肇庆市封开县九年级数学第二次模拟考试

合集下载

2019学年广东省肇庆市封开县九年级第二次模拟数学试卷【含答案及解析】

2019学年广东省肇庆市封开县九年级第二次模拟数学试卷【含答案及解析】

2019学年广东省肇庆市封开县九年级第二次模拟数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 的绝对值是()A. B. C. D.2. 计算的结果是()A. B.6 C. D.3. 用3个相同的立方体如图所示,则它的主视图是()4. 一个布袋里面装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()A. B. C. D.5. 如图,AB∥CD,AD平分∠BAC,且∠C=80°,则∠D的度数为()A.50° B.60° C.70° D.100°6. 一元二次方程总有实数根,则应满足的条件是()A. B. C. D.7. 如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.38. 下列命题中,错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等9. 若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A.1:2 B.2:1 C.1:4 D.4:110. 抛物线y=2,y=-2,y=共有的性质是()A.开口向下 B.对称轴是轴C.都有最低点 D.随的增大而减小二、填空题11. 一种微粒的半径是0.00004米,这个数据用科学记数法表示为.12. 将一个正六边形绕着其中心,至少旋转度可以和原来的图形重合.13. 不等式组的解集为.14. 如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为米(用含α的代数式表示).15. 如图,⊙O的半径为3,P是CB延长线上一点,PO=5,PA切⊙O于A点,则PA= .16. 如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直角顶点C逆时针旋转60°得△A′B′C′,则点B转过的路径长为.三、计算题17. 计算:||四、解答题18. 先化简,再求值:,其中19. 如图所示,△ABC是等边三角形,D点是AC的中点,延长BC到E,使CE=CD.(1)用尺规作图的方法,过D点作DM⊥BE,垂足是M;(不写作法,保留作图痕迹)(2)求证:BM=EM.20. 某市体育中考共设跳绳、立定跳远、仰卧起坐三个项目,要求毎位学生必须且只需选考其中一项,该市东风中学初三(2)班学生选考三个项目的人数分布的条形统计图和扇形统计图如图所示.(1)求该班的学生人数;(2)若该校初三年级有1000人,估计该年级选考立定跳远的人数.21. 如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB.(1)求∠CAD的度数;(2)延长AC至E,使CE=AC,求证:DA=DE.22. 某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.23. 如图,顶点为P(4,-4)的二次函数图象经过原点(0,0),点A在该图象上,OA 交其对称轴于点M,点M、N关于点P对称,连接AN、ON(1)求该二次函数的关系式.(2)若点A的坐标是(6,-3),求△ANO的面积.24. 如图,在△ABC中,BA=BC,以AB为直径作⊙O,交AC于点D,连接DB,过点D作DE⊥BC,垂足为E.(1)求证:DE为⊙O的切线;(2)若DB=8,DE=2,求⊙O半径的长.25. 如图,在平面直角坐标系中,抛物线经过点(1,﹣1),且对称轴为在线,点P、Q均在抛物线上,点P位于对称轴右侧,点Q位于对称轴左侧,PA垂直对称轴于点A,QB垂直对称轴于点B,且QB=PA+1,设点P的横坐标为.(1)求这条抛物线所对应的函数关系式;(2)求点Q的坐标(用含的式子表示);(3)请探究PA+QB=AB是否成立,并说明理由;(4)抛物线()经过Q、B、P三点,若其对称轴把四边形PAQB 分成面积为1:5的两部分,直接写出此时的值.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】。

2022年广东省肇庆市封开县初中毕业班第二次模拟考试数学试题答案及评分标准

2022年广东省肇庆市封开县初中毕业班第二次模拟考试数学试题答案及评分标准

2022 届初中毕业班第二次模拟考试数学参考答案及评分标准一、选择题 题号 答案 1 B 2 A 3 C 4 D 5 C 6 D 7 B 8 A 9 B 10 C二、填空题3211. (m 5)(m 5) ; 12. 1 x; 13. 8; 14. 2 2 ; 15. 6; 16. -6;917.21 245 【解析】10.解:将 y =0 代入 y x27x , 21452得: x 2 7x0 , 2 解得: x 5 , x 9 ,1 2 1 2452 抛物线 y x 27x x 与 轴交于点 A 、 B ,B(5,0), A(9, 0) ,抛物线向左平移 4 个单位长度, 1 45 2 1∵ y x 2 7x(x 7)2 2 , 2211 平移后解析式 y (x 7 4)2 2 (x 3) 2,22 2如图,1当直线 y x m 过 B 点,有 2 个交点,250 m ,25解得: m ,21当直线 y x m 与抛物线C 相切时,有 2 个交点,2 21 1 x m (x 3)2 2 ,22整理得: 相切,2,x7x 5 2m 0b 2 4ac 49 4(5 2m) 0,29 解得: m, 81若直线 y x m 与C 、C 共有 3 个不同的交点, 1 225 2 29 8m , 【解析】17. 解:如图所示:作 E 关于 BC 的对称点 E ′,点 A 关于 D C 的对称点 A ′,此时四边形 AEP Q 的周长最小,∵A D =A ′D =3,BE =BE ′=1, ∴AA ′=6,AE ′=4.∵D Q ∥AE ′,D 是 AA ′的中点, ∴A DQA AE ,A QDA E A , AA 2A D ,∴△A DQ ∽△A AEA D A A D Q 1 2∴ AE 1∴D Q = AE ′=2, 2∵BP ∥AA ′, ∴△BE ′P ∽△AE ′A ′,BP BE AE BP 1 4 3 ,BP = , 2 ∴ = ,即 = AA 6 S AEP Q =S AB C D ﹣S A D Q ﹣S PC Q ﹣S BEP△△△正方形四边形 1 1 2 3 2 1 32=93 2 1 1 2 2 34 34=9 39 = . 292故答案为:三、解答题(一)如有不同解法,酌情给分。

