2021年高二数学11月月考试题 理
高二数学(理)月考试题

高二下学期数学第一次月考试卷(理)(总分:150分 时间:120分钟)一、选择题:(本大题共10小题,每小题5分,共50分 在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知}{R x x y y M ∈-==,42,}{42≤≤=x x P 则M P 与的关系是( ) A .P M = B .P M ∈ C .φ=P M D .P M ⊇2、等比数列{}n a 中,已知3231891===q a a n ,,,则n 为 A .3 B .4 C .5 D .63、“3x >”是“24x >”的( ).A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件4、在△ABC 中,a =,b =B =45°,则A 等于( ).A . 30°B . 60°C . 30°或150°D .60°或120°5、函数)62sin(π+-=x y 的单调递减区间是( )A .Z k k k ∈⎥⎦⎤⎢⎣⎡++-,23,26ππππ B .Z k k k ∈⎥⎦⎤⎢⎣⎡++,265,26ππππ C .Z k k k ∈⎥⎦⎤⎢⎣⎡++-,3,6ππππ D .Z k k k ∈⎥⎦⎤⎢⎣⎡++,65,6ππππ 6、不等式1213≥--xx 的解集是 ( ) A .{x|243≤≤x } B .{x|243<≤x } C .{x|x >2或43≤x } D .{x|x <2} 7、已知ABCD 为平行四边形,且(413)(251)(375)A B C --,,,,,,,,,则顶点D 的坐标为( ) A.7412⎛⎫- ⎪⎝⎭,, B.(241),, C.(2141)-,, D.(5133)-,,8、“ab <0”是“曲线ax 2+by 2=1为双曲线”的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件 9、已知双曲线22221x y a b-=的一条渐近线方程为43y x =,则双曲线的离心率为( )A .53B .43 CD 10、已知圆22670x y x +--=与抛物线22(0)y p x p =>的准线相切,则p 为 ( )A .1B .2C .3D .4二、填空题:(本大题共5小题,每小题5分,共25分,把答案填在横线上)11、某篮球学校的甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个。
河北省邯郸市第二十四中学高二数学理月考试题含解析

河北省邯郸市第二十四中学高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 在棱长为a的正方体ABCD﹣A1B1C1D1中,M为AB的中点,则点C到平面A1DM的距离为()A. a B. a C. a D. a参考答案:A【考点】点、线、面间的距离计算.【专题】计算题.【分析】连接A1C、MC,三棱锥A1﹣DMC就是三棱锥C﹣A1MD,利用三棱锥的体积公式进行转换,即可求出点C到平面A1DM的距离.【解答】解:连接A1C、MC可得=△A1DM中,A1D=,A1M=MD=∴=三棱锥的体积:所以 d(设d是点C到平面A1DM的距离)∴=故选A.【点评】本题以正方体为载体,考查了立体几何中点、线、面的距离的计算,属于中档题.运用体积计算公式,进行等体积转换来求点到平面的距离,是解决本题的关键.2. 如果函数的导函数是偶函数,则曲线在原点处的切线方程是()A. B. C. D.参考答案:A试题分析:,因为函数的导数是偶函数,所以满足,即,,,所以在原点处的切线方程为,即,故选A.考点:导数的几何意义3. 若集合,,则是A.B.C.D.参考答案:B略4. 设,记,若则()A. B.- C. D.参考答案:B5. 下列命题正确的是( )A.若,则B.若,则C.若,则D.若,则参考答案:C6. 用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是()A.假设三内角都不大于60度 B.假设三内角都大于60度C.假设三内角至少有一个大于60度D.假设三内角至多有二个大于60度参考答案:B略7. 椭圆上的点到直线的最大距离是()A.3 B.C.D.参考答案:D8. 用反证法证明命题“三角形的内角中至少有一个大于60°,反证假设正确的是( )A. 假设三内角都大于60°B. 假设三内角都不大于60°C. 假设三内角至多有一个大于60°D. 假设三内角至多有两个大于60°参考答案:B【分析】反证法的第一步是假设命题的结论不成立,根据这个原则,选出正确的答案.【详解】假设命题的结论不成立,即假设三角形的内角中至少有一个大于60°不成立,即假设三内角都不大于60°,故本题选B.