第一章投影法和点直线平面的投影-精选.ppt
合集下载
机械制图——第一章投影法和点、线、平面的投影

表示重影点时,看不见点的投影,其代号用圆括号括起来,例 如上面所述的C点的正投影看不见,可表示为a’(c’)。
两个空间的点,发生重影的条件: 两对坐标值相等,一对坐标值不相等.
Xa = Xc Za = Zc Ya > Yc
a'(c') Yc
Za/Zc C A
c" a"
c Ya
a Xa/Xc
a'(c') Za/Zc
(三)两点的相对位置
如图1-8所示,两个点的投影沿左右、前后、上下三个方向 所反映的坐标差,即这两个点对应投影面W、V、H的距离差, 能反映两点的相对位置;反之,若已知两点的相对位置和其中 一点的投影,也能作出另一点的投影。
两点的相对位置
A(XA,YA,ZA) 和 B(XB,YB,ZB) 两点的相对位置: 如:b’→ a’ : a’(△X=Xa-Xb ,△Z =Za-Zb )
投影法分为两类: 中心投影法 平行投影法(称平行光源)
二、中心投影法
如图所示,点 S(投射中心)射 出过A点射线,在 投影面 P形成 a点的投影图案, 该方法称为:
中心投影法。
三、平行投影法
如图所示,投射线(由平行光源)平行投射,在投影面P形 成的投影图案,称为平行投影法。
平行投影法又可分为:
正投影法:投影线(平行光源)垂至于投影面的投影法
例:过C点作水平线CD与AB相交。
c●
k
a
b d
a
d
先作正面投影
k c●
b
⒊ 两直线交叉
b′
c′
a′ X
a
V
d′
c′
O
a′
AC
d
a
两个空间的点,发生重影的条件: 两对坐标值相等,一对坐标值不相等.
Xa = Xc Za = Zc Ya > Yc
a'(c') Yc
Za/Zc C A
c" a"
c Ya
a Xa/Xc
a'(c') Za/Zc
(三)两点的相对位置
如图1-8所示,两个点的投影沿左右、前后、上下三个方向 所反映的坐标差,即这两个点对应投影面W、V、H的距离差, 能反映两点的相对位置;反之,若已知两点的相对位置和其中 一点的投影,也能作出另一点的投影。
两点的相对位置
A(XA,YA,ZA) 和 B(XB,YB,ZB) 两点的相对位置: 如:b’→ a’ : a’(△X=Xa-Xb ,△Z =Za-Zb )
投影法分为两类: 中心投影法 平行投影法(称平行光源)
二、中心投影法
如图所示,点 S(投射中心)射 出过A点射线,在 投影面 P形成 a点的投影图案, 该方法称为:
中心投影法。
三、平行投影法
如图所示,投射线(由平行光源)平行投射,在投影面P形 成的投影图案,称为平行投影法。
平行投影法又可分为:
正投影法:投影线(平行光源)垂至于投影面的投影法
例:过C点作水平线CD与AB相交。
c●
k
a
b d
a
d
先作正面投影
k c●
b
⒊ 两直线交叉
b′
c′
a′ X
a
V
d′
c′
O
a′
AC
d
a
点、直线、平面的投影

3、三视图之间的度量关系 “长对正,高平齐,宽相等”
4、三视图与物体方位的关系
主视图——物体的左右和上下关系 左视图——物体的上下和前后关系 侧视图——物体的左右和前后关系
5、三视图的作图步骤 (1)作投影轴及450辅助线 (2)从主视图入手,按照“长对正、高平齐、宽相等”原则作三视图 (3)擦除投影轴、450辅助线及其它作图辅助线
正面V与水平面 H的交线——OX轴
侧面W与水平面 H的交线——OY轴
三条轴线交点为原点O
正面V与侧面W的交线——OZ轴
2、三视图的形成
三视图的组成:主视图(尽量反映物体的主要特征)、俯视图、左视图
三个视图均在一个平面上,三个视图的相对位置不能变动
画视图时,投影面的边框和投影轴不必画出
三个视图的名称不必标注
(4)检查无误后加粗轮廓
例题1:习题集P7 §2-2 点的投影
一、点的三面投影 点的三面投影均在一个平面上,均用小写字母来表示
二、点的三面投影与直角坐标的关系
V 、H、 W面相当于坐标面 投影轴OX 、 OY、 OZ相当于X 、 Y、 Z 轴 原点O相当于坐标原点O 第一分角内的点,其坐标植均为正 每一个投影均能反映点的两个坐标植 例题2:已知点A(20,10,20),求作其三面投影
(2)在另两个投影面上的投影与投影轴平行且反映实长(“实形 性”);