【6套打包】肇庆市中考第二次模拟考试数学试卷含答案

【6套打包】肇庆市中考第二次模拟考试数学试卷含答案

【6套打包】肇庆市中考第二次模拟考试数学试卷含答案中学数学二模模拟试卷一、选择题(本大题10小题,每小题3分,共30分)1.(3分)﹣的倒数是()A.2 B.﹣2 C.D.2.(3分)如图所示,m和n的大小关系是()A.m=n B.m=1.5n C.m>n D.m<n3.(3分)下列图形既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.正方形4.(3分)据有关部门统计,2019年春节期间,广东各大景点的游客总数约25200000人次,将数25200000用科学记数法表示为()A.2.52×107B.2.52×108C.0.252×107D.0.252×108 5.(3分)如图,直线l1∥l2,将等边三角形如图放置若∠α=25°,则∠β等于()A.35°B.30°C.25°D.20°6.(3分)某公司销售部有7个职员,他们5月份的工资分别是5300元、5800元、5300元、5500元、5800元、6500元和5800元,那么他们5月份工资的众数是()A.5300元B.5500元C.5800元D.6500元7.(3分)在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)如图,在平面直角坐标系中,点M的坐标为M(,2),那么cosα的值是()A.B.C.D.9.(3分)已知代数式a﹣2b+7的值是13,那么代数式2a﹣4b的值是()A.6 B.12 C.15 D.2610.(3分)如图,在四边形ABCD中,AD∥BC,AB=CD,B=60°,AD=2,BC=8,点P从点B出发沿折线BA﹣AD﹣DC匀速运动,同时,点Q从点B出发沿折线BC﹣CD匀速运动,点P与点Q的速度相同,当二者相遇时,运动停止,设点P运动的路程为x,△BPQ的面积为y,则y关于x的函数图象大致是()A.B.C.D.二、填空题(本大题6小题,每小题4分,共24分)11.(4分)因式分解:x2y﹣y3=.12.(4分)81的平方根等于.13.(4分)不等式组的解集是.14.(4分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣1,0)、C(0,1),将△ABC绕点B顺时针旋转90°,得到△A1B1C1,点A、B、C的对应点分别为A1、B1、C1,则点A1的坐标为.15.(4分)如图,在菱形ABCD中,AC、BD交于点O,AC=4,菱形ABCD的面积为4,E 为AD的中点,则OE的长为.16.(4分)如图所示,在平面直角坐标系中,点A(,0)、B(0,),以AB为边作正方形ABCB1,延长CB1交x轴于点A1,以A1B1为边作正方形A1B1C1B2,延长C1B2交x轴于点A2,以A2B2为边作正方形A2B2C2B3,延长C2B3交x轴于点A3,以A3B3为边作正方形A3B3C3B4,…,依此规律,则△A6B7A7的周长为.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:|﹣3|﹣(2019+sin45°)0+﹣118.(6分)先化简,再求值:,其中x=.19.(6分)如图,在Rt△ABC中,∠C=90°,AB=8.(1)作△ABC的内角∠CAB的平分线,与边BC交于点D(用尺规作图,保留作图痕迹,不要求写作法);(2)若AD=BD,求CD的长度.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)某旅游团于早上8:00从某旅行社出发,乘大巴车前往“珠海长隆”旅游,“珠海长隆”离该旅行社有100千米,导游张某因有事情,于8:30从该旅行社自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比该旅游团提前20分钟到达“珠海长隆”.(1)大巴与小车的平均速度各是多少?(2)导游张某追上大巴的地点到“珠海长隆”的路程有多远?21.(7分)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,点F在DE的延长线上,且AF=CE=AE.(1)求证:四边形ACEF是平行四边形;(2)当∠B=30°时,试猜想四边形ACEF是什么图形,并说明理由.22.(7分)为了丰富校园文化生活,某校计划在午间校园广播台播放“百家讲坛”的部分内容为了了解学生的喜好,抽取若干名学生进行问卷调查(每人只选一项内容),整理调查结果,绘制统计图如下:请根据统计图提供的信息回答以下问题:(1)这一调查属于(选填“抽样调查”或“普查”),抽取的学生数为名;(2)估计喜欢收听易中天《品三国》的学生约占全校学生的%(精确到小数点后一位);(3)已知该校女学生共有1800名,则该校喜欢收听刘心武评《红楼梦》的女学生大约有多少名?五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,一次函数y=ax+b的图象与反比例函数y=(k 为常数,k≠0)的图象交于二、四象限内的A、B两点,与y轴交于C点.点A的坐标为(m,3),点B与点A关于y=x成轴对称,tan∠AOC=.(1)求k的值;(2)直接写出点B的坐标,并求直线AB的解析式;(3)P是y轴上一点,且S△PBC=2S△AOB,求点P的坐标.24.(9分)如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线AO交BC于点O,以O为圆心,OC长为半径作⊙O,⊙O交AO所在的直线于D、E两点(点D在BC左侧).(1)求证:AB是⊙O的切线;(2)连接CD,若AC=AD,求tan∠D的值;(3)在(2)的条件下,若⊙O的半径为5,求AB的长.25.(9分)如图,在矩形ABCD中,CD=3cm,BC=4cm,连接BD,并过点C作CN⊥BD,垂足为N,直线l垂直BC,分别交BD、BC于点P、Q.直线l从AB出发,以每秒1cm的速度沿BC方向匀速运动到CD为止;点M沿线段DA以每秒1cm的速度由点D向点A匀速运动,到点A为止,直线1与点M同时出发,设运动时间为t秒(t>0).(1)线段CN=;(2)连接PM和QN,当四边形MPQN为平行四边形时,求t的值;(3)在整个运动过程中,当t为何值时△PMN的面积取得最大值,最大值是多少?参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)1.(3分)﹣的倒数是()A.2 B.﹣2 C.D.【分析】利用倒数的定义:乘积是1的两数互为倒数,进而得出答案.【解答】解:∵﹣2×(﹣)=1,∴﹣的倒数是﹣2.故选:B.【点评】此题主要考查了倒数的定义,正确把握定义是解题关键.2.(3分)如图所示,m和n的大小关系是()A.m=n B.m=1.5n C.m>n D.m<n【分析】根据数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,可得:m>n.【解答】解:根据图示,可得:m>0>n,∴m>n.故选:C.【点评】此题主要考查了有理数大小比较的方法,以及在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.3.(3分)下列图形既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.正方形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(3分)据有关部门统计,2019年春节期间,广东各大景点的游客总数约25200000人次,将数25200000用科学记数法表示为()A.2.52×107B.2.52×108C.0.252×107D.0.252×108【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:25200000=2.52×107.故选:A.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.5.(3分)如图,直线l1∥l2,将等边三角形如图放置若∠α=25°,则∠β等于()A.35°B.30°C.25°D.20°【分析】过点B作BD∥l1,如图,根据平行线的性质可得∠ABD=∠β.根据平行线的传递性可得BD∥l2,从而得到∠DBC=∠α=35°.再根据等边△ABC可得到∠ABC=60°,就可求出∠DBC,从而解决问题.【解答】解:过点B作BD∥l1,如图,则∠ABD=∠β.∵l1∥l2,∴BD∥l2,∵∠DBC=∠α=35°.∵△ABC是等边三角形,∴∠ABC=60°,∴∠β=∠ABD=∠ABC﹣∠DBC=60°﹣25°=35°.故选:A.【点评】本题主要考查了平行线的性质、平行线的传递性、等边三角形的性质等知识,当然也可延长BA与l2交于点E,运用平行线的性质及三角形外角的性质解决问题.6.(3分)某公司销售部有7个职员,他们5月份的工资分别是5300元、5800元、5300元、5500元、5800元、6500元和5800元,那么他们5月份工资的众数是()A.5300元B.5500元C.5800元D.6500元【分析】众数是一组数据中出现次数最多的数.【解答】解:他们5月份工资的众数是5800元,故选:C.【点评】此题考查了众数,众数是一组数据中出现次数最多的数.7.(3分)在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据非负数的性质确定出点P的纵坐标是正数,然后根据各象限内点的坐标特征解答.【解答】解:∵x2≥0,∴x2+1≥1,∴点P(﹣2,x2+1)在第二象限.故选:B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).8.(3分)如图,在平面直角坐标系中,点M的坐标为M(,2),那么cosα的值是()A.B.C.D.【分析】如图,作MH⊥x轴于H.利用勾股定理求出OM,即可解决问题.【解答】解:如图,作MH⊥x轴于H.∵M(,2),∴OH=,MH=2,∴OM==3,∴cosα==,故选:D.【点评】本题考查解直角三角形的应用,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.(3分)已知代数式a﹣2b+7的值是13,那么代数式2a﹣4b的值是()A.6 B.12 C.15 D.26【分析】首先根据a﹣2b+7=13,求出a﹣2b的值是多少;然后把求出的a﹣2b的值代入,求出代数式2a﹣4b的值是多少即可.【解答】解:∵a﹣2b+7=13,∴a﹣2b=13﹣7=6,∴2a﹣4b=2(a﹣2b)=2×6=12.故选:B.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.10.