方面的知识。
下面是对三角函数知识点的归纳总结:一、三角函数的定义1. 正弦函数(sin):在直角三角形中,对边与斜边的比值。
2. 余弦函数(cos):在直角三角形中,邻边与斜边的比值。
3. 正切函数(tan):在直角三角形中,对边与邻边的比值。
4. 余切函数(cot):在直角三角形中,邻边与对边的比值。
5. 正割函数(sec):在直角三角形中,斜边与邻边的比值。
6. 余割函数(csc):在直角三角形中,斜边与对边的比值。
二、三角函数的性质1. 奇偶性:sin和cos函数是奇函数,tan和cot函数是偶函数。
2. 周期性:sin和cos函数的周期为2π,tan和cot函数的周期为π。
3. 值域:sin和cos函数的值域为[-1, 1],tan和cot函数的值域为实数集。
4. 单调性:sin和cos函数在每个周期内单调递增或递减,tan和cot函数在每个周期内单调递增。
5. 对称性:sin和cos函数关于原点对称,tan和cot函数关于坐标轴对称。
三、三角函数的图像1. 正弦函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。
2. 余弦函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。
3. 正切函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。
4. 余切函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。
5. 正割函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。
6. 余割函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。
四、三角函数的基本公式1. 和差公式:sin(a+b) = sina * cosb + cosa * sinb;cos(a+b) = cosa * cosb - sina * sinb;tan(a+b) = (tana + tanb) / (1 - tana * tanb);cot(a+b) = (1 / tana + 1 / tanb) / (1 / tana * 1 / tanb - 1);sec(a+b) = secab / (cosa * cosb - sina * sinb);csc(a+b) = cscab / (cosa * cosb + sina * sinb)。
高中数学必修三角函数知识点归纳总结经典

高中数学必修三角函数知识点归纳总结经典一、正弦函数、余弦函数、正切函数的定义1. 正弦函数:在单位圆上,对于任意角度θ,都存在一个点P(x,y),其中x=cosθ,y=sinθ。
则y=sinθ称为角θ的正弦函数。
2. 余弦函数:在单位圆上,对于任意角度θ,都存在一个点P(x,y),其中x=cosθ,y=sinθ。
则x=cosθ称为角θ的余弦函数。
3. 正切函数:在单位圆上,对于任意角度θ,都存在一个点P(x,y),其中x=cosθ,y=sinθ。
则y/x=tanθ称为角θ的正切函数。
二、基本性质1.周期性:正弦函数、余弦函数、正切函数的周期都是2π。
2.奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。
3.值域:正弦函数和余弦函数的值域为[-1,1],正切函数的值域为R。
三、基本公式1. 正弦函数的基本公式:sin(θ±α) = sinθcosα ±cosθsinα2. 余弦函数的基本公式:cos(θ±α) = cosθcosα ∓ sinθsinα3. 正切函数的基本公式:tan(θ±α) =(tanθ±tanα)/(1∓tanθtanα)四、三角函数的图像与性质1.正弦函数图像的性质:周期为2π,在(0,0)处取得最小值-1,在(π/2,1)、(3π/2,-1)处取得最大值1,是一个奇函数。
2.余弦函数图像的性质:周期为2π,在(0,1)处取得最大值1,在(π,-1)处取得最小值-1,是一个偶函数。
3.正切函数图像的性质:周期为π,在(0,0)处取得最小值-∞,在(π/2,∞)处取得最大值∞,是一个奇函数。
五、三角函数的性质1.三角函数的和差化积公式:sin(A±B) = sinAcosB ± cosAsinBcos(A±B) = cosAcosB ∓ sinAsinBtan(A±B) = (tanA±tanB)/(1∓tanAtanB)2.三角函数的倍角公式:sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θtan2θ = (2tanθ)/(1-tan^2θ)3.三角函数的半角公式:sin(θ/2) = √[(1-cosθ)/2]cos(θ/2) = √[(1+cosθ)/2]tan(θ/2) = sinθ/(1+cosθ)4.三角函数的积化和差公式:sinA·sinB = (1/2)[cos(A-B)-cos(A+B)]cosA·cosB = (1/2)[cos(A-B)+cos(A+B)]sinA·cosB = (1/2)[sin(A-B)+sin(A+B)]六、三角函数的应用1.解三角形:利用正弦定理、余弦定理和正弦函数、余弦函数的性质,可以解决三角形的边长和角度。
三角函数的性质知识点总结