【点睛】本题考查了反证法的第一步的假设过程,理解至少有一个大于的否定是都不大于是解题的关键.9. 对于幂函数,若,则,大小关系是()A. B.C. D.无法确定参考答案:A10. 若f(x)是偶函数且在(0,+∞)上减函数,又,则不等式的解集为()A. 或B. 或C. 或D. 或参考答案:C∵是偶函数,,∴,∵,∴∵在上减函数,∴,∴或∴不等式的解集为或,故选C.二、填空题:本大题共7小题,每小题4分,共28分11. 设两个独立事件和都不发生的概率为,发生不发生的概率与发生不发生的概率相同,则事件发生的概率为____.参考答案:12. 若x 2dx=9,则常数T的值为 .参考答案:3【考点】定积分.【分析】利用微积分基本定理即可求得.【解答】解: ==9,解得T=3,故答案为:3.13. 给出下列3个命题:①若,则;②若,则;③若且,则,其中真命题的序号为 ▲ .参考答案:14. 甲、乙、丙人站到共有级的台阶上,若每级台阶最多站人,同一级台阶上的人不区分站的位置,则不同的站法种数是 (用数字作答).参考答案: 336 略15. 设变量满足约束条件则的最大值为________参考答案:4 16. 若在展开式中x 3的系数为-80,则a = .参考答案:-2;17. 已知,且是第二象限角,则____________参考答案:三、 解答题:本大题共5小题,共72分。
高二数学(理)下学期第二次月考试题(含答案)

上学期第二次月考高二数学卷(理)考试时间:120分钟 满分:150一、选择题(每小题5分,共12题)1、已知全集{,,,,}U a b c d e =,{,,}M a c d =,{,,}N b d e =,则N M C U ⋂)( = ( )A .{}bB .{}dC .{,}b eD .{,,}b d e2、 5()a x x +(x R ∈)展开式中3x 的系数为10,则实数a 等于( )A .-1B .12 C .1 D .23、某公司新招聘8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,则不同的分配方案共有( )A. 24种B. 36种C. 38种D. 108种4、计算888281808242C C C C ++++ =( )A 、62B 、82C 、83 D 、63 5、一个盒子里有6只好晶体管,4只坏晶体管,任取两次,每次取一只,每次取后不放回,则若已知第一只是好的,则第二只也是好的概率为( ) A.23 B.512 C.59 D.796、已知△ABC 的重心为P ,若实数λ满足:AB AC AP λ+=,则λ的值为A .2B .23C .3D .67、在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A 只能出现在第一或最后一步,程序B 和C 在实施时必须相邻,问实验顺序的编排方法共有 ( )A .34种B .48种C .96种D .144种8、35(1(1+的展开式中x 的系数是(A )4- (B )2- (C )2 (D )49、某体育彩票规定: 从01到36共36个号码中抽出7个号码为一注,每注2元 某人想先选定吉利号18,然后再从01到17中选3个连续的号,从19到29中选2个连续的号,从30到36中选1个号组成一注,则此人把这种要求的号买全,至少要花( )A.1050元B. 1052元C. 2100元D. 2102元10、9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品来检查,至少有两件一等品的种数是( )A.2524C C ⋅ B.443424C C C ++ C.2524C C + D.054415342524C C C C C C ⋅+⋅+⋅11、已知,)(为偶函数x f x x f x x f x f 2)(,02),2()2(=≤≤--=+时当,若*,(),n n N a f n ∈=则2011a = ( )A .1B .21C . 14D .1812、如图,在A 、B 间有四个焊接点,若焊接点脱落,而可能导致电路不通,如今发现A 、B 之间线路不通,则焊接点脱落的不同情况有 ( )A .10B .13C .12D .15二、填空题(每小题5分,共4小题)13、已知(1-2x)n的展开式中,二项式系数的和为64,则它的二项展开式中,系数最大的是第_____________项.14、乒乓球比赛采用7局4胜制,若甲、乙两人实力相当,获胜的概率各占一半,则打完5局后仍不能结束比赛的概率等于_.15、同时投掷三颗骰子,至少有一颗骰子掷出6点的概率是_____________ (结果要求写成既约分数).16、用5种不同颜色给图中的A 、B 、C 、D 四个区域涂色,规定一个区域只涂一种颜色,相邻的区域颜色不同,共有_______种不同的涂色方案。
河北省邢台市第十一中学2021年高二数学理月考试题含解析