(3分)如图,在四边形ABCD中,AD∥BC,AB=CD,B=60°,AD=2,BC=8,点P从点B出发沿折线BA﹣AD﹣DC匀速运动,同时,点Q从点B出发沿折线BC﹣CD匀速运动,点P与点Q的速度相同,当二者相遇时,运动停止,设点P运动的路程为x,△BPQ的面积为y,则y关于x的函数图象大致是()A.B.C.D.【分析】①当点P在AB上运动时(0≤x≤6),y=BQ×BP sin B=x2,当x=6时,y =9;②6<t<8,y为常数;③当x≥8时,点PC=6+2+6﹣t=14﹣t,QC=t﹣8,则PQ=22﹣2t,而△BPQ的高常数,即可求解.【解答】解:由题意得:四边形ABCD为等腰梯形,如下图,分别过点A、D作梯形的高AM、DN交BC于点M、N,则MN=AD=2,BM=NC=(BC﹣AD)=3,则AB=2BM=6,①当点P在AB上运动时(0≤x≤6),y=BQ×BP sin B=x2,当x=6时,y=9,图象中符合条件的有B、D;②6<t<8,y为常数;③当x≥8时,点PC=6+2+6﹣t=14﹣t,QC=t﹣8,则PQ=22﹣2t,而△BPQ的高常数,故y的表达式为一次函数,故在B、D中符合条件的为B,故选:B.【点评】本题考查的是动点图象问题,涉及到二次函数、一次函数、解直角三角形等知识,此类问题关键是,要弄清楚不同时间段,图象和图形的对应关系,进而求解.二、填空题(本大题6小题,每小题4分,共24分)11.(4分)因式分解:x2y﹣y3=y(x+y)(x﹣y).【分析】先提公因式,再利用平方差公式分解因式即可;【解答】解:x2y﹣y3=y(x2﹣y2)=y(x+y)(x﹣y).故答案为y(x+y)(x﹣y)【点评】本题考查因式分解﹣提公因式法,解题的关键是熟练掌握因式分解的方法,属于中考常考题型、12.(4分)81的平方根等于±9 .【分析】一个正数有两个平方根,这两个平方根互为相反数,据此求解即可.【解答】解:81的平方根等于:±=±9.故答案为:±9.【点评】此题主要考查了平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.13.(4分)不等式组的解集是2<x≤3 .【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:解不等式x﹣1>1,得:x>2,解不等式3+2x≥4x﹣3,得:x≤3,所以不等式组的解集为2<x≤3,故答案为:2<x≤3.【点评】本题考查了不等式组的解法,求不等式组中每个不等式的解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.14.(4分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣1,0)、C(0,1),将△ABC绕点B顺时针旋转90°,得到△A1B1C1,点A、B、C的对应点分别为A1、B1、C1,则点A1的坐标为(2,1).【分析】正确画出图形解决问题即可.【解答】解:观察图象可知:点A1的坐标为(2,1).故答案为(2,1).【点评】本题考查坐标与图形变化的性质,解题的关键是理解题意,学会正确画出图形解决问题.15.(4分)如图,在菱形ABCD中,AC、BD交于点O,AC=4,菱形ABCD的面积为4,E 为AD的中点,则OE的长为.【分析】直接利用菱形的面积和性质得出AO,DO的长,再利用勾股定理得出菱形的边长,进而利用直角三角形中线的性质得出答案.【解答】解:∵菱形ABCD的对角线AC、BD相交于点O,且AC=4,菱形ABCD的面积为4,∴AO=2,DO=,∠AOD=90°,∴AD=3,∵E为AD的中点,∴OE的长为:AD=.故答案为:【点评】此题主要考查了菱形的性质,正确得出AD的长是解题关键.16.(4分)如图所示,在平面直角坐标系中,点A(,0)、B(0,),以AB为边作正方形ABCB1,延长CB1交x轴于点A1,以A1B1为边作正方形A1B1C1B2,延长C1B2交x轴于点A2,以A2B2为边作正方形A2B2C2B3,延长C2B3交x轴于点A3,以A3B3为边作正方形A3B3C3B4,…,依此规律,则△A6B7A7的周长为27(3+).【分析】利用相似三角形的性质,探究规律,利用规律解决问题即可.【解答】解:由题意:A1B1∥A2B2,∴∠AA1B1=∠A1A2B2,∵∠AB1A1=∠A1B2A2=90°,∴△AB1C1∽△A1B2C2,∴=,∵△AB1A1的周长为3+,△A1B2A2的周长为(3+)•,△A2B3A3的周长为(3+)•()2,…,△AB n+1A n+1的周长为(3+)•()n,n∴△A6B7A7的周长为(3+)•()6=27(3+).故答案为:27(3+).【点评】本题考查相似三角形的判定和性质,规律型问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:|﹣3|﹣(2019+sin45°)0+﹣1【分析】直接利用绝对值的性质以及负指数幂的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=3﹣1﹣3=﹣1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)先化简,再求值:,其中x=.【分析】根据分式的加法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:==2x,当x=时,原式=2(﹣1)=2﹣2.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.(6分)如图,在Rt△ABC中,∠C=90°,AB=8.(1)作△ABC的内角∠CAB的平分线,与边BC交于点D(用尺规作图,保留作图痕迹,不要求写作法);(2)若AD=BD,求CD的长度.【分析】(1)利用基本作图作∠BAC的平分线;(2)利用等腰三角形的性质和三角形内角和计算出∠CAD=∠B=30°,在Rt△ACB中利用含30度的直角三角形三边的关系得到AC=4,然后在Rt△ACD中求CD.【解答】解:(1)如图,AD为所作;(2)∵AD=BD,∴∠DAB=∠B,∵AD平分∠BAC,∴∠DAB=∠CAD,∴∠DAB=∠CAD=∠B,而∠DAB+∠CAD+∠B=90°,∴∠CAD=∠B=30°,在Rt△ACB中,AC=AB=4,在Rt△ACD中,tan∠CAD=,∴CD=4tan30°=4×=.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了角平分线的性质.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)某旅游团于早上8:00从某旅行社出发,乘大巴车前往“珠海长隆”旅游,“珠海长隆”离该旅行社有100千米,导游张某因有事情,于8:30从该旅行社自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比该旅游团提前20分钟到达“珠海长隆”.(1)大巴与小车的平均速度各是多少?(2)导游张某追上大巴的地点到“珠海长隆”的路程有多远?【分析】(1)设大巴的平均速度为x千米/时,则小车的平均速度为1.5x千米/时,根据题意列出方程,求出方程的解得到结果;(2)设导游张某追上大巴的地点到“珠海长隆”的路程为y千米,根据题意列出方程,求出方程的解得到结果.【解答】解:(1)设大巴的平均速度为x千米/时,则小车的平均速度为1.5x千米/时,根据题意得:=++,解得:x=40,经检验x=40是分式方程的解,且1.5×40=60,则大巴与小车的平均速度各是40千米/时,60千米/时;(2)设导游张某追上大巴的地点到“珠海长隆”的路程为y千米,由题意得:=+,解得:y=40,经检验y=40是分式方程的解,且符合题意,则导游张某追上大巴的地点到“珠海长隆”的路程有40千米.【点评】此题考查了分式方程的应用,弄清题意是解本题的关键.21.(7分)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,点F在DE的延长线上,且AF=CE=AE.(1)求证:四边形ACEF是平行四边形;(2)当∠B=30°时,试猜想四边形ACEF是什么图形,并说明理由.【分析】(1)易知DE是△ABC的中位线,则FE∥AC,BE=EA=CE=AF;因此△AFE、△AEC都是等腰三角形,可得∠F=∠5=∠1=∠2,即∠FAE=∠AEC,由此可证得AF∥EC,即可得出结论;(2)证出AC=CE,即可得出结论.【解答】(1)证明:四边形ACEF是平行四边形;∵DE垂直平分BC,∴D为BC的中点,ED⊥BC,又∵AC⊥BC,∴ED∥AC,∴E为AB中点,∴ED是△ABC的中位线.∴BE=AE,FD∥AC.∴BD=CD,∴Rt△ABC中,CE是斜边AB的中线,∴CE=AE=AF.∴∠F=∠5=∠1=∠2.∴∠FAE=∠AEC.∴AF∥EC.又∵AF=EC,∴四边形ACEF是平行四边形;(2)解:当∠B=30°时,四边形ACEF为菱形;理由:∵∠ACB=90°,∠B=30°,∴AC=AB,由(1)知CE=AB,∴AC=CE又∵四边形ACEF为平行四边形∴四边形ACEF为菱形.【点评】本题考查了平行四边形的判定,菱形的判定,垂直平分线的性质,本题中熟练掌握含30°的直角三角形的性质是解题的关键.22.(7分)为了丰富校园文化生活,某校计划在午间校园广播台播放“百家讲坛”的部分内容为了了解学生的喜好,抽取若干名学生进行问卷调查(每人只选一项内容),整理调查结果,绘制统计图如下:请根据统计图提供的信息回答以下问题:(1)这一调查属于抽样调查(选填“抽样调查”或“普查”),抽取的学生数为300 名;(2)估计喜欢收听易中天《品三国》的学生约占全校学生的35.3 %(精确到小数点后一位);(3)已知该校女学生共有1800名,则该校喜欢收听刘心武评《红楼梦》的女学生大约有多少名?【分析】(1)男女生所有人数之和;(2)听品三国的学生生人数除以总人数.(3)求出抽取的样本中收听品红楼梦的女学生所占的比例,乘1800即可求解;【解答】解:(1)这一调查属于抽样调查,抽查的人数为:20+10+30+15+30+38+64+42+6+45=300人;故答案为:抽样调查,300;(2)(64+42)÷300≈35.3%;故答案为:35.3;(3)×1800=540人该校喜欢收听刘心武评《红楼梦》的女学生大约有540名.【点评】本题考查条形统计图、用样本估计总体以及从统计表中获取信息的能力,及统计中用样本估计总体的思想.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,一次函数y=ax+b的图象与反比例函数y=(k 为常数,k≠0)的图象交于二、四象限内的A、B两点,与y轴交于C点.点A的坐标为(m,3),点B与点A关于y=x成轴对称,tan∠AOC=.(1)求k的值;(2)直接写出点B的坐标,并求直线AB的解析式;(3)P是y轴上一点,且S△PBC=2S△AOB,求点P的坐标.