高一三角函数知识点整理

合集下载

高一三角函数知识点大全

高一三角函数知识点大全

高一三角函数知识点大全1. 三角函数的概念:三角函数是一类最基本的数学函数,它与三角形的相关性质息息相关。

常见的三角函数包括正弦函数、余弦函数、正切函数等。

2. 角度与弧度的转换:角度是一种常见的角度度量单位,而弧度是一种较为准确的角度度量单位。

两者之间的转换可以通过简单的换算公式实现。

3. 正弦函数:正弦函数是三角函数中的一种,它描述了角度与三角形中对边与斜边之比的关系。

在单位圆上,正弦函数的值等于对应角度的y坐标。

4. 余弦函数:余弦函数是三角函数中的一种,它描述了角度与三角形中邻边与斜边之比的关系。

在单位圆上,余弦函数的值等于对应角度的x坐标。

5. 正切函数:正切函数是三角函数中的一种,它描述了角度与三角形中对边与邻边之比的关系。

正切函数可以表示为正弦函数除以余弦函数。

6. 三角函数的周期性:正弦函数、余弦函数和正切函数都具有周期性,其周期为360度或2π弧度,即函数值在相应的周期内重复。

7. 三角函数的性质:三角函数具有一些重要的性质,如奇偶性、周期性、单调性等。

这些性质在解三角方程和图像绘制中具有重要的应用。

8. 三角函数的图像:正弦函数、余弦函数和正切函数的图像在单位圆上表现为一条连续的曲线,具有特定的波动特征。

通过绘制这些图像,可以更好地理解三角函数的性质和规律。

9. 三角函数的应用:三角函数在各个领域都有广泛的应用,如物理学、工程学、计算机图形学等。

例如,正弦函数可以用来描述周期性现象,余弦函数可以用来计算向量的内积,正切函数可以用来计算角的大小。

10. 三角函数的基本关系式:正弦函数、余弦函数和正切函数之间存在一些重要的基本关系式,如正弦定理、余弦定理、正切定理等。

这些关系式在解三角形和计算相关量时十分有用。

11. 反三角函数:反三角函数是三角函数的逆运算,可以将给定的三角函数值反推回对应的角度。

常见的反三角函数包括反正弦函数、反余弦函数和反正切函数。

12. 三角函数的导数:三角函数在微积分中具有重要的导数性质,通过导数的计算可以得到三角函数的变化率和斜率,进而对函数进行分析和求解。

高一三角函数知识点整理

高一三角函数知识点整理

§04. 三角函数知识要点1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Zkk∈+⨯=,360|αββ②终边在x轴上的角的集合:{}Zkk∈⨯=,180|ββ③终边在y轴上的角的集合:{}Zkk∈+⨯=,90180|ββ④终边在坐标轴上的角的集合:{}Zkk∈⨯=,90|ββ⑤终边在y=x轴上的角的集合:{}Zkk∈+⨯=,45180|ββ⑥终边在xy-=轴上的角的集合:{}Zkk∈-⨯=,45180|ββ⑦若角α与角β的终边关于x轴对称,则角α与角β的关系:⑧若角α与角β的终边关于y轴对称,则角α与角β的关系:⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k180⑩角α与角β的终边互相垂直,则角α与角β的关系:90360±+=βαk2. 角度与弧度的互换关系:360°=2π180°=π1°=0.01745 1=57.30°=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式:1rad=π180°≈57.30°=57°18ˊ.1°=180π≈0.01745(rad)3、弧长公式:rl⋅=||α. 扇形面积公式:211||22s lr rα==⋅扇形4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P(x,y)P与原点的距离为r,则=αsinrx=αcos;xy=αtan;yx=αcot;xr=αsec;. αcsc5、三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割正弦、余割6、三角函数线正弦线:MP; 余弦线:OM; 正切线: AT.7. 三角函数的定义域:SIN\COS1、2、3、4表示第一、二、三、四象限一半所在区域16. 几个重要结论:ααtan cos =ααcot sin cos =1cot tan =⋅αα 1sin csc =α⋅α 1cos sec =α⋅α1cos sin 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为: “奇变偶不变,符号看象限”三角函数的公式:(一)基本关系公式组二 公式组三x x k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ xx x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=-公式组四 公式组五 公式组六 x x x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ x x x x x x x x cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ(二)角与角之间的互换公式组一 公式组二 βαβαβαsin sin cos cos )cos(-=+ αααcos sin 22sin =βαβαβαsin sin cos cos )cos(+=- ααααα2222sin 211cos 2sin cos 2cos -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2tan 1tan 22tan -=βαβαβαsin cos cos sin )sin(-=- 2cos 12sinαα-±= βαβαβαtan tan 1tan tan )tan(-+=+ 2cos 12cos αα+±=公式组一sin x ·csc x =1tan x =x xcos sin sin 2x +cos 2x =1cos x ·sec x x =xx sin cos 1+tan 2x =sec 2xtan x ·cot x =1 1+cot 2x =csc 2x=1βαβαβαtan tan 1tan tan )tan(+-=- 公式组三 公式组四 公式组五2tan 12tan 2sin 2ααα+= 2tan 12tan 1cos 22ααα+-= 2tan 12tan 2tan 2ααα-= 42675cos 15sin -== ,42615cos 75sin +== ,3275cot 15tan -== ,3215cot 75tan +== .