河北省邢台市第十一中学2021年高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 两灯塔A、B与海洋观察站C的距离都等于a km,灯塔A在观察站C北偏东,灯塔B在观察站C南偏东,则A、B之间的距离是()A.a km B. km C. km D.2a km参考答案:A2. 若圆C:x2+y2+2x﹣4y+3=0关于直线2ax+by+6=0对称,则由点(a,b)所作的切线长的最小值是( )A.2 B.3 C.4 D.6参考答案:C【考点】直线与圆的位置关系.【专题】直线与圆.【分析】由题意可知直线经过圆的圆心,推出a,b的关系,利用(a,b)与圆心的距离,半径,求出切线长的表达式,然后求出最小值.【解答】解:将圆C:x2+y2+2x﹣4y+3=0化为标准方程得:(x+1)2+(y﹣2)2=2,∴圆心C(﹣1,2),半径r=,∵圆C关于直线2ax+by+6=0对称,∴直线2ax+by+6=0过圆心,将x=﹣1,y=2代入直线方程得:﹣2a+2b+6=0,即a=b+3,∵点(a,b)与圆心的距离d=,∴点(a,b)向圆C所作切线长l====≥4,当且仅当b=﹣1时弦长最小,最小值为4.故选C 【点评】本题考查直线与圆的位置关系,涉及的知识有:圆的标准方程,两点间的距离公式,勾股定理,以及圆的切线方程的应用,其中得出a与b的关系式是本题的突破点.3. f′(x)是函数y=f(x)的导函数,若y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A.B.C.D.参考答案:C【考点】函数的单调性与导数的关系.【分析】通过观察f′(x)图象中f′(x)值的正负,从而判断函数y=f(x)的单调情况以及极大值与极小值.从而确定函数y=f(x)的图象.【解答】解:由f′(x)图象可知,当x<0或x>2时,f′(x)>0,函数f(x)单调递增.当0<x<2时,f′(x)<0,函数f(x)单调递减,所以当x=0时,函数y=f(x)取得极大值.当x=2时,函数y=f(x)取得极小值.结合图象可知选C.故选C.4. 若二项式n的展开式中所有项的系数之和为243,则展开式中x-4的系数是()A.80 B.40 C.20 D.10参考答案:A略5. 某篮球运动员在一个赛季的40场比赛中的得分的茎叶图如右图所示,则中位数与众数分别为A.23,21 B.23,23 C.23,25 D.25,25参考答案:B6. 在△ABC中,内角A、b、c的对边长分别为a、b、c.已知a2﹣c2=2b,且sinB=4cosAsinC,则b=()A.1 B.2 C.3 D.4参考答案:D【考点】余弦定理;正弦定理.【分析】由sinB=4cosAsinC,利用正弦定理和余弦定理可化为b2=2(b2+c2﹣a2),把a2﹣c2=2b代入即可得出.【解答】解:由sinB=4cosAsinC,利用正弦定理和余弦定理可得:b=×c,化为b2=2(b2+c2﹣a2),∵a2﹣c2=2b,∴b2=2(b2﹣2b),化为b2﹣4b=0,∵b>0,解得b=4.故选:D.【点评】本题考查了正弦定理和余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.7. 某人在打靶中,连续射击2次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶B.两次都中靶C.两次都不中靶D.只有一次中靶参考答案:C【考点】互斥事件与对立事件.【分析】事件“至少有一次中靶”包含两次都中靶和两次中有一次中靶,它的互斥事件是两次都不中靶,实际上它的对立事件也是两次都不中靶.【解答】解:∵事件“至少有一次中靶”包含两次都中靶和两次中有一次中靶,它的互斥事件是两次都不中靶,故选C.8. 有一段“三段论”推理是这样的:对于可导函数,若,则是函数的极值点.因为在处的导数值,所以是的极值点.以上推理中()A.大前提错误 B.小前提错误 C.推理形式错误 D.结论正确参考答案:A9. 定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式e x f(x)>e x+3(其中e为自然对数的底数)的解集为()A.(0,+∞)B.(﹣∞,0)∪(3,+∞)C.(﹣∞,0)∪(0,+∞)D.(3,+∞)参考答案:A【考点】利用导数研究函数的单调性;导数的运算.【分析】构造函数g(x)=e x f(x)﹣e x,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解【解答】解:设g(x)=e x f(x)﹣e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)﹣e x=e x[f(x)+f′(x)﹣1],∵f(x)+f′(x)>1,∴f(x)+f′(x)﹣1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>e x+3,∴g(x )>3,又∵g(0)═e 0f (0)﹣e 0=4﹣1=3, ∴g(x )>g (0), ∴x>0 故选:A .