【分析】(1)作AD⊥y轴于D,根据正切函数,可得AD的长,得到A的坐标,根据待定系数法,可得k的值;(2)根据题意即可求得B点的坐标,然后根据待定系数法即可求得直线AB的解析式;(3)先根据S△AOB=S△AOC+S△BOC求得△AOB的面积为4,然后设P(0,t),得出S△PBC=|t ﹣2|×3=|t﹣2|,由S△PBC=2S△AOB列出关于t的方程,解得即可.【解答】解:(1)作AD⊥y轴于D,∵点A的坐标为(m,3),∴OD=3,∵tan∠AOC=.∴=,即=,∴AD=1,∴A(﹣1,3),∵在反比例函数y=(k为常数,k≠0)的图象上,∴k=﹣1×3=﹣3;(2)∵点B与点A关于y=x成轴对称,∴B(3,﹣1),∵A、B在一次函数y=ax+b的图象上,∴,解得,∴直线AB的解析式为y=﹣x+2;(3)连接OC,由直线AB为y=﹣x+2可知,C(0,2),∵S△AOB=S△AOC+S△BOC=×2×1+×2×3=4,∵P是y轴上一点,∴设P(0,t),∴S△PBC=|t﹣2|×3=|t﹣2|,∵S△PBC=2S△AOB,∴|t﹣2|=2×4,∴t=或t=﹣,∴P点的坐标为(0,)或(0,﹣).【点评】本题考查了反比例函数与一次函数的交点问题,三角形的面积,利用待定系数法是解题关键.24.(9分)如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线AO交BC于点O,以O为圆心,OC长为半径作⊙O,⊙O交AO所在的直线于D、E两点(点D在BC左侧).(1)求证:AB是⊙O的切线;(2)连接CD,若AC=AD,求tan∠D的值;(3)在(2)的条件下,若⊙O的半径为5,求AB的长.【分析】(1)过点O作OF⊥AB,由角平分线到性质可得OC=OF,即可证AB是⊙O的切线;(2)通过证明△ACE∽△ADC,可得==,即可求tan∠D的值;(3)由相似三角形的性质可得,即可求AD=18,AC=12=AF,通过证明△OBF ∽△ABC,可得,可得关于OB,BF的方程组,即可求BF的长,即可求AB 的长.【解答】证明:(1)如图,过点O作OF⊥AB,∵AO平分∠BAC,OF⊥AB,∠ACB=90°∴OC=OF,∴OF为⊙O半径,且OF⊥AB∴AB是⊙O切线.(2)连接CE∵DE是直径∴∠DCE=90°∵∠ACB=90°∴∠DCE=∠ACB∴∠DCO=∠ACE∵OC=OD∴∠D=∠DCO∴∠ACE=∠D,且∠A=∠A∴△ACE∽△ADC∴==∴tan∠D=(3)∵△ACE∽△ADC∴∴AC2=AD(AD﹣10),且AC=AD∴AD=18∴AC=12∵AO=AO,OC=OF∴Rt△AOF≌Rt△AOC(HL)∴AF=AC=12∵∠B=∠B,∠OFB=∠ACB=90°∴△OBF∽△ABC∴即∴∴BF=∴AB=FA+BF=12+【点评】本题是圆的综合题,考查了圆的有关知识,相似三角形的判定和性质,全等三角形的判定和性质,利用方程的思想求BF的长度是本题的关键.25.(9分)如图,在矩形ABCD中,CD=3cm,BC=4cm,连接BD,并过点C作CN⊥BD,垂足为N,直线l垂直BC,分别交BD、BC于点P、Q.直线l从AB出发,以每秒1cm的速度沿BC方向匀速运动到CD为止;点M沿线段DA以每秒1cm的速度由点D向点A匀速运动,到点A为止,直线1与点M同时出发,设运动时间为t秒(t>0).(1)线段CN=;(2)连接PM和QN,当四边形MPQN为平行四边形时,求t的值;(3)在整个运动过程中,当t为何值时△PMN的面积取得最大值,最大值是多少?【分析】(1)由矩形的性质和勾股定理可求BD的长,由三角形的面积公式可求CN的长;(2)由勾股定理可求DN的长,通过证明△DMN∽△DAB,可得,可得DM的值,即可求t的值;(3)分两种情况讨论,利用三角形面积公式列出△PMN的面积与t的关系式,可求△PMN 的面积的最大值.【解答】解:(1)∵四边形ABCD是矩形∴BC=AD=4cm,∠BCD=90°=∠A,∴BD==5cm,∵S△BCD=BC×CD=×BD×CN∴CN=故答案为:(2)在Rt△CDN中,DN==∵四边形MPQN为平行四边形时∴PQ∥MN,且PQ⊥BC,AD∥BC∴MN⊥AD∴MN∥AB∴△DMN∽△DAB∴即∴DM=cm∴t=s(3)∵BD=5,DN=∴BN=如图,过点M作MH⊥BD于点H,∵sin∠MDH=sin∠BDA=∴∴MH=t当0<t<∵BQ=t,∴BP=t,∴PN=BD﹣BP﹣DN=5﹣﹣t=﹣t∴S△PMN=×PN×MH=×t×(﹣t)=﹣t2+t∴当t=s时,S△PMN有最大值,且最大值为,当t=s时,点P与点N重合,点P,点N,点M不构成三角形;当<t≤4时,如图,∴PN=BP﹣BN=t﹣∴S△PMN=×PN×MH=×t×(t﹣)=t2﹣t当<t≤4时,S△PMN随t的增大而增大,∴当t=4时,S△PMN最大值为,∵>∴综上所述:t=4时,△PMN的面积取得最大值,最大值为.【点评】本题是四边形综合题,考查了矩形的性质,相似三角形的判定和性质,勾股定理,利用分类讨论思想解决问题是本题关键.中学数学二模模拟试卷一、选择题(本大题10小题,每小题3分,共30分)1.(3分)﹣的倒数是()A.2 B.﹣2 C.D.2.(3分)如图所示,m和n的大小关系是()A.m=n B.m=1.5n C.m>n D.m<n3.(3分)下列图形既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.正方形4.(3分)据有关部门统计,2019年春节期间,广东各大景点的游客总数约25200000人次,将数25200000用科学记数法表示为()A.2.52×107B.2.52×108C.0.252×107D.0.252×108 5.(3分)如图,直线l1∥l2,将等边三角形如图放置若∠α=25°,则∠β等于()A.35°B.30°C.25°D.20°6.(3分)某公司销售部有7个职员,他们5月份的工资分别是5300元、5800元、5300元、5500元、5800元、6500元和5800元,那么他们5月份工资的众数是()A.5300元B.5500元C.5800元D.6500元7.(3分)在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)如图,在平面直角坐标系中,点M的坐标为M(,2),那么cosα的值是()A.B.C.D.9.(3分)已知代数式a﹣2b+7的值是13,那么代数式2a﹣4b的值是()A.6 B.12 C.15 D.2610.(3分)如图,在四边形ABCD中,AD∥BC,AB=CD,B=60°,AD=2,BC=8,点P从点B出发沿折线BA﹣AD﹣DC匀速运动,同时,点Q从点B出发沿折线BC﹣CD匀速运动,点P与点Q的速度相同,当二者相遇时,运动停止,设点P运动的路程为x,△BPQ的面积为y,则y关于x的函数图象大致是()A.B.C.D.二、填空题(本大题6小题,每小题4分,共24分)11.(4分)因式分解:x2y﹣y3=.12.(4分)81的平方根等于.13.(4分)不等式组的解集是.14.(4分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣1,0)、C(0,1),将△ABC绕点B顺时针旋转90°,得到△A1B1C1,点A、B、C的对应点分别为A1、B1、C1,则点A1的坐标为.15.(4分)如图,在菱形ABCD中,AC、BD交于点O,AC=4,菱形ABCD的面积为4,E 为AD的中点,则OE的长为.16.(4分)如图所示,在平面直角坐标系中,点A(,0)、B(0,),以AB为边作正方形ABCB1,延长CB1交x轴于点A1,以A1B1为边作正方形A1B1C1B2,延长C1B2交x轴于点A2,以A2B2为边作正方形A2B2C2B3,延长C2B3交x轴于点A3,以A3B3为边作正方形A3B3C3B4,…,依此规律,则△A6B7A7的周长为.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:|﹣3|﹣(2019+sin45°)0+﹣118.(6分)先化简,再求值:,其中x=.19.(6分)如图,在Rt△ABC中,∠C=90°,AB=8.(1)作△ABC的内角∠CAB的平分线,与边BC交于点D(用尺规作图,保留作图痕迹,不要求写作法);(2)若AD=BD,求CD的长度.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)某旅游团于早上8:00从某旅行社出发,乘大巴车前往“珠海长隆”旅游,“珠海长隆”离该旅行社有100千米,导游张某因有事情,于8:30从该旅行社自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比该旅游团提前20分钟到达“珠海长隆”.(1)大巴与小车的平均速度各是多少?(2)导游张某追上大巴的地点到“珠海长隆”的路程有多远?21.(7分)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,点F在DE的延长线上,且AF=CE=AE.(1)求证:四边形ACEF是平行四边形;(2)当∠B=30°时,试猜想四边形ACEF是什么图形,并说明理由.22.(7分)为了丰富校园文化生活,某校计划在午间校园广播台播放“百家讲坛”的部分内容为了了解学生的喜好,抽取若干名学生进行问卷调查(每人只选一项内容),整理调查结果,绘制统计图如下:请根据统计图提供的信息回答以下问题:(1)这一调查属于(选填“抽样调查”或“普查”),抽取的学生数为名;(2)估计喜欢收听易中天《品三国》的学生约占全校学生的%(精确到小数点后一位);(3)已知该校女学生共有1800名,则该校喜欢收听刘心武评《红楼梦》的女学生大约有多少名?五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,一次函数y=ax+b的图象与反比例函数y=(k 为常数,k≠0)的图象交于二、四象限内的A、B两点,与y轴交于C点.点A的坐标为(m,3),点B与点A关于y=x成轴对称,tan∠AOC=.(1)求k的值;(2)直接写出点B的坐标,并求直线AB的解析式;(3)P是y轴上一点,且S△PBC=2S△AOB,求点P的坐标.24.(9分)如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线AO交BC于点O,以O为圆心,OC长为半径作⊙O,⊙O交AO所在的直线于D、E两点(点D在BC左侧).(1)求证:AB是⊙O的切线;(2)连接CD,若AC=AD,求tan∠D的值;(3)在(2)的条件下,若⊙O的半径为5,求AB的长.25.(9分)如图,在矩形ABCD中,CD=3cm,BC=4cm,连接BD,并过点C作CN⊥BD,垂足为N,直线l垂直BC,分别交BD、BC于点P、Q.直线l从AB出发,以每秒1cm的速度沿BC方向匀速运动到CD为止;点M沿线段DA以每秒1cm的速度由点D向点A匀速运动,到点A为止,直线1与点M同时出发,设运动时间为t秒(t>0).(1)线段CN=;(2)连接PM和QN,当四边形MPQN为平行四边形时,求t的值;(3)在整个运动过程中,当t为何值时△PMN的面积取得最大值,最大值是多少?。