3、一般位置直线的投影 一般位置直线:同时倾斜于三个投影面的直线 投影特点:(1)三个投影都倾斜于投影轴,且其与投影轴的夹角都不反映直线 对投影面的真实倾角;
(2)三面投影的长度都短于实长 ; (练习及总结) 例题6:已知水平线AB的端点A的投影,直线与V面夹角为300,AB长12mm且B在A 的右前方,求做直线AB的三面投影。 三、点与直线
画法几何-投影法

a' Ⅲ
X
Ⅱ
O
b
Ⅰ D
d
Ⅳ Ac
3(4 )a
b’
(2’) 1‘
3’
c’
d’
4’ a’
X
O
b
2
Yd
1
c 3(4) a
交叉两直线可能有一组或两组同面投影平行,但两直线的其余同面投影必定不平行; 交叉二直线也可能在3个投影面的同面投影都相交,但交点必定不符合一个点的投影 规律,其投影的交点是两直线对不同投影面的重影点
b’
k'
a’
b' k' B
C a'
d’ X
O
d' X
K
b
D d
k
O c
A
a
b
d Y
k
c a
3、两直线交叉
既不相交也不平行的两直线称为交叉两直线。如果两直线的投影既不符合
两平行直线的投影特性,又不符合两相交直线的投影特性,则可断定这两条直 线为空间交叉两直线。
V
c' Z
b'
(2’ ) 1‘
C
d' B
三、平行投影法 的基本特征
• a实形性 • b积聚性 • c平行性 • d类似性 • e定比性 • f从属性
一、投影法的基本知识
物体在阳光的照射下,就会在墙上或地面上投下影子,这 就是投影现象。投影法是将这一现象加以科学抽象和思维 而产生的。投射线通过物体向选定的面投射,并在该面上 得到图形的方法,称为投影法。
一般位置直线的投影
z
V b’
X
a’ A a”
b’
βγ
α
B O
四川大学机械制图课件第1章 投影法和点、直线、平面的投影

1. 实形性
A
C
D
B
E
a
c
b
d
H
e
当线段或平面平行于投影面时,其投影反映实长或实形。
2. 积聚性
A
C
D
B
E
c
a(b)
e
d
H
当线段或平面垂直于投影面时,其投影积聚为点或线段。
3. 类似性
C A
D B
E
a
b
c
d
e H
当线段或平面倾斜于投影面时,其投影变短或变小。
1.1 点的投影
1.1.1 点在两投影面体系中的投影 1.1.2 点在三投影面体系中的投影 1.1.3 两点的相对位置和重影点
第1章 投影法和点、直线、平面的投影
1.1 投影法的基本知识 1.2 点的投影 1.3 直线的投影 1.4 求线段实长及对投影面的倾角 1.5 两直线的相对位置 1.6 平面的投影
返回
1.1 投影法的基本知识
1.1.1 投影法概念 1.1.2 投影法的分类 1.1.3 正投影法的基本性质
1.1.1 投影法的概念
例1 把一般位置直线AB变为H1投影面平行线
a
b
XV H
a
b
a1
b1
2. 将投影面平行线变为投影面垂直线
V
a1
b a
X
B
A
b
a
a1
b1
XV
H
a
b
H
a
b
3. 将一般位置直线变为投影面垂直线
b a
a2 b2 B
A b
a H
b1
V1
a1
X1
将一般位置直线变为投影面垂直线
工程制图投影法及点线面投影详解

B K
D
b
c b
a
f
e
a
k d
5. 两平行直线的投影仍然互相平行,且其长度之比投 影后保持不变。
6. 平面的投影特性
平行
垂直
倾斜
投影特性
★平面平行投影面——投影就把实形现
★平面垂直投影面——投影积聚成直线
★平面倾斜投影面——投影类似原平面
实形性 积聚性 类似性
4.工程中常用的几种投影法
1) 平行投影法
P
● a
A●
点在一个投影面上的投影不能 确定点的空间位置。
P
B1
B2 ●
B3 ●
● b
●
2. 直线在一个投影面上的投影一般仍为直线。
A● M● B●
●
a≡b≡m
B
●
A●
●b a●
●B
A●
●b a●
直线垂直于投影面 投影重合为一点
积聚性
直线平行于投影面 投影反映线段实长
ab = AB
直线倾斜于投影面 投影比空间线段短
下。
7. 重影点
空间两点在某 一投影面上的投影 重合为一点时,则 称此两点为该投影 面的重影点。
被挡住的投 影加( )
A、C为H 面的重影点
a ●
● a
c ●
● c
a (c) ●
A、C为哪个投 影面的重影点 呢?