()()[]()()[]()()[]()()[]βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=cos cos 21sin sin cos cos 21cos cos sin sin 21sin cos sin sin 21cos sin 2cos 2sin sin sin βαβαβα-+=+2sin 2cos 2sin sin βαβαβα-+=-2cos 2cos 2cos cos βαβαβα-+=+2sin 2sin 2cos cos βαβαβα-+-=-αααααααsin cos 1cos 1sin cos 1cos 12tan -=+=+-±=ααπsin )21cos(-=+ααπcos )21sin(=+ααπcot )21tan(-=+ααπsin )21cos(=-ααπcos )21sin(=-ααπcot )21tan(=-相反.一般地,若)(x f y =在],[b a 上递增(减),则)(x f y -=在],[b a 上递减(增).②x y sin =与x y cos =的周期是π.③)sin(ϕω+=x y 或)cos(ϕω+=x y (0≠ω)的周期ωπ2=T .2tanx y =的周期为2π(πωπ2=⇒=T T ,如图,翻折无效).④)sin(ϕω+=x y 的对称轴方程是2ππ+=k x (Z k ∈))的对称轴方程是πk x =(Z k ∈),对称中心(0,21ππ+k );)tan(ϕω+=x y 的对称中心(0,2πk ). x x y x y 2cos )2cos(2cos -=--=−−−→−=原点对称⑤当αtan ·,1tan =β)(2Z k k ∈+=+ππβα;αtan ·,1tan -=β)(2Z k k ∈+=-ππβα. ⑥x y cos =与⎪⎭⎫ ⎝⎛++=ππk x y 22sin 是同一函数,而)(ϕω+=x y 是偶函数,则 )cos()21sin()(x k x x y ωππωϕω±=++=+=.⑦函数x y tan =在R 上为增函数.(×) [只能在某个单调区间单调递增. 若在整个定义域,x y tan =为增函数,同样也是错误的].⑧定义域关于原点对称是)(x f 具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:)()(x f x f =-,奇函数:)()(x f x f -=-)奇偶性的单调性:奇同偶反. 例如:x y tan =是奇函数,)31tan(π+=x y 是非奇非偶.(定义域不关于原点对称)奇函数特有性质:若x ∈0的定义域,则)(x f 一定有0)0(=f .(x ∉0的定义域,则无此性质)⑨x y sin =不是周期函数;x y sin =为周期函数(π=T )x y cos =是周期函数(如图);x y cos =为周期函数(=T 212cos +=x y 的周期为π(如图)R k k x f x f y ∈+===),(5)(.⑩abb a b a y =+++=+=ϕϕαβαcos )sin(sin cos 22 有y b a ≥+22. 11、三角函数图象变换法则例题讲解一.求值与化简1.基本概念与公式(正用、逆用)例1.已知锐角α终边上一点的坐标为()2323sin ,cos ,-求角α=( ) (A )3 (B )3- (C )32π- (D )32-π例2.sin 50(1)︒⋅︒.例3.化简:︒⋅︒⋅︒80cos 40cos 20cos .例4.化简:117sin sinsin 242412πππ例5.化简:例7.求值:23)csc124cos 122︒-︒︒-.. y=|cos2x +1/2|图象例8.化简cos10(tan10sin 50︒︒︒例9.例10.若32,2π<α<π例11.求tan12tan33tan12tan33︒+︒+︒︒的值例12.求tan()tan()tan()tan()6666ππππ-θ++θ+-θ⋅+θ的值例13.求(1tan1)(1tan 2)(1tan3)(1tan 45)+︒+︒+︒+︒的值2.齐次式例1.已知,2tan =α求下列各式的值。

高一复习三角函数知识点总结

高一复习三角函数知识点总结

yACB三角函数一、基本概念、定义:1. 角的概念推广后,包括 正角 、 0 、 负角 ,与α终边相同的角表示为{}Z k k ∈+⨯=,360|αββ 。

终边角: x 轴上 {}Z k k ∈⨯=,180| ββ;y 轴上{}00|18090,k k Z ββ=⨯+∈;第一象限|22,2k k k Z παπαπ⎧⎫<<+∈⎨⎬⎩⎭; 第二象限|22,2k k k Z παπαππ⎧⎫+<<+∈⎨⎬⎩⎭; 第三象限3|22,2k k k Z παππαπ⎧⎫+<<+∈⎨⎬⎩⎭; 第四象限3|222,2k k k Z παπαππ⎧⎫+<<+∈⎨⎬⎩⎭; 2. 弧度制:把 弧长等于半径的圆弧所对的圆心角叫做1弧度的角 叫1弧度的角.公式:|α|=l r ; 换算:180°=π弧度; 1弧度= 0'18057.305718π⎛⎫≈≈ ⎪⎝⎭; 1°= 180π弧度 扇形:弧长L = r α⋅,面积S = 12l r ⋅=212r α⋅=212l α。

(扇形的周长确定求面积最大值:扇形面积确定求周长最小值)利用均值不等式 3. 任意角的三角函数:①定义:角α终边上任意一点P(x ,y),则r )0r >,六个三角函数的定义依次是sin y r α=、cos x r α= 、tan yxα=。

②三角函数线:角的终边与单位圆交于点P ,过点P 作 x 轴的垂线,垂足为M ,则有向线段MP 、OM 是角α的正弦线、余弦线 。

过点A(1,0)作 单位圆的切线 ,交 α的终边或反向延长线交 于点T ,则 有向线段AT 是角α的 正切线 。

yxα的终边TM POAxy α的终边T M P O Ax yα的终边T MPOAxyα的终边TM P OAsin MP α= cos OM α= tan AT α=③各象限角的各种三角函数值符号:一全二正弦,三切四余弦sin α cos α tan α④同角三角函数关系式:平方关系:1cos sin 22=+αα 商数关系:αααtan cos sin = ⑤诱导公式 口诀:奇变偶不变,符号看象限。