肇庆市九年级数学中考二模试卷

肇庆市九年级数学中考二模试卷

肇庆市九年级数学中考二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2017七上·吉林期末) -6的倒数是()A . 6B . -6C .D . -2. (2分) (2017八上·无锡开学考) 下列计算中,结果正确的是()A . 2x2+3x3=5x5B . 2x3•3x2=6x6C . 2x3÷x2=2xD . (2x2)3=2x63. (2分)据济宁市旅游局统计,2012年春节约有359525人来济旅游,将这个旅游人数 (保留三个有效数字)用科学计数法表示为A . 3.59×B . 3.60×C . 3.5 ×D . 3.6 ×4. (2分)(2018·镇平模拟) 四张相同的卡片,每张的正面分别写着,,,,将卡片正面朝下扣在桌上,随机抽出一张,这张卡片上写的不是最简二次根式的概率是()A .B .C .D .5. (2分) (2019七下·丹阳月考) 观察下列图案,在A,B,C,D四幅图案中,能通过图案(1)平移得到的是…()A .B .C .D .6. (2分)(2019·江苏模拟) 有一组数据:1, 3, 3, 6, 7, 8,这组数据的中位数是()A . 3B . 3.5C . 4D . 4.57. (2分)制作一个底面直径为30 cm、高为40 cm的圆柱形无盖铁桶,所需铁皮至少为()A . 1425πcm2B . 1650πcm2C . 2100πcm2D . 2625πcm28. (2分) (2016七上·高密期末) 小明从家走了10分钟后到达了一个离家900米的报亭,看了10分钟的报纸,然后用了15分钟返回到家,下列图象中能表示小明离家距离y(米)与时间x(分钟)关系的是()A .B .C .D .二、填空题 (共4题;共4分)9. (1分)分解因式:ab2﹣ac2=________ .10. (1分) (2018九上·潮南期末) 若|b-1|+=0,且一元二次方程kx2+ax+b=0有实数根,则k的取值范围是________.11. (1分) (2020九上·大丰期末) 如图,⊙O的弦AB=8,半径ON交AB于点M,M是AB的中点,且OM=3,则MN的长为________.12. (1分)如图所示,若∠ACB=90°,BC=8cm,AC=6cm,则B点到AC边的距离为________ cm.三、解答题 (共13题;共103分)13. (5分)(2011·台州) 计算:.14. (5分)解下列方程组:(1)(2).15. (5分)化简: .16. (5分) (2017八下·黄冈期中) 如图,四边形ABCD是平行四边形,点E在BC上,点F在AD上,BE=DF,求证:AE=CF.17. (2分)如图,某光源下有三根杆子,甲杆GH的影子GM,乙杆EF的影子一部分照在地面上EA,一部分照在斜坡AB上AD.(1)请在图中画出形成影子的光线,确定光源所在的位置R,并画出丙杆PQ在地面上的影子.(2)在(1)的结论下,若过点F的光线FD⊥AB,斜坡与地面夹角为60°,AD=1米,AE=2米,请求出乙杆EF的高度.(结果保留根号)18. (10分)如图,在△ABC中,∠C=90°,点D、E分别在AC、AB上,BD平分∠ABC,DE⊥AB,AE=6,cos A= .求:(1) DE、CD的长;(2)tan∠DBC的值.19. (10分)(2016·丹东) 如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.20. (15分) (2019七下·富顺期中) 中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<60100.0560≤x<70300.1570≤x<8040n80≤x<90m0.3590≤x≤100500.25请根据所给信息,解答下列问题:(1) m=________,n=________;(2)请补全频数分布直方图;(3)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?21. (5分) (2020七上·中山期末) 某学校安排学生住宿,若每室住7人,则有10人无法安排;若每室住8人,则恰好空出2个房间,这个学校的住宿生有多少人?22. (5分)(2019·安阳模拟) 规定:每个顶点都在格点的四边形叫做格点四边形.在8×10的正方形网格中画出符合要求的格点四边形(设每个小正方形的边长为1).(1)在图甲中画出一个以AB为边的平行四边形ABCD,且它的面积为16;(2)在图乙中画出一个以AB为对角线的菱形AEBF,且它的周长为整数.23. (10分)如图,O是的内心,BO的延长线和的外接圆相交于D,连结DC、DA、OA、OC,四边形OADC为平行四边形.(1)求证:≌ .(2)若,求阴影部分的面积.24. (15分) (2016八上·桂林期末) 已知等边三角形ABC中,E是AB边上一动点(与A、B不重合),D是CB延长线上的一点,且DE=EC.(1)当E是AB边上中点时,如图1,线段AE与DB的大小关系是:AE________DB(填“>”,“<”或“=”)(2)当E是AB边上任一点时,小敏与同桌小聪讨论后,认为(1)中的结论依然成立,并进行了如下解答:解:如图2,过点E作EF∥BC,交AC于点F(请你按照上述思路,补充完成全部解答过程)(3)当E是线段AB延长线上任一点时,如图3.(1)中的结论是否依然成立?若成立,请证明.若不成立,请说明理由.25. (11分)(2016·孝义模拟) 综合与探究:如图,已知抛物线y=﹣x2+2x+3的图象与x轴交于点A,B(A 在B的右侧),与y轴交于点C,对称轴与抛物线交于点D,与x轴交于点E.(1)求点A,B,C,D的坐标;(2)求出△ACD的外心坐标;(3)将△BCE沿x轴的正方向每秒向右平移1个单位,当点E移动到点A时停止运动,若△BCE与△ADE重合部分的面积为S,运动时间为t(s),请直接写出S关于t的函数关系式,并写出自变量的取值范围.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共4题;共4分)9-1、10-1、11-1、12-1、三、解答题 (共13题;共103分)13-1、14-1、14-2、15-1、16-1、17-1、18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、。