3-2-2 直线的投影
两点确定一条直线,将两点的同名投影 用直线连接,就得到直线的同名投影。
ab = AB.cos
3. 若点在直线上,则点的投影必在该直线的投影上,且 点的投影将该线段的投影分割成与空间线段相同的比 例。
即: AC : CB = ac : cb
机械制图-点、直线、平面的投影

特殊位置点的应用
在机械制图中,特殊位置点常用于 确定物体的形状和大小,如交点、 切点等。
03 直线投影
直线在三投影面体系中的投影
正投影
直线在正投影面上的投影 与原直线平行或重合,且 长度不变。
侧投影
直线在侧投影面上的投影 与原直线垂直,且高度不 变。
水平投影
直线在水平投影面上的投 影与原直线平行,且长度 不变。
直线上的点的投影特性
点在直线上
点的投影在直线的投影上,且与 原点在同一平面内。
点在直线外
点的投影在直线的投影外,且与 原点不在同一平面内。Leabharlann 两直线的相对位置与投影特性
平行线
两直线在正投影面上的投影平行, 且高度相等。
交叉线
两直线在正投影面上的投影相交, 且高度相等。
垂直线
两直线在正投影面上的投影垂直, 且高度相等。
机械制图-点、直线、平面的投影
目 录
• 引言 • 点投影 • 直线投影 • 平面投影 • 实际应用与案例分析 • 总结与展望
01 引言
主题简介
01
机械制图是工程领域中用于表达 和交流设计思想的一种语言,而 点、直线和平面的投影是机械制 图的基础。
02
本主题将介绍点、直线和平面在 机械制图中的投影原理和方法, 帮助读者更好地理解和应用机械 制图。
投影法概述
投影法是将三维物体转换为二维图形 的方法,是机械制图中的基本技术。
投影法分为中心投影法和平行投影法 ,其中平行投影法又分为正投影法和 斜投影法。
02 点投影
点在三投影面体系中的投影
点的三面投影
一个点在三投影面体系中分别在H面、 V面和W面上投下影子,形成三个投 影点。
在机械制图中,特殊位置点常用于 确定物体的形状和大小,如交点、 切点等。
03 直线投影
直线在三投影面体系中的投影
正投影
直线在正投影面上的投影 与原直线平行或重合,且 长度不变。
侧投影
直线在侧投影面上的投影 与原直线垂直,且高度不 变。
水平投影
直线在水平投影面上的投 影与原直线平行,且长度 不变。
直线上的点的投影特性
点在直线上
点的投影在直线的投影上,且与 原点在同一平面内。
点在直线外
点的投影在直线的投影外,且与 原点不在同一平面内。Leabharlann 两直线的相对位置与投影特性
平行线
两直线在正投影面上的投影平行, 且高度相等。
交叉线
两直线在正投影面上的投影相交, 且高度相等。
垂直线
两直线在正投影面上的投影垂直, 且高度相等。
机械制图-点、直线、平面的投影
目 录
• 引言 • 点投影 • 直线投影 • 平面投影 • 实际应用与案例分析 • 总结与展望
01 引言
主题简介
01
机械制图是工程领域中用于表达 和交流设计思想的一种语言,而 点、直线和平面的投影是机械制 图的基础。
02
本主题将介绍点、直线和平面在 机械制图中的投影原理和方法, 帮助读者更好地理解和应用机械 制图。
投影法概述
投影法是将三维物体转换为二维图形 的方法,是机械制图中的基本技术。
投影法分为中心投影法和平行投影法 ,其中平行投影法又分为正投影法和 斜投影法。
02 点投影
点在三投影面体系中的投影
点的三面投影
一个点在三投影面体系中分别在H面、 V面和W面上投下影子,形成三个投 影点。
机械制图课件投影理论基础知识(1)

PH
水平迹线
H
Y
平面(píngmiàn)与投影面的交线称为平面(pí
33
第三十三页,共76页。
水平面用迹线如何(rúhé)表示?