高中数学-三角函数知识点总结

高中数学-三角函数知识点总结

三角函数知识点一、三角函数知识点 1.角的定义:(1)00~0360角的定义:从一点O 出发的两条射线OB OA ,所形成的图形叫做角,这点O 叫做角的顶点,射线OB OA ,叫做角的两边(2)任意角的定义:角可以看成是平面内一条射线绕着它的端点从一个位置OA 旋转到另一个位置OB 所形成的图形,端点O 叫做角的顶点,射线OA 叫做角的始边,射线OB 叫做角的终边2.规定:(1)正角:按逆时针方向旋转形成的角叫正角 (2)负角:按顺时针方向旋转形成的角叫负角 (3)零角:一条射线不作任何旋转形成的角叫零角这样,我们就把角的概念推广到了任意角,包括正角,负角,零角 注:角的度量需注意:既要考虑旋转方向,又要考虑旋转量3.终边相同的角:所有与α终边相同的角连同α在内组成的集合{}Z k k S ∈⋅+==,3600αββ 4.象限角和轴线角:将角放在直角坐标系中,让角的顶点与原点重合,角的始边与x 轴非负半轴重合,则(1)象限角:角的终边落在第几象限,则称该角为第几象限角 (2)轴线角:角的终边落在坐标轴上,则称该角为轴线角 5.1º的角的定义:规定周角的3601为1度的角,记作:01,这种用度作为单位来度量角的单位制叫做角度制6.1弧度角的定义:我们把长度等于半径长的弧所对的圆心角叫做1弧度的角,记作1rad ,读作:1弧度,这种以弧度为单位来度量角的制度叫做弧度制7.弧度数(1)我们规定,正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零 (2)半径为R 的圆的圆心角α所对的弧长为l ,则角α的弧度数为Rl=α,角α的正负由α终边的旋转方向决定注:弧度制与角度制区别:(1)弧度制是以“弧度”为单位来度量角的单位制,角度制是以“度”为单位来度量角的单位制,1弧度≠1度(2)1弧度是弧长等于半径长的圆弧所对的圆心角的大小,而1度是周角的3601所对的圆心角的大小(3)弧度制是十进制,它的表示是用一个实数表示,而角度制是六十进制; (4)以弧度和度为单位的角,都是一个与半径无关的定值 8.弧度制与角度制的换算(1)弧度制与角度制下的一些特殊角①角度制下零度的角:00,弧度制下零度的角:0rad , 区别数值相同,单位不同 ②角度制下平角:0180,弧度制下平角:πrad ③角度制下周角:0360,弧度制下平角:2πrad (2)弧度制与角度制的换算①角度化成弧度:=0360 π2 ,0180 π2 ,01 01745.0 ②弧度化成角度:π2 0360 ,π 0180 ,rad 1 '01857 注:角度和弧度互化9.扇形的弧长公式和面积公式(1)角度制下扇形的弧长公式:180Rn l π=;扇形的面积公式:3602R n S π=(2)弧度制下扇形的弧长公式:R l α=;扇形的面积公式:Rl R S 21212==α10.角度制下和弧度制下轴线角和象限角的集合 (1)轴线角的集合①终边在x 轴的非负半轴上{}Z k k x x ∈⋅=,3600={}Z k k x x ∈=,2π②终边在x 轴的非正半轴上{}Z k k x x ∈+⋅=,18036000={}Z k k x x ∈+=,2ππ ③终边在x 轴上{}Z k k x x ∈⋅=,1800={}Z k k x x ∈=,π④终边在y 轴的非负半轴上{}Z k k x x ∈+⋅=,9036000={}Z k k x x ∈=,2π ⑤终边在y 轴的非正半轴上{}Z k k x x ∈-⋅=,9036000={}Z k k x x ∈+=,2ππ⑥终边在y 轴上{}Z k k x x ∈+⋅=,9018000=⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,2ππ⑦终边在坐标轴上{}Z k k x x ∈⋅=,900=⎭⎬⎫⎩⎨⎧∈=Z k k x x ,2π (2)象限角的集合①第一象限角的集合{}Z k k x k x ∈+⋅<<⋅,90360360000=⎭⎬⎫⎩⎨⎧∈+<<Z k k x k x ,222πππ②第二象限角的集合{}Z k k x k x ∈+⋅<<+⋅,180360903600000=⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,222ππππ③第三象限角的集合{}Z k k x k x ∈+⋅<<+⋅,2703601803600000=⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,2322ππππ④第四象限角的集合{}Z k k x k x ∈+⋅<<+⋅,3603602703600000=⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,22232ππππ ={}Z k k x k x ∈⋅<<-⋅,36090360000=⎭⎬⎫⎩⎨⎧∈<<-Z k k x k x ,222πππ11.两角的终边对称结论(1)α与β的终边关于x 轴对称Z k k ∈=+,2πβα (2)α与β的终边关于y 轴对称Z k k ∈+=+,2ππβα (3)α与β的终边关于原点轴对称Z k k ∈++=,2ππβα (4)α与β的终边共线Z k k ∈+=,πβα(5)α与β的终边关于直线x y =对称Z k k ∈+=+,22ππβα(6)α与β的终边关于直线x y -=对称Z k k ∈+=+,232ππβα (7)α与β的终边互相垂直Z k k ∈++=,2ππβα12.三角函数定义:(1)任意角的三角函数定义1:设角α的顶点与原点重合,始边与x 轴的非负半轴重合,角α的终边上任意一点P 的坐标为),(y x ,它到原点的距离022>+=y x r ,则 ①比值r y 叫做角α的正弦,记作αsin ,即=αsin r y ②比值r x 叫做角α的余弦,记作αcos ,即=αcos r x ③比值x y 叫做角α的正切,记作αtan ,即=αtan x y ④比值y x 叫做角α的余切,记作αcot ,即=αcot yx (2)任意角的三角函数定义2:设角α的顶点与原点重合,始边与x 轴的非负半轴重合,角α的终边与单位圆的交点为P ),(y x ,则 ①=αsin y ②αcos x ③=αtan xy④=αcot y x三角函数都是以角为自变量,以比值为函数值的函数,又由于角与实数是一一对应的,所以三角函数也可以看作是以实数为自变量的函数13.