【点评】本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.10. 执行如图所示的程序框图,若输入n =8,则输出的S =A .B .C .D .参考答案:A的意义在于是对求和.∵,,∴所求和为,选A.二、 填空题:本大题共7小题,每小题4分,共28分11. 双曲线的两条渐近线方程是参考答案:12. 从某班抽取5名学生测量身高(单位:cm ),得到的数据为160,162,159,160,159,则该组数据的方差s 2= .参考答案:【考点】极差、方差与标准差.【分析】求出数据的平均数,从而求出方差即可.【解答】解:数据160,162,159,160,159的平均数是:160, 则该组数据的方差s 2=(02+22+12+02+12)=, 故答案为:.【点评】本题考查了求平均数、方差问题,熟练掌握方差公式是解题的关键,本题是一道基础题.13. 设且满足,则的最小值等于____▲____.参考答案:3 略 14. 若展开式的各二项式系数和为16,则展开式中奇数项的系数和为 .参考答案:353 10. 设表示两条直线,表示两个平面,现给出下列命题: ① 若,则; ② 若,则; ③ 若,则; ④ 若,则.其中真命题是 ▲ .(写出所有真命题的序号)参考答案:④16. 若圆与圆关于原点对称,则圆的标准方程是___________.参考答案:略17. 关于x的不等式对一切实数x都成立,则a的范围是;参考答案:三、解答题:本大题共5小题,共72分。
2021年湖北省武汉市钢城第十四中学高二数学理月考试题含解析

2021年湖北省武汉市钢城第十四中学高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知点为圆的弦的中点,则直线的方程为().A.B.C.D.参考答案:A解:圆心,,,,整理得.2. 如图,A、B、C、D为四个村庄,要修筑三条公路,将这四个村庄连起来,则不同的修筑方法共有( )A.8种B.12种C.16种D.20种参考答案:C3. 已知等差数列的前项和为,且满足,则数列的公差是()A. B.1 C.2 D.3参考答案:C略4. 已知集合A={1,4},B={x|a+x=1},若A∩B=B,则实数a组成的集合是()A.{0} B.{0,1} C.{0,﹣3} D.{0,4}参考答案:C【考点】18:集合的包含关系判断及应用.【分析】求出集合A={1,4},B={1﹣a},由此利用A∩B=B,能求出实数a组成的集合.【解答】解:∵集合A={1,4},B={x|a+x=1}={1﹣a},A∩B=B,∴1﹣a=1或1﹣a=4.解得a=0或a=﹣3.∴实数a组成的集合是{0,﹣3}.故选:C.5. 将函数的图象F按向量(,3)平移得到图象F′,若图象F′的一条对称轴是直线x=,则θ的一个可能取值是 ( )A. B. C. D.-参考答案:A6. 如图:在图O内切于正三角形△ABC,则S△ABC=S△OAB+S△OAC+S△OBC=3?S△OBC,即,即h=3r,从而得到结论:“正三角形的高等于它的内切圆的半径的3倍”;类比该结论到正四面体,可得到结论:“正四面体的高等于它的内切球的半径的a倍”,则实数a=()A .2B .3C .4D .5参考答案:C【考点】类比推理.【分析】利用等体积,即可得出结论.【解答】解:设正四面体的高为h ,底面积为S ,内切球的半径为r , 则V==4,∴h=4r. 故选:C . 7. 对于任意实数,①;②;③;④;⑤.以上结论正确的个数是 ( )A .1B .2C .3D .4参考答案:A8. 设集合,,则( )A .B .C .D .参考答案: D 略9. 已知、是椭圆的两个焦点,若椭圆上存在点P 使,则椭圆的离心率的取值范围是( )A 、B 、C 、D 、参考答案: C10. 抛物线的准线与双曲线的两条渐近线所围成的三角形面积等于( )A.B.C.2D.参考答案: A二、 填空题:本大题共7小题,每小题4分,共28分11. 如图所示是毕达哥拉斯(Pythagoras )的生长程序:正方形上连接着等腰直角三角形,等腰直角三角形边上再连接正方形,…,如此继续,若一共能得到1023个正方形. 设初始正方形的边长为,则最小正方形的边长为.参考答案:12. 扇形铁皮AOB ,弧长为20π cm ,现剪下一个扇形环ABCD 做圆台形容器的侧面,使圆台母线长30cm 并从剩下的扇形COD 内剪下一个最大的圆,刚好做容器的下底(指较大的底),则扇形圆心角是 度。
高二数学第一次月考试卷理科 试题