Z V
PV
Pz
P
PW W
PV
Pz PW
X
O
H
Y
34
第三十四页,共76页。
铅垂面用迹线如何(rúhé)表示?
Z
V
PV
Pw
W
PV
Px
Py
X Px
PW
O
PH
PH
Py
Py
H
Y
35
水平面:∥H面
正平面(píngmiàn):∥V面
侧平面
(píngmiàn):
40
第四十页,共76页。
一般(yībān)位置对平H、面V、W均倾斜
b'
(qībn"gxié)的平面
a' c'
b
a" c"
c a
投影(tóuyǐn在g)H特、性V、W面上的投影皆为空
间平面图形的类似图形
41
第四十一页,共76页。
实长
b'
a'
平行某一一个个(yī ɡè)投影面的直
b"
是正什平么(zhènɡ p
a"
(?平为sh行什én么Vm面?e)线
a
b
投影特性
在所平行的投影面上的投影反映实长及 与其它二投影面的倾角
另外二投影分别平行相应的投影轴23
第二十三页,共76页。
投影面垂直线 垂直(chuízhí)某一个投影面的直
Z 侧面投影 V a'
教学课件PPT 点、直线、平面的投影

其投影特性取决于直线与三个投影 面间的相对位置
平行于某一投影面而 与其余两投影面倾斜
正平线(平行于V面)
投影面平行线 侧平线(平行于W面)
水平线(平行于H面)
统称特殊位置直线
正垂线(垂直于V面)
垂直于某一投影面 投影面垂直线 侧垂线(垂直于W面)
铅垂线(垂直于H面)
与三个投影面都倾斜的直线
一般位置直线
② 另外两个投影,反映线段实长,且垂直 于相应的投影轴。
⑶ 一般位置直线
V
b
B b
a
βγ
W
a
X
Ab
a
aH
a
投影特性
b Z b
a
O
Y
b
Y
三个投影都倾斜于投影轴,其与投影轴的夹角 并不反映空间线段与三个投影面夹角的大小。三个 投影的长度均比空间线段短,即都不反映空间线段 的实长。
二、直线与点的相对位置
a
a
三个投影都类似。
b
a
c
例:正垂面ABC与H面的夹角为45°,已知其水平投影 及顶点B的正面投影,求△ABC的正面投影及侧面 投影。
c
c
a
a
b ● 45°
b
a
c b
思考:此题有几个解?
三、平面上的直线和点
⒈ 平面上取任意直线
位于平面上的直线应满足的条件:
若一直线过平面上 的两点,则此直线 必在该平面内。
度量性较差。
平行投影法
投影特性 投影大小与物体和投影面之间的距离无关。 度量性较好。 工程图样多数采用正投影法绘制。
画透视图
中心投影法
画斜轴测图
投影法
斜投影法
平行投影法
平行于某一投影面而 与其余两投影面倾斜
正平线(平行于V面)
投影面平行线 侧平线(平行于W面)
水平线(平行于H面)
统称特殊位置直线
正垂线(垂直于V面)
垂直于某一投影面 投影面垂直线 侧垂线(垂直于W面)
铅垂线(垂直于H面)
与三个投影面都倾斜的直线
一般位置直线
② 另外两个投影,反映线段实长,且垂直 于相应的投影轴。
⑶ 一般位置直线
V
b
B b
a
βγ
W
a
X
Ab
a
aH
a
投影特性
b Z b
a
O
Y
b
Y
三个投影都倾斜于投影轴,其与投影轴的夹角 并不反映空间线段与三个投影面夹角的大小。三个 投影的长度均比空间线段短,即都不反映空间线段 的实长。
二、直线与点的相对位置
a
a
三个投影都类似。
b
a
c
例:正垂面ABC与H面的夹角为45°,已知其水平投影 及顶点B的正面投影,求△ABC的正面投影及侧面 投影。
c
c
a
a
b ● 45°
b
a
c b
思考:此题有几个解?