三角函数的定义域和值域三角函数定义域值域αsin =yR ]1,1[- αcos =y R]1,1[-αtan =y⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,2ππR αcot =y{}Z k k x x ∈≠,πR14.三角函数值在各象限的符号αsin αcos αtan记法1:正弦上正,余弦右正,正切一三正 记法2:一全正,二正弦,三正切,四余弦 15.诱导公式:公式一:终边相同的角的同一三角函数值相等角度制下 弧度制下=+⋅)360sin(0αk αsin =+)2sin(απk αsin =+⋅)360cos(0αk αcos =+)2cos(απk αcos =+⋅)360tan(0αk αtan =+)2tan(απk αtan =+⋅)360cot(0αk αcot =+)2cot(απk αcot公式二:角度制下 弧度制下=+)180sin(0ααsin - =+)sin(απαsin - =+)180cos(0ααcos - =+)cos(απαcos - =+)180tan(0ααtan =+)tan(απαtan =+)180cot(0ααcot =+)cot(απαcot公式三:角度制下 弧度制下=-)180sin(0ααsin =-)sin(απαsin =-)180cos(0ααcos - =-)cos(απαcos - =-)180tan(0ααtan - =-)tan(απαtan - =-)180cot(0ααcot - =-)cot(απαcot -公式四:角度制下 弧度制下=-)sin(ααsin - =-)sin(ααsin - =-)cos(ααcos =-)cos(ααcos =-)tan(ααtan - =-)tan(ααtan - =-)cot(ααcot - =-)cot(ααcot -公式五:角度制下 弧度制下=-)90sin(0ααcos =-)2sin(απαcos=-)90cos(0ααsin =-)2cos(απαsin-)90tan(0ααcot =-)2tan(απαcot=-)90cot(0ααtan =-)2cot(απαtan公式六:角度制下 弧度制下=+)90sin(0ααcos =+)2sin(απαcos=+)90cos(0ααsin - =+)2cos(απαsin -=+)90tan(0ααtan - =+)2tan(απαtan -=+)90cot(0ααcot - =+)2cot(απαcot -公式七:角度制下 弧度制下=+)270sin(0ααcos - =+)23sin(απαcos -=+)270cos(0ααsin =+)23cos(απαsin=+)270tan(0ααcot - =+)23tan(απαcot -=+)270cot(0ααtan - =+)23cot(απαtan -公式八:角度制下 弧度制下=-)270sin(0ααcos - =-)23sin(απαcos -=-)270cos(0ααsin - =-)23cos(απαsin -=-)270tan(0ααcot =-)23tan(απαcot=-)270cot(0ααtan - =-)23cot(απαtan -记忆口诀:奇变偶不变符号看象限 16.部分特殊角的三角函数:αcos21 22 23 1αtan/3-1-33- 017.三角函数线:(1)有向线段:当角α的终边不在坐标轴上时,我们把MP 、OM 、AT 都看成带有方向的线段,这种带方向的线段叫有向线段规定:与坐标轴相同的方向为正方向(2)这几条与单位圆有关的有向线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线注:(1)正弦线、余弦线、正切线分别解释了正弦函数x y sin =,余弦函数x y cos =、正切函数x y tan =的几何意义(2)正弦线、余弦线、正切线的方向与坐标轴正方向相同时,对应的三角函数值为正,与坐标轴正方向相反时,对应的三角函数值为负 18.同角三角函数的关系:(1)平方关系:1cos sin 22=+αα (2)商数关系:=αtan ααcos sin 、=αcot ααsin cos (3)倒数关系:1cot tan =αα 注意公式的变形:(1)1cos sin 22=+x x ⇒x x 22cos 1sin -=、x x 22sin 1cos -= (2)⇒=αααcos sin tan =αsin ααcos tan 、⇒=αααsin cos cot =αcos ααsin cot (3)ααααααcos sin ,cos sin ,cos sin -+的关系:①=+2)cos (sin ααααcos sin 21+ ②=-2)cos (sin ααααcos sin 21- ③=-++22)cos (sin )cos (sin αααα219.正弦函数x y sin =、余弦函数x y cos =、正切函数x y tan =的图像和性质 函数x y sin = x y cos = x y tan =图形定义域 RR⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,2ππ值域]1,1[-]1,1[-R最值当Z k k x ∈+=,22ππ时,有最大值当Z k k x ∈-=,22ππ时,有最大值当Z k k x ∈=,2π时,有最大值当Z k k x ∈+=,22ππ时,有最大值无最大值无最小值单调性在Zk k k ∈+-],22,22[ππππ上递增在Zk k k ∈++],232,22[ππππ上递减在Z k k k ∈-],2,2[πππ上递增在Z k k k ∈+],2,2[πππ上递减在Zk k k ∈+-),2,2(ππππ上递增奇偶性 奇函数偶函数奇函数周期性π2=Tπ2=Tπ=T 对称性关于Z k k x ∈+=,2ππ对称关于点Z k k ∈),0,(π中心对称关于Z k k x ∈=,π对称 关于点Zk k ∈+),0,2(ππ中心对称关于点Z k k ∈),0,2(π中心对称20.