广东省肇庆市2019-2020学年中考数学仿真第二次备考试题含解析

广东省肇庆市2019-2020学年中考数学仿真第二次备考试题含解析

广东省肇庆市2019-2020学年中考数学仿真第二次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若数a ,b 在数轴上的位置如图示,则( )A .a+b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >02.计算:9115()515÷⨯-得( ) A .-95B .-1125C .-15D .11253.下列各式计算正确的是( ) A .(b+2a )(2a ﹣b )=b 2﹣4a 2 B .2a 3+a 3=3a 6 C .a 3•a=a 4D .(﹣a 2b )3=a 6b 34.如图,已知l 1∥l 2,∠A=40°,∠1=60°,则∠2的度数为( )A .40°B .60°C .80°D .100°5.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( ) A .120元B .100元C .80元D .60元6.下列图形中,既是中心对称,又是轴对称的是( )A .B .C .D .7.已知关于x 的一元二次方程()2220x x m +--=有实数根,则m 的取值范围是( )A .1m >B .1m <C .m 1≥D .1m £8.如图,A,B 是半径为1的⊙O 上两点,且OA ⊥OB .点P 从A 出发,在⊙O 上以每秒一个单位长度的速度匀速运动,回到点A 运动结束. 设运动时间为x ,弦BP 的长度为y ,那么下面图象中可能表示y 与x 的函数关系的是A.①B.④C.②或④D.①或③9.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b10.利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是()A.B.C.D.11.某校航模小分队年龄情况如表所示,则这12名队员年龄的众数、中位数分别是()年龄(岁)12 13 14 15 16人数 1 2 2 5 2A.2,14岁B.2,15岁C.19岁,20岁D.15岁,15岁12.下列四个几何体中,主视图是三角形的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=________ .14.如图,点A在双曲线1y=x上,点B在双曲线3y=x上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.15.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_______米(结果保留根号).16.有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次的运算结果是____________(用含字母x和n的代数式表示).17.如图,甲、乙两船同时从港口出发,甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°方向航行,半小时后甲船到达点C,乙船正好到达甲船正西方向的点B,则乙船的航程为______海里(结果保留根号).18.如图,在平行四边形纸片上做随机扎针实验,则针头扎在阴影区域的概率为__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC 的垂线交AD于点E,以PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE= ;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.20.(6分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m 名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:m=;请补全上面的条形统计图;在图2中,“乒乓球”所对应扇形的圆心角的度数为;已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.21.(6分)如图,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一点,BD=8,DE⊥AB,垂足为E,求线段DE的长.22.(8分)如图,某大楼的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的倾斜角∠BAH=30°,AB =20米,AB=30米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.23.(8分)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.求证:∠C=90°;当BC=3,sinA=35时,求AF的长.24.(10分)如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.a=,b=,点B的坐标为;当点P移动4秒时,请指出点P的位置,并求出点P的坐标;在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.25.(10分)如图,两座建筑物的水平距离BC为40m,从D点测得A点的仰角为30°,B点的俯角为10°,求建筑物AB的高度(结果保留小数点后一位).参考数据sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,3取1.1.26.(12分)一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;(1)搅匀后,从中任意取一个球,标号为正数的概率是;(2)搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.27.(12分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB 行驶,已知BC =80千米,∠A =45°,∠B =30°.开通隧道前,汽车从A 地到B 地要走多少千米?开通隧道后,汽车从A 地到B 地可以少走多少千米?(结果保留根号)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】 【分析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案. 【详解】由数轴可知:a <0<b ,a<-1,0<b<1, 所以,A.a+b<0,故原选项错误; B. ab <0,故原选项错误; C.a-b<0,故原选项错误; D. 0a b -->,正确. 故选D . 【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系. 2.B 【解析】 【分析】同级运算从左向右依次计算,计算过程中注意正负符号的变化. 【详解】919111551551515⎛⎫⎛⎫÷⨯-=⨯⨯-= ⎪ ⎪⎝⎭⎝⎭-1125故选B.【点睛】本题考查的是有理数的混合运算,熟练掌握运算法则是解题的关键.3.C【解析】各项计算得到结果,即可作出判断.解:A、原式=4a2﹣b2,不符合题意;B、原式=3a3,不符合题意;C、原式=a4,符合题意;D、原式=﹣a6b3,不符合题意,故选C.4.D【解析】【分析】根据两直线平行,内错角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:∵l1∥l2,∴∠3=∠1=60°,∴∠2=∠A+∠3=40°+60°=100°.故选D.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.5.C【解析】【详解】解:设该商品的进价为x元/件,依题意得:(x+20)÷510=200,解得:x=1.∴该商品的进价为1元/件. 故选C . 6.C 【解析】 【分析】根据中心对称图形,轴对称图形的定义进行判断. 【详解】A 、是中心对称图形,不是轴对称图形,故本选项错误;B 、不是中心对称图形,也不是轴对称图形,故本选项错误;C 、既是中心对称图形,又是轴对称图形,故本选项正确;D 、不是中心对称图形,是轴对称图形,故本选项错误. 故选C . 【点睛】本题考查了中心对称图形,轴对称图形的判断.关键是根据图形自身的对称性进行判断. 7.C 【解析】 【详解】解:∵关于x 的一元二次方程()2220x x m +--=有实数根,∴△=24b ac -=2241[(2)]m -⨯⨯--, 解得m≥1, 故选C . 【点睛】本题考查一元二次方程根的判别式. 8.D 【解析】 【分析】分两种情形讨论当点P 顺时针旋转时,图象是③,当点P 逆时针旋转时,图象是①,由此即可解决问题. 【详解】解:当点P 顺时针旋转时,图象是③,当点P 逆时针旋转时,图象是①. 故选D . 9.D 【解析】试题分析:A .如图所示:﹣3<a <﹣2,故此选项错误;B.如图所示:﹣3<a<﹣2,故此选项错误;C.如图所示:1<b<2,则﹣2<﹣b<﹣1,又﹣3<a<﹣2,故a<﹣b,故此选项错误;D.由选项C可得,此选项正确.故选D.考点:实数与数轴10.A【解析】【分析】根据:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.逐个按要求分析即可.【详解】选项A,是轴对称图形,不是中心对称图形,故可以选;选项B,是轴对称图形,也是中心对称图形,故不可以选;选项C,不是轴对称图形,是中心对称图形,故不可以选;选项D,是轴对称图形,也是中心对称图形,故不可以选.故选A【点睛】本题考核知识点:轴对称图形和中心对称图形.解题关键点:理解轴对称图形和中心对称图形定义.错因分析容易题.失分的原因是:没有掌握轴对称图形和中心对称图形的定义.11.D【解析】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】解:数据1出现了5次,最多,故为众数为1;按大小排列第6和第7个数均是1,所以中位数是1.故选D.【点睛】本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.12.D【解析】【分析】主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案.【详解】解:主视图是三角形的一定是一个锥体,只有D是锥体.故选D.【点睛】此题主要考查了几何体的三视图,主要考查同学们的空间想象能力.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.40°【解析】连接CD,则∠ADC=∠ABC=50°,∵AD是⊙O的直径,∴∠ACD=90°,∴∠CAD+∠ADC=90°,∴∠CAD=90°-∠ADC=90°-50°=40°,故答案为: 40°.14.2【解析】【详解】如图,过A点作AE⊥y轴,垂足为E,∵点A在双曲线1y=x上,∴四边形AEOD的面积为1∵点B在双曲线3y=x上,且AB∥x轴,∴四边形BEOC的面积为3∴四边形ABCD为矩形,则它的面积为3-1=215.43 4【解析】【分析】分析:利用特殊三角函数值,解直角三角形,AM=MD,再用正切函数,利用MB求CM,作差可求DC.因为∠MAD=45°, AM=4,所以MD=4, 因为AB=8,所以MB=12,因为∠MBC=30°,所以CM=MBtan30°所以-4.【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的相关定义以及变形是解题的关键.16.2(21)1n n x x -+ 【解析】 试题分析:根据题意得121x y x =+;2431x y x =+;3871x y x =+;根据以上规律可得:n y =2(21)1n n x x -+. 考点:规律题.17.【解析】【分析】本题可以求出甲船行进的距离AC ,根据三角函数就可以求出AB ,即可求出乙船的路程.【详解】由已知可得:AC=60×0.5=30海里, 又∵甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°,∴∠BAC=90°,又∵乙船正好到达甲船正西方向的B 点,∴∠C=30°,∴答:乙船的路程为海里.故答案为【点睛】本题主要考查的是解直角三角形的应用-方向角问题及三角函数的定义,理解方向角的定义是解决本题的关键.18.14【分析】先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可.【详解】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=14S四边形,∴针头扎在阴影区域内的概率为14;故答案为:14.【点睛】此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1);(2)①证明见解析;②;(3).【解析】试题分析:(1)由正方形的性质得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余关系证出∠AEP=∠PBC,得出△APE∽△BCP,得出对应边成比例即可求出AE的长;(2)①A、P、O、E四点共圆,即可得出结论;②连接OA、AC,由勾股定理求出AC=,由圆周角定理得出∠OAP=∠OEP=45°,周长点O在AC上,当P运动到点B时,O为AC的中点,即可得出答案;(3)设△APE的外接圆的圆心为M,作MN⊥AB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4﹣x,由相似三角形的对应边成比例求出AE的表达式,由二次函数的最大值求出AE的最大值为1,得出MN的最大值=即可.试题解析:(1)∵四边形ABCD、四边形PEFG是正方形,∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠PBC,∴△APE∽△BCP,∴,即,解得:AE=,故答案为:;(2)①∵PF⊥EG,∴∠EOF=90°,∴∠EOF+∠A=180°,∴A、P、O、E四点共圆,∴点O一定在△APE的外接圆上;②连接OA、AC,如图1所示:∵四边形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC==,∵A、P、O、E四点共圆,∴∠OAP=∠OEP=45°,∴点O在AC上,当P运动到点B时,O为AC的中点,OA=AC=,即点O经过的路径长为;(3)设△APE的外接圆的圆心为M,作MN⊥AB于N,如图2所示:则MN∥AE,∵ME=MP,∴AN=PN,∴MN=AE,设AP=x,则BP=4﹣x,由(1)得:△APE∽△BCP,∴,即,解得:AE==,∴x=2时,AE的最大值为1,此时MN的值最大=×1=,即△APE的圆心到AB边的距离的最大值为.【点睛】本题考查圆、二次函数的最值等,正确地添加辅助线,根据已知证明△APE∽△BCP是解题的关键.20.(1)150,(2)36°,(3)1.【解析】【分析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算即可.【详解】(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×15150=36°;(4)1200×20%=1人,答:估计该校约有1名学生最喜爱足球活动.故答案为150,36°,1.【点睛】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.21.1.【解析】试题分析:根据相似三角形的判定与性质,可得答案.试题解析:∵DE⊥AB,∴∠BED=90°,又∠C=90°,∴∠BED=∠C.又∠B=∠B,∴△BED∽△BCA,∴,∴DE===1.考点:相似三角形的判定与性质.22.(1) BH为10米;(2) 宣传牌CD高约(40﹣3【解析】【分析】(1)过B作DE的垂线,设垂足为G.分别在Rt△ABH中,通过解直角三角形求出BH、AH;(2)在△ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长然后根据CD=CG+GE-DE即可求出宣传牌的高度.【详解】(1)过B作BH⊥AE于H,Rt△ABH中,∠BAH=30°,∴BH=12AB=12×20=10(米),即点B距水平面AE的高度BH为10米;(2)过B作BG⊥DE于G,∵BH⊥HE,GE⊥HE,BG⊥DE,∴四边形BHEG是矩形.∵由(1)得:BH=10,AH=103,∴BG=AH+AE=(103+30)米,Rt△BGC中,∠CBG=45°,∴CG=BG=(103+30)米,∴CE=CG+GE=CG+BH=103+30+10=103+40(米),在Rt△AED中,DEAE=tan∠DAE=tan60°=3,DE=3AE=303∴CD=CE﹣DE=103+40﹣303=40﹣203.答:宣传牌CD高约(40﹣203)米.【点睛】本题考查解直角三角形的应用-仰角俯角问题和解直角三角形的应用-坡度坡角问题,解题的关键是掌握解直角三角形的应用-仰角俯角问题和解直角三角形的应用-坡度坡角问题的基本方法.23.(1)见解析(2)5 4【解析】【分析】(1)连接OE,BE,因为DE=EF,所以¶DE=¶FE,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA=3,55OE rOA r==-从而可求出r的值.【详解】解:(1)连接OE,BE,∵DE=EF,∴¶DE=¶FE∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O与边AC相切于点E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=35,∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA=3,55 OE rOA r==-∴15,8 r=∴15552.84 AF=-⨯=【点睛】本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识.24.(1)4,6,(4,6);(2)点P在线段CB上,点P的坐标是(2,6);(3)点P移动的时间是2.5秒或5.5秒.【解析】试题分析:(160.b-=可以求得,a b的值,根据长方形的性质,可以求得点B的坐标;(2)根据题意点P从原点出发,以每秒2个单位长度的速度沿着O C B A O----的线路移动,可以得到当点P移动4秒时,点P的位置和点P的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点P移动的时间即可.试题解析:(1)∵a、b60.b-=∴a−4=0,b−6=0,解得a=4,b=6,∴点B的坐标是(4,6),故答案是:4,6,(4,6);(2)∵点P从原点出发,以每秒2个单位长度的速度沿着O−C−B−A−O的线路移动,∴2×4=8,∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是:8−6=2,即当点P移动4秒时,此时点P在线段CB上,离点C的距离是2个单位长度,点P的坐标是(2,6);(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,第二种情况,当点P在BA上时,点P移动的时间是:(6+4+1)÷2=5.5秒,故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.25.建筑物AB的高度约为30.3m.【解析】分析:过点D作DE⊥AB,利用解直角三角形的计算解答即可.详解:如图,根据题意,BC=2,∠DCB=90°,∠ABC=90°.过点D作DE⊥AB,垂足为E,则∠DEB=90°,∠ADE=30°,∠BDE=10°,可得四边形DCBE 为矩形,∴DE=BC=2.在Rt△ADE中,tan∠ADE=AE DE,∴AE=DE•tan30°=4040 1.73223.093=⨯≈.在Rt△DEB中,tan∠BDE=BE DE,∴BE=DE•tan10°=2×0.18=7.2,∴AB=AE+BE=23.09+7.2=30.29≈30.3.答:建筑物AB的高度约为30.3m.点睛:考查解直角三角形的应用﹣仰角俯角问题,要求学生能借助俯角构造直角三角形并解直角三角形.26.(1)23;(2)49【解析】【分析】(1)直接运用概率的定义求解;(2)根据题意确定k>0,b>0,再通过列表计算概率. 【详解】解:(1)因为1、-1、2三个数中由两个正数,所以从中任意取一个球,标号为正数的概率是2 3 .(2)因为直线y=kx+b经过一、二、三象限,所以k>0,b>0,又因为取情况:k b 1 -1 21 1,1 1,-1 1,2 -1 -1,1 -1,-1 -1.2 2 2,1 2,-1 2,2 共9种情况,符合条件的有4种,所以直线y=kx+b经过一、二、三象限的概率是4 9 .【点睛】本题考核知识点:求规概率. 解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出.27.(1)开通隧道前,汽车从A地到B地要走2)千米;(2)汽车从A地到B地比原来少走的路程为23)]千米.【解析】【分析】(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.【详解】(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=CDBC,BC=80千米,∴CD=BC•sin30°=80×12=40(千米),AC=CD402sin45︒=(千米),AC+BC=80+1-8(千米),答:开通隧道前,汽车从A地到B地要走(80+1-8)千米;(2)∵cos30°=BDBC,BC=80(千米),∴BD=BC•cos30°=80×3=4032(千米),∵tan45°=CDAD,CD=40(千米),∴AD=CD40tan45︒=(千米),∴AB=AD+BD=40+403(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=80+1-8﹣40﹣403=40+40(23)-(千米).答:汽车从A地到B地比原来少走的路程为[40+40(23)-]千米.【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.。