卜人入州八九几市潮王学校2021年地区高二数学第一次月考试卷(理科)说明:本套试卷分第一卷(选择题)和第二卷(非选择题)两局部。
试卷总分值是150,考试时间是是120分钟。
第Ⅰ卷(选择题一共60分)一、选择题:本大题一一共12小题,每一小题5分,一共60分。
在每一小题给出的四个选项里面,有一项为哪一项哪一项符合题目要求的,请将所选答案填在指定的答题栏内。
1.函数f(x)=2x+5,当x 从2变化到4时,函数的平均变化率是〔〕A2B4 C2D-2 2.以下求导运算正确的选项是〔〕 A 、3211)1(x x x -='+B 、2ln 1)(log '2x x =C 、'2)cos (x x =-2xsinxD 、e xx 3'log 3)3(= 3.一个物体的运动方程为21s tt 其中S 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是〔〕A 、7米/秒B 、6米/秒C 、5米/秒D 、8米/秒4.设f(x)在[a,b]上连续,将[a,b]n 等分,在每个小区间上任取i ξ,那么dx x f b a)(⎰是〔〕A 、∑=∞→ni i n f 1)(lim ξB 、∑=∞→-•ni i n n ab f 1)(lim ξC 、∑=∞→•n i i i n f 1)(lim ξξD 、∑=∞→ni i n f 1)(lim ξ•-i ξ()1-i ξ 5.函数2mnymx 的导数为3'4x y =,那么〔〕A 、m=-1,n=-2B 、m=-1,n=2C 、m=1,n=-2D 、m=1,n=2 6.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的〔〕A 、充要条件B 、即不充分又不必要条件C 、充分非必要条件D 、必要非充分条件7.函数1ln 1ln xyx的导数为〔〕A 、2')ln 1(2x y +-=B 、2')ln 1(2x x y +=C 、2')ln 1(1x x y +-=D 、2')ln 1(2x x y +-=8、以下积分不正确的选项是〔〕A 、3ln 131=⎰dx x B 、xdx sin 0⎰π=-2 C 、31210=⎰dx x D 、23ln 29)1(232+=+⎰dx xx9.函数5224+-=x x y 的单调减区间是〔〕A 、[-1,1]B 、[-1,0],[1,+∞]C 、〔-∞,-1〕,〔0,1〕D 、(-∞,-1),[1,+∞] 10.曲线y=ln(2x-1)上的点到直线2x-y+3=0的最短间隔是〔〕 A 、5B 、25C 、35D 、011.方程076223=+-x x在〔0,2〕内根的个数有〔〕A .0B .1C .2D .312、设P 点是曲线3233+-=x x y 上的任意一点,P 点处切线倾斜角为α,那么角α的取值范围是 A .2[0,)[,)23πππ⋃B .5[0,)[,)26πππ⋃C .),32[ππD .)65,2(ππ第二卷(非选择题一共90分)二、填空题:本大题一一共4小题,每一小题4分,一共16分.把答案填在题中的横线上. 13、定积分cdx b a⎰〔c 为常数〕的几何意义是:。
2021-2022年高二上学期第一次月考 数学试题 含答案(I)

2021年高二上学期第一次月考数学试题含答案(I)佟玉臣张伟萍一、选择题(每个题答案唯一,每题4分,共48分)1.已知:p:x>1;q:x>2;则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.若p是真命题,q是假命题则()A.pq是真命题B.pq是假命题C.p是真命题D.q是真命题3.从N个编号中要抽取n个号码,若采用系统抽样方法抽取,则分段间隔应为(表示的整数部分)()A. B.n C. D.+14.某工厂生产甲,乙,丙三种型号的产量,产品数量之比3:5:7,现用分层抽样的方法抽取容量为n的样本,其中甲种产品有18件,则样本容量n等于()A.54B.90C.45D.1265.已知x,y取值如下表从所得的散点图分析,y 与x 线性相关且, 则a 等于( )6.如果执行如图的程序框图,那么输出的i 为( )A.4B.5C.6D.77.如图,是某篮球运动员在一个赛季的30的茎叶图,则得分的中位数与众数分别为( )A.3与3B.23与3C.3与23D.23与23 0 8 91 1234 6 7 8 9 2 0 1 1 3 3 35 7 8 8 3 0 1 2 2 3 4 8 94 0 18.同时掷两颗骰子,得到的点数和为6的概率是( ) A. B. C. D. 是9.将[ 0,1]内的均匀随机数转化为[-6,6]内的均匀随机数,需实施的变换为()A. B. C. D.10.已知某厂的产品合格率为90%。