三角函数周期结论(1)函数B x A y ++=)sin(ϕω(其中0,≠ωA )的周期=T ωπ2函数B x A y ++=)cos(ϕω(其中0,≠ωA )的周期=T ωπ2函数)tan(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ (2)函数)sin(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ 函数)cos(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ 函数)tan(ϕω+=x A y (其中0,≠ωA )的周期=T ωπ (3)函数B x A y ++=)sin(ϕω(其中0,,≠B A ω)的周期=T ωπ2函数B x A y ++=)cos(ϕω(其中0,,≠B A ω)的周期=T ωπ221.函数B x A y ++=)sin(ϕω)0,0(>>ωA 的图像的作法(1)图像变换法:函数B x A y ++=)sin(ϕω的图像可由正弦函数x y sin =经过一系列的变换得到:①先平移变换,再周期变换:x y sin =———————————→)sin(ϕ+=x y —————————→)sin(ϕω+=x y——————————→)sin(ϕω+=x A y ——————————→B x A y ++=)sin(ϕω ②先周期变换,再平移变换:x y sin =———————————→)sin(x y ω=——————————→)sin(ϕω+=x y——————————→)sin(ϕω+=x A y ——————————→B x A y ++=)sin(ϕω (2)五点作图法:函数B x A y ++=)sin(ϕω的图像画法:一个周期内起关键作用的五个点的横坐标可由=+ϕωx ππππ2,23,,2,0得到 22.函数变换结论: (1)平移变换01左右平移:①将函数)(x f y =的图象向左移a 个单位得函数)(a x f y +=的图象 ②将函数)(x f y ω=的图象向左移a 个单位得函数))((a x f y +=ω的图象02上下平移:将函数)(x f y =的图象向上移b 个单位得函数b x f y +=)(的图象(2)伸缩变换①函数)(x f y ω=的图象可由函数)(x f y =的图象上每一点的纵坐标不变,横坐标变为原来的ω1倍得到 ②函数)(x Af y =的图象可由函数)(x f y =的图象上每一点的横坐标不变,纵坐标变为原来的A 倍得到 (3)翻折变换①函数)(x f y =的图象可将函数)(x f y =的图像y 轴右侧的图像保留,y 轴左侧的图像由y 轴右侧的图像沿y 轴翻折得到②函数)(x f y =的图象可将函数)(x f y =的图像在x 轴上方的图像保留,x 轴下方的图像沿x 轴翻折到x 轴上方得到 23.两个函数的对称性结论(1)函数)(x f y -=与)(x f y =的图象关于x 轴对称 (2)函数)(x f y -=与)(x f y =的图象关于y 轴对称 (3)函数)(x f y --=与)(x f y =的图象关于原点对称 (4)函数)(1x fy -=与)(x f y =的图象关于x y =对称(5)函数)2(x a f y -=与)(x f y =的图象关于a x =对称(6)函数)2(x a f y --=与)(x f y =的图象关于点)0,(a 对称24.函数)sin(ϕω+=x A y 和)cos(ϕω+=x A y )0,0(>>ωA 的奇偶性结论 (1)函数)sin(ϕω+=x A y 为奇函数⇔Z k k ∈=,πϕ(2)函数)sin(ϕω+=x A y 为偶函数⇔Z k k ∈+=,2ππϕ(3)函数)cos(ϕω+=x A y 为奇函数⇔Z k k ∈+=,2ππϕ(4)函数)cos(ϕω+=x A y 为偶函数⇔Z k k ∈=,πϕ 二、三角变换25.两角和与差的正弦余弦正切公式:(1)=+)sin(βαβαβαsin cos cos sin +,记作)(βα+ S (2)=-)sin(βαβαβαsin cos cos sin -,记作)(βα- S (3)=+)cos(βαβαβαsin sin cos cos -,记作)(βα+C (4)=-)cos(βαβαβαsin sin cos cos +,记作)(βα-C (5)=+)tan(βαβαβαtan tan 1tan tan -+,记作)(βα+T(6)=-)tan(βαβαβαtan tan 1tan tan +-,记作)(βα-T26.二倍角的正弦、余弦、正切公式 (1)=α2sin ααcos sin 2(2)=α2cos αα22sin cos -=1cos 22-α=α2sin 21-(3)=α2tan αα2tan 1tan 2- 注:二倍角公式的变形:(1)=+2)cos (sin ααααcos sin 21+;=-2)cos (sin ααααcos sin 21-(2)升幂缩角公式:=+αcos 12cos 22α;=-αcos 12sin 22α(3)降幂扩角公式:=α2sin 22cos 1α-;=α2cos 22cos 1α+ =α2sin 2α2cos 1-;=α2cos 2α2cos 1+27.半角公式:(1) =2sinα22cos 1α-±=2cosα22cos 1α+±=2tanααα2cos 12cos 1+-±(2)=2tanαααsin cos 1-=ααcos 1sin +28.辅助角公式: (1)=+θθcos sin b a )sin(22ϕ++x b a ,其中=ϕsin 22b a b +,=ϕcos 22b a a +(2)=+θθcos sin b a )cos(22ϕ-+x b a ,其中=ϕsin 22ba a +,=ϕcos 22ba b +29.万能公式=α2sin αα2tan 1tan 2+ =α2cos αα22tan 1tan 1+- =α2tan αα2tan 1tan 2- 30.积化和差公式=βαcos sin )]sin()[sin(21βαβα-++=βαsin cos )]sin()[sin(21βαβα--+ =βαcos cos )]cos()[cos(21βαβα-++ =βαsin sin )]cos()[cos(21βαβα--+-31.和差化积公式=+βαsin sin 2cos2sin2βαβα-+=-βαsin sin 2sin2cos2βαβα-+=+βαcos cos 2cos2cos2βαβα-+=-βαcos cos 2sin2sin2βαβα-+-。