广东省肇庆市2019-2020学年第二次中考模拟考试数学试卷含解析

广东省肇庆市2019-2020学年第二次中考模拟考试数学试卷含解析

广东省肇庆市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.点P (1,﹣2)关于y 轴对称的点的坐标是( )A .(1,2)B .(﹣1,2)C .(﹣1,﹣2)D .(﹣2,1)2.如图,O e 是ABC V 的外接圆,已知ABO 50o ∠=,则ACB ∠的大小为( )A .40oB .30oC .45oD .50o3.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是( )A .①B .②C .③D .④4.一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是( ) A .30厘米、45厘米; B .40厘米、80厘米; C .80厘米、120厘米; D .90厘米、120厘米5.如图,l 1、l 2、l 3两两相交于A 、B 、C 三点,它们与y 轴正半轴分别交于点D 、E 、F ,若A 、B 、C 三点的横坐标分别为1、2、3,且OD=DE=1,则下列结论正确的个数是( ) ①13EA EC =,②S △ABC =1,③OF=5,④点B 的坐标为(2,2.5)A .1个B .2个C .3个D .4个6.如图,在▱ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,若AB =6,EF =2,则BC 的长为( )A .8B .10C .12D .14 7.如果,则a 的取值范围是( ) A .a>0 B .a≥0 C .a≤0 D .a<08.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+19.如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边10.如图,⊙O 是等边△ABC 的外接圆,其半径为 3,图中阴影部分的面积是( )A .πB .32πC .2πD .3π11.如图,△ABC 是等腰直角三角形,∠A=90°,BC=4,点P 是△ABC 边上一动点,沿B→A→C 的路径移动,过点P 作PD ⊥BC 于点D ,设BD=x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )A .B .C .D . 12.如图,//AB CD ,CE 交AB 于点E ,EF 平分BEC ∠,交CD 于F . 若50ECF ∠=o ,则CFE ∠ 的度数为( )A .35oB .45oC .55oD .65o二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,D 、E 分别为△ABC 的边BA 、CA 延长线上的点,且DE ∥BC .如果35DE BC =,CE=16,那么AE 的长为_______14.函数32x y x =-中,自变量x 的取值范围是______ 15.如图,点M 是反比例函数2y x =(x >0)图像上任意一点,MN ⊥y 轴于N ,点P 是x 轴上的动点,则△MNP 的面积为A .1B .2C .4D .不能确定16.当关于x 的一元二次方程ax 2+bx+c =0有实数根,且其中一个根为另一个根的2倍时,称之为“倍根方程”.如果关于x 的一元二次方程x 2+(m ﹣2)x ﹣2m =0是“倍根方程”,那么m 的值为_____. 17.如图,无人机在空中C 处测得地面A 、B 两点的俯角分别为60°、45°,如果无人机距地面高度CD 为1003A 、D 、B 在同一水平直线上,则A 、B 两点间的距离是_____米.(结果保留根号)18.如图,长方形内有两个相邻的正方形,面积分别为3和9,那么阴影部分的面积为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某公司销售一种新型节能电子小产品,现准备从国内和国外两种销售方案中选择一种进行销售:①若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=-1100x+150,成本为20元/件,月利润为W内(元);②若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳1100x2元的附加费,月利润为W外(元).(1)若只在国内销售,当x=1000(件)时,y=(元/件);(2)分别求出W内、W外与x间的函数关系式(不必写x的取值范围);(3)若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值.20.(6分)如图,在矩形ABCD中,对角线AC,BD相交于点O.画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.21.(6分)在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.22.(8分)随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了多少名学生?将图1补充完整;求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.23.(8分)如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E 在边AC上,且满足ED=EA.(1)求∠DOA的度数;(2)求证:直线ED与⊙O相切.24.(10分)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(I)如图①,若BC为⊙O的直径,求BD、CD的长;(II)如图②,若∠CAB=60°,求BD、BC的长.25.(10分)如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.26.(12分)如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.求反比例函数的表达式在x轴上找一点P,使PA+PB的值最小,求满足条件的点P 的坐标求△PAB的面积.27.(12分)如图,在矩形ABCD中,对角线AC,BD相交于点O.(1)画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.(2)观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.2.A【解析】解:△AOB中,OA=OB,∠ABO=30°;∴∠AOB=180°-2∠ABO=120°;∴∠ACB=∠AOB=60°;故选A.3.B【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。