抽出10件产品检查,则下列说法正确的是()A.合格产品少于9件 B.合格产品多于9件C.合格产品正好是9件 D.合格产品可能是9件11.某人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是() A.至多有一次中靶 B.两次都中C.两次都不中 D.只有一次中靶12.对实数a和 b定义运算“”:ab=设函数f(x)=()xR,则函数y=f(x)-c的图像与x轴恰有两个公共点的充要条件是c满足()A.(- ]B. (- ]C.(-1,)D. (- )二、填空题(每题4分,共16分)13.命题“若m>0则方程”的逆否命题是.14.P:“ +1 ”的否定是 .15.已知p:,q:,若p是q的充分不必要条件则实数m的取值范围16.下列命题:在是“B=”充分不必要条件②a,b,c成立的必要不充分条件③在中“A<B”是cos2A>cos2B的充要条件④设f(x)=asin2x+bcos2x,其中a,b,ab,若f(x)对一切x恒成立,则则真命题的序号三、解答题(共56分,要求有必要的解答步骤)18.(10分)设有关于x的一元二次方程(1)若a是从0,1,2,3四个数中任取的一个数,若b从0,1,2三个数中任取的一个数,求上述方程有实根的概率(2)若a是从区间[0,3]任取的一个数,b是从[0,2]任取的一个数,求上述方程有实根的概率19.(10分)某中学团委组织了“我对祖国知多少”的知识竞赛,从参加竞赛的学生中抽出60名学生将其成绩(均为整数)分成6组[40,50),[50,60),[60,70),…[90,100)其部分频率分布直方图如图所示,回答:(1)求成绩在[70,80)的频率,并补全这个频率分布直方图(2)估计这次考试的及格率(60分以上为及格)和平均分20. (8分)p:“”q:“”若pq为真命题,pq为假命题,求m的取值范围22. (10)已知直线l:y=kx+1与圆c:(1)求弦AB的中点M的轨迹方程(2)若o为坐标原点,s(k)表示f(k)=k,求f(k)的最大值高二数学答案15.③④16. 217.(1) (2) (3)18. (1) (2)19. (1)0.3 图略(2)75% 71 (3)p=20. p: q:m>1或m<-1综上: 或m<或m>21. 【解】(Ⅰ) 连接.在平行四边形中,因为为的中点,所以为的中点,又为的中点,所以,因为,,所以.(Ⅱ) 因为,且,所以.即.又,,所以,NOMD CAP因为,所以.(Ⅲ) 取的中点,连接,所以,.由,得,所以是直线与平面所成的角.在中,,,所以.从而.在中,tan54MNMANAN∠===直线与平面所成角的正切值为.22.(1)直线l与y轴的交点为N(0,1)圆心C(2,3)设M(x,y)因为MN与MC所在直线垂直所以且当x=0时不符合题意,当x=2时符合所以)477477(,034222+<<-=+--+xyxyx(2)设A()B()S= S- S且所以S=将y=kx+1与+联立。
2020-2021学年北京第二中学高二数学理月考试题含解析

2020-2021学年北京第二中学高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知平面,,直线,,且有,,则下列四个命题正确的个数为().①若,则;②若,则;③若,则;④若,则;A.B.C.D.参考答案:A若,则,又由,故,故①正确;若,,则或,故②错误;若,则与相交、平行或异面,故③错误;若,则与相交,平行或,故④错误.故四个命题中正确的命题有个.故选.2. “”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件参考答案:A3. 设,用表示不超过x的最大整数,已知函数,,则函数的值域为()A. {0}B. {0,1}C. {-1,0}D. {1}参考答案:B【分析】先求出函数的值域,再根据新定义即可求出函数y=[f(x)]的值域【详解】,故则函数的值域为故选:B【点睛】本题考查了函数性质及值域,以及新定义的应用,属于中档题.4. 在等差数列中,若,则数列的前项之和为A. B. 39 C. D.78参考答案:B略5. 设x∈R,则“|x﹣1|<2”是“x2﹣4x﹣5<0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件参考答案:A【考点】必要条件、充分条件与充要条件的判断.【分析】根据不等式的性质,结合充分条件和必要条件的定义进行判断即可.【解答】解:|x﹣1|<2得:﹣1<x<3,解x2﹣4x﹣5<0得:﹣1<x<5,故“|x﹣1|<2”是“x2﹣4x﹣5<0”的充分而不必要条件,故选:A6. 对于函数f(x)=x图象上的任一点M,在函数g(x)=lnx上都存在点N(x0,y0),使是坐标原点),则x0必然在下面哪个区间内?()A.B.C.D.参考答案:C【考点】对数函数的图象与性质.【分析】问题转化为x0是函数h(x)=x+lnx的零点,根据函数的零点的判断定理求出x0的范围即可.