高一数学必修一 - 三角函数知识点总结

高一数学必修一 - 三角函数知识点总结

高一数学必修一 - 三角函数知识点总结1. 弧度制和角度制- 弧度制是以角度为单位,一个完整的圆的弧度为2π。

- 角度制是以角度为单位,一个完整的圆的角度为360°。

2. 三角函数的定义- 正弦函数(sin):对于一个角θ,其正弦值定义为对边与斜边的比值,即sinθ = 对边/斜边。

- 余弦函数(cos):对于一个角θ,其余弦值定义为邻边与斜边的比值,即cosθ = 邻边/斜边。

- 正切函数(tan):对于一个角θ,其正切值定义为对边与邻边的比值,即tanθ = 对边/邻边。

3. 基本三角函数性质- 正弦函数的取值范围为[-1, 1],且在周期为2π时有正负对称性。

- 余弦函数的取值范围为[-1, 1],且在周期为2π时有正负对称性。

- 正切函数的取值范围为(-∞, +∞),并且在π/2、3π/2、5π/2等处有正负无穷的间断点。

4. 三角函数的性质- 正弦函数和余弦函数是周期函数,其周期为2π。

- 正弦函数和余弦函数在0、π/6、π/4、π/3、π/2这些特殊角度处有确定的值,可以使用特殊角度的正弦值和余弦值表来查找。

5. 基本三角函数的关系- 正弦函数和余弦函数的关系为:sin^2θ + cos^2θ = 1。

- 正切函数与正弦函数和余弦函数的关系为:tanθ = sinθ / cosθ。

6. 三角函数的图像- 正弦函数的图像是一条上下周期变化的曲线。

- 余弦函数的图像是一条左右周期变化的曲线。

- 正切函数的图像是一条以x轴为渐进线的周期变化曲线。

7. 三角函数的应用- 三角函数在几何问题中有广泛的应用,例如求解三角形的边长和角度。

- 三角函数在物理问题中也有重要的应用,例如描述波动和振动等现象。

以上是高一数学必修一中三角函数的基本知识点总结。

希望对你有帮助!。

高一三角函数知识点归纳总结公式

高一三角函数知识点归纳总结公式

高一三角函数知识点归纳总结公式一、正弦函数的相关公式:1. 周期公式:y = sin(x)的周期是2π,即sin(x + 2π) = sin(x)。

2. 幅值公式:y = a·sin(x)的幅值是|a|,即|sin(x)| ≤ |a|。

3. 对称公式:sin(-x) = -sin(x),即正弦函数关于y轴对称。

4. 奇偶性公式:sin(-x) = -sin(x),即正弦函数是奇函数。

5. 正弦函数图像的特点:振幅为a,最值为±a,对称轴是y = 0。

二、余弦函数的相关公式:1. 周期公式:y = cos(x)的周期是2π,即cos(x + 2π) = cos(x)。

2. 幅值公式:y = a·cos(x)的幅值是|a|,即|cos(x)| ≤ |a|。

3. 对称公式:cos(-x) = cos(x),即余弦函数关于y轴对称。

4. 奇偶性公式:cos(-x) = cos(x),即余弦函数是偶函数。

5. 余弦函数图像的特点:振幅为a,最值为±a,对称轴是y = a。

三、正切函数的相关公式:1. 周期公式:y = tan(x)的周期是π,即tan(x + π) = tan(x)。

2. 正切函数的定义域:tan(x)的定义域是x ≠ (2k + 1)·π/2,k是整数。

3. 正切函数的值域:tan(x)的值域是全体实数。

4. 正切函数图像的特点:无振幅和对称轴,有无穷多个间断点。

四、三角函数的和差化简公式:1. sin(x ± y) = sin(x)·cos(y) ± cos(x)·sin(y)。

2. cos(x ± y) = cos(x)·cos(y) ∓ sin(x)·sin(y)。

3. tan(x ± y) = (tan(x) ± tan(y)) / (1 ∓ tan(x)·tan(y))。

数学三角函数知识点高一

数学三角函数知识点高一

数学三角函数知识点高一三、三角函数的基本概念和性质一、正弦函数与余弦函数在平面直角坐标系中,以原点O为顶点,建立一个单位圆。

设圆上一点P的坐标为(x,y)。

将OP的终边与x轴正向的交点记为M。

则OP与正向的夹角A称为弧度角。

根据三角形的定义,可以得到以下关系式:OM = cosA, PN = sinA其中,- x = cosA (cosA为弧度角A对应的点的横坐标)- y = sinA (sinA为弧度角A对应的点的纵坐标)这两个函数称为正弦函数和余弦函数。