三角函数的性质知识点总结三角函数是数学中重要的一部分,主要涉及到正弦函数、余弦函数和正切函数。
它们在数学、物理、工程等学科中都有广泛的应用。
本文将对三角函数的性质进行总结,包括周期性、对称性、函数值范围等方面的内容。
一、正弦函数的性质1. 周期性:正弦函数的周期是2π,即sin(x+2π) = sin(x),其中x表示角度。
2. 对称性:正弦函数关于原点对称,即sin(-x) = -sin(x)。
3. 函数值范围:正弦函数的函数值范围在[-1, 1]之间。
二、余弦函数的性质1. 周期性:余弦函数的周期也是2π,即cos(x+2π) = cos(x)。
2. 对称性:余弦函数关于y轴对称,即cos(-x) = cos(x)。
3. 函数值范围:余弦函数的函数值范围同样在[-1, 1]之间。
三、正切函数的性质1. 周期性:正切函数的周期是π,即tan(x+π) = tan(x),其中x表示角度。
2. 对称性:正切函数关于原点对称,即tan(-x) = -tan(x)。
3. 函数值范围:正切函数的函数值范围是整个实数集。
1. 正弦函数和余弦函数的特殊角度值如下: sin(0) = 0, cos(0) = 1;sin(π/6) = 1/2, cos(π/6) = √3/2;sin(π/4) = √2/2, cos(π/4) = √2/2;sin(π/3) = √3/2, cos(π/3) = 1/2;sin(π/2) = 1, cos(π/2) = 0;2. 正切函数的特殊角度值如下:tan(0) = 0;tan(π/4) = 1;tan(π/3) = √3;tan(π/2) 没有定义。
五、三角函数的基本关系1. 正切函数与正弦函数和余弦函数的关系: tan(x) = sin(x) / cos(x)。
2. 正弦函数和余弦函数的关系:sin^2(x) + cos^2(x) = 1。
1. 正弦函数和余弦函数的图像是波形振动,具有周期性和对称性。
高中数学三角函数知识点总结实用版

千里之行,始于足下。
高中数学三角函数学问点总结有用版高中数学中的三角函数主要包括正弦函数、余弦函数、正切函数以及其反函数。
以下是三角函数的相关学问点总结。
一、正弦函数(sinx)1. 定义:对于任意角x,其对应的正弦值是一个比值,表示x角的对边与斜边的比值。
2. 特点:- 定义域:(-∞, +∞)- 值域:[-1, 1]- 奇函数:sin(-x) = -sinx- 周期性:sin(x + 2π) = sinx,其中π是圆周率,x为任意实数- 对称性:sin(π - x) = sinx,sin(π + x) = -sinx3. 基本关系式:- 三角恒等式:sin²x + cos²x = 1- 三角函数的互余关系:sinx = cos(π/2 - x),cosx = sin(π/2 - x)- 和差与倍角公式:sin(x ± y) = sinxcosy ± cosxsiny,sin2x = 2sinxcosx二、余弦函数(cosx)1. 定义:对于任意角x,其对应的余弦值是一个比值,表示x角的邻边与斜边的比值。
2. 特点:- 定义域:(-∞, +∞)- 值域:[-1, 1]- 偶函数:cos(-x) = cosx第1页/共3页锲而不舍,金石可镂。
- 周期性:cos(x + 2π) = cosx,其中π是圆周率,x为任意实数- 对称性:cos(π - x) = -cosx,cos(π + x) = -cosx3. 基本关系式:- 三角恒等式:sin²x + cos²x = 1- 三角函数的互余关系:sinx = cos(π/2 - x),cosx = sin(π/2 - x)- 和差与倍角公式:cos(x ± y) = cosxcosy ∓ sinxsiny,cos2x = cos²x - sin²x三、正切函数(tanx)1. 定义:对于任意角x,其对应的正切值是一个比值,表示x角的对边与邻边的比值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学三角函数知识点总结
1.特殊角的三角函数值:
2.角度制与弧度制的互化:,23600π= ,1800π= 1rad =π
180°≈°=57°18ˊ. 1°=
180
π≈(rad )
3.弧长及扇形面积公式
弧长公式:r l .α= 扇形面积公式:S=r l .2
1
α----是圆心角且为弧度制。
r-----是扇形半径
4.任意角的三角函数
设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α=
r y 余弦cos α=r x 正切tan α=x
y
(2)各象限的符号:
x
y
+
O
— —
+
#
x
y
O
— +
+
— +
y
O
)
|
— +
+ —
sin α cos α tan α
5.同角三角函数的基本关系:
(1)平方关系:s in 2α+ cos 2α=1。
(2)商数关系:αα
cos sin =tan α (z k k ∈+≠
,2
ππ
α)
6.诱导公式:记忆口诀:2
k παα±把的三角函数化为的三角函数,概括为:奇变偶不变,符号
看象限。
()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=.
'
()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.
()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.
口诀:函数名称不变,符号看象限.
()5sin cos 2π
αα⎛⎫-=
⎪⎝⎭,cos sin 2παα⎛⎫
-= ⎪⎝⎭
. ()6sin cos 2π
αα⎛⎫+=
⎪⎝⎭,cos sin 2παα⎛⎫
+=- ⎪⎝⎭
. 口诀:正弦与余弦互换,符号看象限.
7正弦函数、余弦函数和正切函数的图象与性质
?
8、三角函数公式:
两角和与差的三角函数关系 sin(α±β)=sin α·
cos β±cos α·sin β 】
cos(α±β)=cos α·cos β sin α·sin β
βαβ
αβαtan tan 1tan tan )tan(⋅±=±
倍角公式 s in2α=2sin α·cos α cos2α=cos 2α-sin 2α
=2cos 2α-1 =1-2sin 2α
α
α
α2
tan 1tan 22tan -=
降幂公式: 升幂公式 : 1+cos α=2
cos 22α cos 2α2
2cos 1α
+=
1-cos α=2
sin 22
α
sin 2α2
2cos 1α
-= 9.正弦定理 :
2sin sin sin a b c
R A B C
===. 余弦定理:
2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.
三角形面积定理.111sin sin sin 222
S ab C bc A ca B ===.。