【解答】解:由题意得: ==﹣1,即lnx0+x0=0,即x0是函数h(x)=x+lnx的零点,由h(x)在(0,+∞)是连续的递增函数,且h()=﹣1+<0,h()=>0,得h(x)在(,)有零点,即x0∈(,),故选:C.7. 设复数z满足=()A.13 B. C. D .参考答案:C8. i是虚数单位,复数等于()A.﹣1﹣i B.1﹣i C.﹣1+i D.1+i参考答案:D【考点】A5:复数代数形式的乘除运算.【分析】根据两个复数代数形式的乘除法法则,以及虚数单位i的幂运算性质,把要求的式子化简求得结果.【解答】解:复数===i﹣i2=1+i,故选D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.9. 已知集合M={x|x>2},N={x|1<x<3},则N∩?R M=()A.{x|﹣2≤x<1} B.{x|﹣2≤x≤2}C.{x|1<x≤2} D.{x|x<2}参考答案:C【考点】交、并、补集的混合运算.【分析】求出?R M,再由交集的定义,即可得到所求集合.【解答】解:集合M={x|x>2},N={x|1<x<3},则N∩?R M={x|1<x<3}∩{x|x≤2}={x|1<x≤2},故选:C.【点评】本题考查集合的运算,主要是交集和补集的运算,运用定义法是解题的关键,属于基础题.10. 直线5x-2y-10=0在x轴上的截距为a,在y轴上的截距为b,则()A.a=2,b=5;B.a=2,b=;C.a=,b=5;D.a=,b=.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 在平面直角坐标系xoy中,若直线(t为参数)过椭圆C:(为参数)的右顶点,则常数a的值为______.参考答案:312. 如图2,在正三棱柱中,已知是棱的中点,且,则直线与所成的角的余弦值为.参考答案:略13. 在区间[﹣,]上任取一个数x,则函数f(x)=3sin(2x﹣)的值不小于0的概率为.参考答案:【考点】几何概型.【分析】本题是几何概型的考查,利用区间长度比即可求概率.【解答】解:在区间[﹣,]上任取一个数x,等于区间的长度为,在此范围内,满足函数f(x)=3sin(2x﹣)的值不小于0的区间为[],区间长度为,所以由几何概型的公式得到所求概率为;故答案为:.14. 观察下列等式23=3+5,33=7+9+11,43=13+15+17+19,53=21+23+25+27+29,…,若类似上面各式方法将m3分拆得到的等式右边最后一个数是131,则正整数m等于_________.参考答案:11略15. 设,则四个数,,,中最小的是__________.参考答案:【分析】根据基本不等式,先得到,,再由作商法,比较与,即可得出结果.【详解】因为,所以,,又,所以,综上,最小.故答案为【点睛】本题主要考查由不等式性质比较大小,熟记不等式的性质,以及基本不等式即可,属于常考题型.16. 判断与的大小关是:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高二数学11月月考试题理
一、选择题。
(本大题共10个小题,每小题4分,共40分,在每小题给出的四个
选项中,只有一项是符合题目要求的)
1、在空间直角坐标系中,点A(1, 0, 1)与点B(2, 1, -1)之间的距离为()
A、6
B、2
C、
D、
2、若直线过点,倾斜角为,则等于()
A、 B、 C、 D、不存在
3、经过直线和的交点,并且过原点的直线
方程为()
A、 B、 C、 D、
4、将圆平分的直线是()
A、 B、 C、 D、
5、两圆与的公切线有()条
A、1
B、2
C、3
D、4
6、已知圆C的圆心为点,并且与轴相切,则该圆的方程是()
A、 B、
C、 D、
7、设,则“”是“直线与直线
垂直”的()条件
A、充要
B、充分不必要
C、必要不充分
D、既不充分也不必要
8、过点和的直线与直线平行,则的值是()
A、 B、 C、 D、1
9、棱长为的正方体所有顶点都在同一球面上,则该球的表面积与正方体的表面积
之比为()
A、 B、 C、 D、
10、如图所示,正三棱锥P-ABC中,D、E、F
M为PB上的任意一点,则DE与MF
A、 B、 C、 D、随点M变化而变化
二、填空题。
(本大题共6个小题,每小题4
11、已知命题P:则为
12
13、圆上的点到直线的距离的最小值为
14、已知两圆和相交于A、B两点,则直线AB
的方程为
15、已知圆与圆关于直线对称,
则直线方程的一般式为
16、已知是两条不重合的直线,是三个不重合的平面,给出下列结论:
①若,则;②若则;
③若;④若;
⑤若,则;⑥若,则。
其中正确结论的序号是(写出所有正确的命题的序号)。
三、解答题。
(本大题共5小题,共56分,解答题应写出文字说明、证明过程或演算步骤)
17、(本小题满分10分)
已知三角形的三个顶点为
求:(1)BC边上的高所在的直线方程;(2)BC边上的中线所在直线方程;