二、正切函数与余切函数在平面直角坐标系中,以原点O为顶点,建立一个单位圆。

设圆上一点P的坐标为(x,y)。

将OP的终边与x轴正向的交点记为M。

则OP与正向的夹角A称为弧度角。

根据三角形的定义,可以得到以下关系式:tgA = y / x = sinA / cosActgA = x / y = cosA / sinA这两个函数称为正切函数和余切函数。

三、三角函数的基本性质1. 周期性:正弦函数和余弦函数的周期都是2π,即f(x + 2π) =f(x)。

正切函数和余切函数的周期都是π,即f(x + π) = f(x)。

2. 奇偶性:正弦函数是奇函数,即sin(-x) = -sin(x);余弦函数是偶函数,即cos(-x) = cos(x)。

正切函数是奇函数,即tg(-x) = -tg(x);余切函数是奇函数,即ctg(-x) = -ctg(x)。

3. 定义域和值域:正弦函数和余弦函数的定义域是整个实数集,值域是[-1, 1]。

正切函数和余切函数的定义域是除了一切使得cosA或sinA为零的实数之外的所有实数,值域是整个实数集。

4. 增减性:正弦函数在[0, π]上是增函数,在[π, 2π]上是减函数。

余弦函数在[0, π]上是减函数,在[π, 2π]上是增函数。

5. 最值:正弦函数和余弦函数的最大值是1,最小值是-1。

正切函数的最大值是无穷,最小值是负无穷。

高中一年级三角函数知识点整理

高中一年级三角函数知识点整理

高中一年级三角函数知识点整理一、定义三角函数是一类函数,其函数值是一个三角形里两个角的对应边的比例。

它以数学上的正弦、余弦和正切为主要的函数,用这三个函数可以概括出其他三角函数,也可以通过这三个函数推导出其他三角函数。

二、正弦函数正弦函数,又称正弦波或余弦波,表示某点的椭圆曲线的极坐标相对于原点的x轴的余弦值。

它可以用于表示电信号、声音、光等电磁波的变化规律,也是用作描述时间在物理及其他科学中扮演重要角色的自然频率函数。

三、余弦函数余弦函数是一种三角函数,用于表示某点的椭圆曲线的极坐标相对于原点的x轴的正弦值。

它可以用来描述光的反射、吸收、扩散等过程,也可以被应用于物体抛体运动曲线的表征,用于研究常见的视觉失真及光学像散折射等现象。

四、正切函数正切函数是指一类二元函数,以常数为函数参数,其值为某点在抛物线或椭圆曲线上距离原点y轴的比例。

它常用于三角形中,用来描述两个角度之间的关系,也可以用于求解三角形的不确定值,它也与三角函数的求解紧密相关。

五、正弦定理正弦定理是指在三角形中,比边的正弦值等于两邻角的余弦值的乘积,也就是a/sinA=b/sinB=c/sinC,它可以用于求解不规则三角形的全部三角函数,和极坐标的求解等。

六、余切函数余切函数是指以余弦值和正弦值的比值及余弦值和正切值之比表示,它经常用于求解不同角度下的正弦值、余弦值及正切值之间的关系,也可以应用于解决三角函数求解问题。