三、平面上的直线和点
⒈ 平面上取任意直线
位于平面上的直线应满足的条件:
若一直线过平面上 的两点,则此直线 必在该平面内。
度量性较差。
平行投影法
投影特性 投影大小与物体和投影面之间的距离无关。 度量性较好。 工程图样多数采用正投影法绘制。
画透视图
中心投影法
画斜轴测图
投影法
斜投影法
平行投影法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[例题1] 已知点A的正面与侧面投影,求点A的水平投影。
a
不注 画: 出因 平为 面平 边面 框是 。无
限 大 的 , 所 以 一 般
五、特殊点的投影
V
b
Bb
a
b
Cc
c
Aa
a c
X
O
b
c
a
H
§1-3 两点的相对位置
a
b
B b
A
a
b
a
两点中x值大的点 —— 在左 两点中y 值大的点 —— 在前 两点中z 值大的点 —— 在上
§1-2 点的投影
§1-1 点在一个投影面中的投影 §1-2 三投影面体系中点的投影 §1-3 两点的相对位置 §1-4 重影点的投影
例题1
例题2
§1-1 点在一个投影面上的投影
过空间点A的投射线与投影 面P的交点即为点A在P面上的 投影。
注意:空间点用大写字母表示,
点的投影用小写字母表示。
P
● a A●
2.轴测投影图
原理:正投影法和斜投影法
S Z
O X
Y
优点:直观性好,立体感 强,有一定的可度量性;
缺点:作图繁琐,度量性 较差
3. 标高投影图
25
20
15
25
20 15
25 20 15
原理:正投影法 用途:用于表达形状较复杂的曲面,如绘制地形图的等高线
4.透视投影图
原理:中心投影法
优点:立体感强,直观性较好 缺点: 度量性较差
水平投影面 ---- H 正面投影面 ---- V 侧面投影面 ---- W
H∩V ---- OX V ∩W ---- OZ H∩W ---- OY
二、 三投影面体系中点的投影
V
Z
a
a
A
a
O
X
O
W
a
YW
a
a
H
YH
点A的水平投影 ——a 点A的正面投影 ——a 点A的侧面投影 ——a
三、点的直角坐标与三面投影的关系
点在一个投影面上的投
P
影不能确定点的空间位置。
● b B1
B2 ●
B3 ●
解决办法?
●
采用多面投影。
§1-2 三投影面体系中点的投影
一、三投影面体系的建立 二、三投影面体系中点的投影 三、点的直角坐标与三面投影的关系 四、三投影面体系中点的投影规律 五、特殊点的投影
一、三投影面体系的建立
Z
OW
Y
一、投影的分类
1.中心投影法
S 投射中心 投射线
形体
a b
物体的中 心投影
a
2.平行投影法 (1)斜投影法
a b
投 射 线 方 向
c
90°
Hale Waihona Puke (2)正投影法 投 射 线 方 向
90°
a
b
c
三、工程上常用用的几种投影图
1. 多面正投影图
(2)多面正投影图 原理:正投影法
优点:度量性好,作图方便; 缺点:立体感差
[例题2] 已知点A在点B之前5毫米,之上9毫米,之右8 毫米,求点A的投影。
a
a
9
8 a
5
§1- 4 重影点的投影
a
d(c)
b
A
C
D
B
a(b)
c
d
第一章 投影法和点、直线、平面的投影
§1-1 投影法 §1-2 多面正投影和点的投影 §1-3 直线的投影 §1-4 平面的投影 §1-5 直线与平面以及两平面之间的相对位置
§1-1 投影法的基本概念
一、投影的方法 二、投影的分类 1. 中心投影法 2. 平行投影法 (1)斜投影法 (2)正投影法 三、工程上常用的几种投影图 1. 多面正投影图 (1) 问题的提出 (2) 多面正投影图 2. 轴测投影图 3. 标高投影图 4. 透视投影图
Z
V
a
az
y
x
a
X
ax A
z
OW
a
ay
Y
1. aaz = aay =Aa = xA 2. aax = aaz =Aa =yA 3. aax =aa y = Aa=zA
四、三投影面体系中点的投影规律
1. aa X轴,aaz = aay = XA 2. aaZ轴, aax =aa y = ZA 3. aax = aaz =YA