(3)BC边上的垂直平分线方程。
18、(本小题满分10分)
已知圆,直线
(1)当为何值时,直线与圆相切;
(2)当直线与圆相交于两点,且时,求直线的方程。
19、(本小题满分12分)
已知圆C的圆心为直线与的交点,且圆C与直线相切。
(1)求圆C的标准方程;
(2)过点P作直线,①证明:直线与圆C恒相交;②求直线被圆截得的弦长最短时的方程。
20、(本小题满分12分) 如图,在三棱锥中,,E ,F 分别为棱的中点. 已知,
求证: (1)直线平面;
(2)平面平面.
P C
B
A
21、(本小题满分12分)
如图,所在的平面垂直于正三角形ABC 所在的平面,, 平面ABC ,DC=BC=2PA ,E 、F 分别为DB 、CB 的中点。
(1)证明:P 、A 、E 、F 四点共面; (2)证明:;
(3)求直线PF 与平面BCD 所成角的大小。
F
E P D
C
B
A
高二数学(理)试卷
一、 选择题 DACCB DBBAC 二、 填空题 11、对 12、 13、 14、 15、
16、②④⑤ 三、解答题 17、(满分10分)解:(1)直线BC 的斜率为----------1分
所以BC 边上的高所在直线的斜率为------------------------2分 所以BC 边上的高所在直线方程为
即: -------------------------3分 (2)BC 中点为(3, 5),所以BC 边上的中线斜率为---------5分 所以BC 边的中线方程为
即 -------------------------------6分
(3)BC 边上的垂直平分线斜率为,且垂直平分线过BC 中点(3,5)-------8分 所以BC 边上的垂直平分线方程为
即 ---------------------------------------10分 18、(满分10分)
圆C :()()2,4,0,442
2
==-+r y x 半径圆心为 ---------------------2分
圆心到直线的距离为d= -------------------------------------------------3分 (1)直线与圆相切,所以=2-----------------------------------------------4分
解得 ---------------------------------------------------------5分 (2)利用5,即--------------------------7分
解得 --------------------------------8分 所以直线的方程为----------------------------10分 19、(满分12分)
(1)联立 得圆心为(1,2) 因为直线与圆相切,所以
所以圆C 的标准方程为 ---------------------------------4分 (2)① 所以点P 在圆内,
所以过圆内一点作直线与圆C 恒相交 ------------------------7分 ②被圆截得的弦长最短,则圆心到直线的距离最大,此时----------8分
直线PC 的斜率为2,所以直线的斜率为 --------------------------10分 ----------------------------------------12分
20、(满分12分)
(1)在三棱锥中,,E 分别为棱 的中点.
平面 ------------------------5分
(2)E ,F 分别为棱的中点
有,-----------------------------7分 又, ----------------8分
----------------10分
----------------12分 21、(1)平面BCD 平面ABC 平面BCD 平面ABC=BC 平面BCD CD 平面ABC 平面ABC ,
中,E 、F 分别为DB 、CB 的中点
P,A,E,F 四点共面
-------------------------------------------4分
(2)连AF,EF
中,AC=BC,F 为BC 的中点, ,DC//EF, BC AE --------------------------------------------------8分
(3) 平面ABC CD 平面ABC 平面ABC
AF 平面BCD 平面BCD PF 在平面BCD 内射影为EF 即为所求 可求=
直线PF 与平面BCD 所成角的大小为-----------------------12分x36412 8E3C 踼C31947 7CCB 糋32032 7D20
素?q37305 91B9 醹23102 5A3E 娾26227 6673 晳39007 985F 顟`F
C
B A F E P D
C B A。