七、倒三角函数倒三角函数又称反三角函数,是指以正弦函数、余弦函数及正切函数的倒数(即分别用sin-1、cos-1和cot-1表示)来表示某角的三角函数,它是三角函数的逆函数,可以用于求解具有某几种特定性质的三角函数,满足倒三角函数表达式的值为角度单位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§04. 三角函数 知识要点1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+⨯=,360|αββ②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180| ββ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|ββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180|ββ ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180|ββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 ⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad =π180°≈57.30°=57°18ˊ. 1°=180π≈0.01745(rad ) 3、弧长公式:r l⋅=||α. 扇形面积公式:211||22s lr r α==⋅扇形4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r,则 =αsin rx=αcos ; x y =αtan ; yx =αcot ; x r =αsec ;. αcsc 5、三角函数在各象限的符号:正切、余切余弦、正割正弦、余割6、三角函数线正弦线:MP; 余弦线:OM; 正切线: AT.7. 三角函数的定义域:SIN \COS 1、2、3、4表示第一、二、三、四象限一半所在区域16. 几个重要结论:ααtan cos =ααcot sin cos =1cot tan =⋅αα 1sin csc =α⋅α 1cos sec =α⋅α1cos sin 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为: “奇变偶不变,符号看象限”三角函数的公式:(一)基本关系公式组二 公式组三x x k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ xx x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=-公式组四 公式组五 公式组六 x x x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ x x x x x x x x cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ(二)角与角之间的互换公式组一 公式组二 βαβαβαsin sin cos cos )cos(-=+ αααcos sin 22sin =βαβαβαsin sin cos cos )cos(+=- ααααα2222sin 211cos 2sin cos 2cos -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2tan 1tan 22tan -=βαβαβαsin cos cos sin )sin(-=- 2cos 12sinαα-±= βαβαβαtan tan 1tan tan )tan(-+=+ 2cos 12cos αα+±=公式组一sin x ·csc x =1tan x =x xcos sin sin 2x +cos 2x =1cos x ·sec x x =xx sin cos 1+tan 2x =sec 2xtan x ·cot x =1 1+cot 2x =csc 2x=1βαβαβαtan tan 1tan tan )tan(+-=- 公式组三 公式组四 公式组五2tan 12tan 2sin 2ααα+= 2tan 12tan 1cos 22ααα+-= 2tan 12tan 2tan 2ααα-= 42675cos 15sin -== ,42615cos 75sin +== ,3275cot 15tan -== ,3215cot 75tan +== .()()[]()()[]()()[]()()[]βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=cos cos 21sin sin cos cos 21cos cos sin sin 21sin cos sin sin 21cos sin 2cos 2sin sin sin βαβαβα-+=+2sin 2cos 2sin sin βαβαβα-+=-2cos 2cos 2cos cos βαβαβα-+=+2sin 2sin 2cos cos βαβαβα-+-=-αααααααsin cos 1cos 1sin cos 1cos 12tan -=+=+-±=ααπsin )21cos(-=+ααπcos )21sin(=+ααπcot )21tan(-=+ααπsin )21cos(=-ααπcos )21sin(=-ααπcot )21tan(=-相反.一般地,若)(x f y =在],[b a 上递增(减),则)(x f y -=在],[b a 上递减(增).②x y sin =与x y cos =的周期是π.③)sin(ϕω+=x y 或)cos(ϕω+=x y (0≠ω)的周期ωπ2=T .2tanx y =的周期为2π(πωπ2=⇒=T T,如图,翻折无效).④)sin(ϕω+=x y 的对称轴方程是2ππ+=k x (Z k ∈))的对称轴方程是πk x =(Z k ∈),对称中心(0,21ππ+k );)tan(ϕω+=x y 的对称中心(0,2πk ). x x y x y 2cos )2cos(2cos -=--=−−−→−=原点对称⑤当αtan ·,1tan =β)(2Z k k ∈+=+ππβα;αtan ·,1tan -=β)(2Z k k ∈+=-ππβα. ⑥x y cos =与⎪⎭⎫ ⎝⎛++=ππk x y 22sin 是同一函数,而)(ϕω+=x y 是偶函数,则 )cos()21sin()(x k x x y ωππωϕω±=++=+=.⑦函数x y tan =在R 上为增函数.(×) [只能在某个单调区间单调递增. 若在整个定义域,x y tan =为增函数,同样也是错误的].⑧定义域关于原点对称是)(x f 具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:)()(x f x f =-,奇函数:)()(x f x f -=-)奇偶性的单调性:奇同偶反. 例如:x y tan =是奇函数,)31tan(π+=x y 是非奇非偶.(定义域不关于原点对称)奇函数特有性质:若x ∈0的定义域,则)(x f 一定有0)0(=f .(x ∉0的定义域,则无此性质)⑨x y sin =不是周期函数;x y sin =为周期函数(π=T )x y cos =是周期函数(如图);x y cos =为周期函数(=T 212cos +=x y 的周期为π(如图)R k k x f x f y ∈+===),(5)(.⑩abb a b a y =+++=+=ϕϕαβαcos )sin(sin cos 22 有y b a ≥+22. 11、三角函数图象变换法则例题讲解一.求值与化简1.基本概念与公式(正用、逆用)例1.已知锐角α终边上一点的坐标为()2323sin ,cos ,-求角α=( ) (A )3 (B )3- (C )32π- (D )32-π例2.sin 50(1)︒⋅︒.例3.化简:︒⋅︒⋅︒80cos 40cos 20cos .例4.化简:117sin sinsin 242412πππ例5.化简:y=|cos2x +1/2|图象例7.求值:23)csc124cos 122︒-︒︒-..例8.化简cos10(tan10sin 50︒︒︒例9.例10.若32,2π<α<π例11.求tan12tan33tan12tan33︒+︒+︒︒的值例12.求tan()tan()tan()tan()6666ππππ-θ++θ+-θ⋅+θ的值例13.求(1tan1)(1tan 2)(1tan3)(1tan 45)+︒+︒+︒+︒的值2.齐次式例1.已知,2tan =α求下列各式的值。

(1)4sin 2cos 5cos 3sin α-αα+α(2)2222sin 3cos 1sin sin cos α+α+α+αα(3)sin cos αα(4)αααα22cos 5cos sin 3sin 2--例2.已知tan 1tan 1αα=--,求下列各式的值:(1)ααααcos sin cos 3sin +-;(2)2cos sin sin 2++ααα3.sin cos ,sin cos θθθθ±⋅关系问题 例1.已知1sin cos ,(,)842ππθθθ=∈,求cos sin θθ-的值.例2.已知51cos sin ,02=+<<-x x x π. (I )求sin x -cos x 的值; (Ⅱ)求xx xx x x cot tan 2cos 2cos 2sin 22sin 322++-的值.例3.已知(),51cos sin ,,0=+∈θθπθ求下列各式的值。

⑴θθcos sin ⑵θθcos sin - ⑶θθcot tan + ⑷θtan例4.已知sin cos m θ+θ=,求33sin cos θ+θ的值。

例5.已知:.33cos sin =+θθ求:θθ44cos sin +的值.4.整体代换(凑角)问题例1.不查表,求︒︒-︒︒︒+︒8sin 15sin 7cos 8sin 15cos 7sin 的值:例2.已知:41)2tan(,52)tan(=-=+πββα,求:)4tan(απ+的值. 例3.已知40,434πβπαπ<<<<,53)4cos(=-απ,135)43sin(=+βπ,求)sin(βα+的值.例4.已知11tan(),tan 27αββ-==-,且()πβα,0,∈,求βα-2的值.例5.已知βα,为锐角,1411)cos(,71cos -=+=βαα,求β的值。

相关文档
最新文档