广东省肇庆市中考数学二模试卷

广东省肇庆市中考数学二模试卷

广东省肇庆市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)下列四个数中,小于0的是()A . -1B . 0C . 1D . 22. (2分)下列事件中,属于必然事件的是()A . 打开电视机,它正在播广告B . 打开数学书,恰好翻到第50页C . 抛掷一枚均匀的硬币,恰好正面朝上D . 一天有24小时3. (2分)长方体的主视图、俯视图如图所示(单位:m),则其左视图的面积是()A . 4 m2B . 12 m2C . 1 m2D . 3 m24. (2分) (2019八上·南昌期中) 计算的结果是()A .B .C .D .5. (2分) (2019八上·江岸期中) 如图,在△ABC中,点D是线段AB的中点,DC⊥BC,作∠EAB=∠B,DE∥BC,连接CE.若,设△BCD的面积为S,则用S表示△ACE的面积正确的是()A .B . 3SC . 4SD .6. (2分)下列命题中真命题是()A . 如果m是有理数,那么m是整数;B . 4的平方根是2;C . 等腰梯形两底角相等;D . 如果四边形ABCD是正方形,那么它是菱形.二、填空题 (共10题;共10分)7. (1分) (2016七下·罗山期中) =________.8. (1分)(2018·恩施) 函数y= 的自变量x的取值范围是________.9. (1分) (2019八上·灌云期末) 已知一次函数图象上的两点,,则、的大小关系为: ________ .10. (1分)若的整数部分为a,小数部分为b,则( +a)b=________.11. (1分) (2017七下·盐都开学考) 如图是一个正方体的展开图,折叠成正方体后与“创”字相对的一面上的字是________.12. (1分) (2019八下·广安期中) 如图,在Rt△ABC中,∠ACB=90°,点D、E、F分别是AB、AC、BC的中点,若CD=5,则EF的长为________.13. (1分) (2017·定安模拟) 如图,在三角板ABC中,∠ACB=90°,∠A=30°,AC=6,将三角板ABC绕点C逆时针旋转,当起始位置时的点B恰好落在边A1B1上时,A1B的长为________.14. (1分)已知:如图,是的直径,切于点,的延长线交于点,,则 ________度.15. (1分)(2015·杭州) 在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比例函数y= 的图象上,过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.若反比例函数y= 的图象经过点Q,则k=________.16. (1分)(2019·龙岗模拟) 如图,在△ABC中,∠ACB=90°,AC=BC=3,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=2,则sin∠BFD的值为________.三、解答题 (共11题;共122分)17. (10分)(2020·成都模拟) 计算:(1)计算:(π﹣3.14)0+()﹣2﹣|﹣|+4cos30°(2)解不等式组:18. (5分)先化简,再求值:,其中a=1﹣.19. (20分)(2016·常德) 今年元月,国内一家网络诈骗举报平台发布了《2015年网络诈骗趋势研究报告》,根据报告提供的数据绘制了如下的两幅统计图:(1)该平台2015年共收到网络诈骗举报多少例?(2) 2015年通过该平台举报的诈骗总金额大约是多少亿元?(保留三个有效数字)(3) 2015年每例诈骗的损失年增长率是多少?(4)为提高学生的防患意识,现准备从甲、乙、丙、丁四人中随机抽取两人作为受骗演练对象,请用树状图或列表法求恰好选中甲、乙两人的概率是多少?20. (15分)如图,在正方形网格上有△ABC和△DEF.(1)这两个三角形相似吗?为什么?(2)求∠A的度数;(3)在右边的网格再画一个三角形,使它与△ABC相似,并求出其相似比.21. (16分)(2020·辽阳模拟) 某中学为做好学生“午餐工程”工作,学校工作人员搭配了A,B,C,D四种不同种类的套餐,学校决定围绕“在A,B,C,D四种套餐中,你最喜欢的套餐种类是什么?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查问适当整理后绘制成如图所示的不完整的条形统计图,其中最喜欢D种套餐的学生占被抽取人数的20%.请你根据以上信息解答下列问题:最喜欢的套餐种类的人数发布情况(1)在这次调查中,一共抽取了________名学生;(2)通过计算,补全条形统计图;(3)如果全校有2000名学生,请你估计全校学生中最喜欢种套餐的学生有多少名?(4)甲、乙两名同学一起去学校餐厅就餐,他们随机在“A,B,C,D四种套餐”中选择一种,求甲、乙两名同学选择同一种套餐就餐的概率.22. (11分) (2017九上·满洲里期末) 如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,其中点A(5,4),B(1,3),将△AOB绕点O逆时针旋转90°后得到△A1OB1 .(1)画出△A1OB1;(2)在旋转过程中点B所经过的路径长为________;(3)求在旋转过程中线段AB、BO扫过的图形的面积之和.23. (10分) (2020七下·防城港期末) 自治区发展和改革委员会在2019年11月印发《广西壮族自治区新能源汽车推广应用攻坚行动方案》,力争到2020年底,全区新能源汽车保有量比攻坚行动前增长100%,达到14.6万辆以上.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出2辆A型车和1辆B型车,销售额为62万元;本周已售出3辆A型车和2辆B型车,销售额为106万元.(1)求每辆A型车和B型车的售价各为多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车至少购买1辆,购车费不少于130万元,则有哪几种购车方案?24. (5分)如图,在电线杆上的C处引拉线CE,CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B 处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长.(结果保留根号)25. (15分) (2017九上·鄞州月考) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c<0的解集;(3)若方程ax2+bx+c+k=0有两个不相等的实数根,求k的取值范围.26. (5分)已知直线y=x+6交x轴于点A,交y轴于点C,经过A和原点O的抛物线y=ax2+bx(a<0)的顶点B在直线AC上.(1)求抛物线的函数关系式;(2)以B点为圆心,以AB为半径作⊙B,将⊙B沿x轴翻折得到⊙D,试判断直线AC与⊙D的位置关系,并说明理由;(3)若E为⊙B优弧ACO上一动点,连结AE、OE,问在抛物线上是否存在一点M,使∠MOA︰∠AEO=2︰3,若存在,试求出点M的坐标;若不存在,试说明理由.27. (10分)(2020·九江模拟) 定义:若两条抛物线在x轴上经过两个相同点,那么我们称这两条抛物线是“同交点抛物线”,在x轴上经过的两个相同点称为“同交点”,已知抛物线y=x2 +bx+c经过(﹣2,0)、( ﹣4,0),且一条与它是“同交点抛物线”的抛物线y=ax2 +ex+f经过点( ﹣3,3).(1)求b、c及a的值;(2)已知抛物线y =﹣x2 +2x +3与抛物线yn= x2﹣ x﹣n (n为正整数)①抛物线y和抛物线yn是不是“同交点抛物线”?若是,请求出它们的“同交点”,并写出它们一条相同的图像性质;若不是,请说明理由.②当直线y = x+ m与抛物线y、yn ,相交共有4个交点时,求m的取值范围.③若直线y =k(k <0)与抛物线y =﹣x2 +2x +3与抛物线yn = x2﹣ x﹣n (n为正整数)共有4个交点,从左至右依次标记为点A、点B、点C、点D,当AB =BC=CD时,求出k、n之间的关系式参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共10题;共10分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共11题;共122分)17-1、17-2、18-1、19-1、19-2、19-3、19-4、20-1、20-2、20-3、21-1、21-2、21-3、21-4、22-1、22-2、22-3、23-1、23-2、24-1、25-1、25-2、25-3、27-1、27-2、。

_广东省肇庆市封开县南丰中学2018-2019学年中考数学二模试卷

_广东省肇庆市封开县南丰中学2018-2019学年中考数学二模试卷

【解释】:
第 15页,总 23页
(1)【答案】: (2)【答案】: 【解释】: (1)【答案】:
答案第 16页,总 23页
…………○…………内…………○…………装…………○…………订…………○…………线…………○………… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
15. 如图,在矩形 ABCD 中,AB=6cm,AD=8cm,直线 EF 从点 A 出发沿 AD 方向匀速运动,速度是 2cm/s, 运动过程中始终保持 EF∥AC.F 交 AD 于 E,交 DC 于点 F;同时,点 P 从点 C 出发沿 CB 方向匀速运动, 速度是 1cm/s,连接 PE、PF,设运动时间 t(s)(0<t<4).
答案第 2页,总 23页
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 姓名:____________班级:____________学号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 姓名:____________班级:____________学号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
【解释】: 【答案】: 【解释】: 【答案】:
(1)AQ⊥QP;
(2)△ADQ∽△AQP. 12. 为美化校园,某学校将要购进 A、B 两个品种的树苗,已知一株 A 品种树苗比一株 B 品种树苗多 20
答案第 4页,总 23页
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C B A
2012年封开九年级数学二模
一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的4个选项中,只有一项是符合题目要求的)
1、下列实数中,无理数是( )
A 、π
B 、0
C 、-2
D 2、2010年我国人口约为1 370 000 000人,该人口数用科学记数法表示为( )
A 、110.13710⨯
B 、91.3710⨯
C 、813.710⨯
D 、713710⨯
3、图中几何体的左视图是( )
A B C D
4、数据1,2,4,4,3的众数是( )
A 、1
B 、2
C 、3
D 、4
5、已知两圆的直径分别为2cm 和4cm ,圆心距为3cm ,则这两个圆的位置关系是( )
A 、相交
B 、外切
C 、外离
D 、内含
6、下面计算正确的是( )
A
、3=
B
3=
C
=
D 2=-
7、下列图形中,既是中心对称又是轴对称图形的是( )
A 、等边三角形
B 、平行四边形
C 、梯形
D 、矩形
8、如图,已知Rt △ABC 中,斜边BC 上的高AD =4,cosB =45,则AC 是( ) A 、5 B 、4 C 、3 D 、45 9、一个不透明的盒子中装有2个白球,5个红球 和8个黄球,这些球除颜色外,没有任何其它区别,
现从这个盒子中随机摸出一个球,摸到红球的概率为( ) 第8题图
A 、518
B 、13
C 、215
D 、115
10、对于反比例函数1y x
=,下列说法正确的是( ) A 、图像经过点(1,-1) B 、图像经过第二、四象限
C 、图像是中心对称图形
D 、当0x <时,y

x 的增大而增大
二、填空题。

(本大题共5小题,每小题3分,共15分)
11
____________。

12、如图,是某校三个年级学生人数分布扇形统计图,则
九年级学生人数所占扇形的圆心角的度数为___________。

13
、不等式组 的解集是______________。

14、如图,菱形ABCD
的周长为
16, 60A ∠= ,
则对角线BD 的长度是______________。

15、用同样大小的小圆按下图所示方式摆图形, 第1个图形需要1个小圆,第2个图形需要2个小圆,第3个图形需要6个小圆,第4个图形需要10个小圆,按照这样的规律摆下去,则第n 个图形需要小圆_______________个(用含n 的代数式表示)
三、解答题(本大题共10小题,共75分,解答应写出文字说明、证明过程或演算步骤)。

16、(本小题满分6分) 计算:01121)(5)()3
--+---
17、(本小题满分6分)解方程组:
20x -<30x +≥B A D C 38
x y +=534
x y -=。

相关文档
最新文档