充要条件与命题(无答案
高考第2课四种命题和充要条件

高中数学学习材料金戈铁骑整理制作第2课四种命题和充要条件【自主学习】第2课四种命题和充要条件(本课时对应学生用书第页)自主学习回归教材1.(选修2-1P8习题1改编)命题:“若x2<1,则-1<x<1”的逆否命题是. 【答案】若x≥1或x≤-1,则x2≥12.(选修2-1P7练习改编)命题“若x<0,则x2>0”及其逆命题、否命题、逆否命题这四个命题中正确命题的个数为.【答案】2【解析】原命题为真,所以逆否命题为真;逆命题为“若x2>0,则x<0”为假命题,所以否命题为假.3.(选修2-1P20习题改编)判断下列命题的真假.(填“真”或“假”)(1)命题“在△ABC中,若AB>AC,则C>B”的否命题为命题.(2)命题“若ab=0,则b=0”的逆否命题为命题.【答案】(1)真(2)假4.(选修2-1P9习题4(2)改编)“sin α=sin β”是“α=β”的条件.(填“充分不必要”、“必要不充分”、“ 充要”或“ 既不充分也不必要”)【答案】必要不充分5.(选修2-1P20习题改编)已知p,q都是r的必要条件,s是r的充分条件,q是s的充分条件,则r是q的条件,p是q的条件.【答案】充要必要【解析】q⇒s⇒r⇒q,所以r是q的充要条件;q⇒s⇒r⇒p,所以p是q的必要条件.1.记“若p则q”为原命题,则否命题为“若非p则非q”,逆命题为“若q则p”,逆否命题为“若非q则非p”.其中互为逆否命题的两个命题同真假,即等价,原命题与逆否命题等价,逆命题与否命题等价.因此,四种命题为真的个数只能是偶数.2.对命题“若p则q”而言,当它是真命题时,记作p⇒q,称p是q的充分条件,q是p的必要条件;当它是假命题时,记作p⇒/q,称p是q的非充分条件,q是p的非必要条件.3.①若p⇒q,且q⇒/p,则p是q的充分不必要条件;②若p⇒/q,且q⇒p,则p是q的必要不充分条件;③若p⇒q,且q⇒p,则p是q的充要条件,记作p⇔q;④若p⇒/p,且q⇒/p,则p是q的既不充分也不必要条件.4.证明命题条件的充要性时,既要证明原命题成立(即条件的充分性),又要证明它的逆命题成立(即条件的必要性).【要点导学】要点导学各个击破命题真假的判断例1在△ABC中,已知命题p:若C=60°,则sin2A+sin2B-sin A sin B=sin2C.(1)求证:命题p是真命题;(2)写出命题p的逆命题,判断逆命题的真假,并说明理由.【思维引导】(1)利用正弦定理将待证式转化为a2+b2-ab=c2,然后利用余弦定理即证;(2)分清命题p的条件与结论,正确地对原命题的条件和结论进行互换或否定.【解答】设△ABC的内角A,B,C所对的边分别为a,b,c.(1)因为C=60°,由余弦定理得c2=a2+b2-2ab cos 60°,即c2=a2+b2-ab.由正弦定理sin a A =sin b B =sin cC , 得sin 2C=sin 2A+sin 2B-sin A sin B. 故命题p 是真命题.(2)命题p 的逆命题:在△ABC 中, 若sin 2A+sin 2B-sin A sin B=sin 2C ,则C=60°. 它是真命题.证明如下:由sin 2A+sin 2B-sin A sin B=sin 2C 和正弦定理得c 2=a 2+b 2-ab.而由余弦定理c 2=a 2+b 2-2ab cos C ,得cos C=12. 因为0°<C<180°,所以C=60°.【精要点评】对于命题真假的判定,关键是分清命题的条件与结论,只有将条件与结论分清,再结合所涉及的知识才能正确地判断命题的真假.变式 给出以下四个命题:①“若x+y=0,则x ,y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若q ≤-1,则x 2+x+q=0有实数根”的逆否命题; ④若a+b 是偶数,则整数a ,b 都是偶数. 其中真命题是 .(填序号) 【答案】①③【解析】①显然正确;②不全等的三角形的面积不相等,故②不正确;③原命题正确,所以它的逆否命题也正确;④若a+b 是偶数,则整数a ,b 都是偶数或都是奇数,故④不正确.【精要点评】对命题真假的判断,正确的命题要加以论证;不一定正确的命题要举出反例,这是最基本的数学思维方式.在判断命题真假的过程中,要注意简单命题与复合命题之间的真假关系;要注意四种命题之间的真假关系.原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.因此,四种命题中真命题的个数只能是0,2或4.充要条件的判断例2从“充分不必要”、“必要不充分”、“充要”和“既不充分也不必要”中,选出一种适当的填空.(1)(2015·泰安期末)已知a∈R,则“a2<a”是“a<1”的条件.(2)(2015·保定期末)若集合A={0,1},B={-1,a2},则“A∩B={1}”是“a=1”的条件.【思维引导】(1)找到不等式a2<a的解集为(0,1),然后根据“小范围能推大范围,大范围推不出小范围”进行判断.(2)判断充要条件时,可先分清条件与结论,若由条件能推出结论,则充分性满足;若由结论能推出条件,则必要性满足.【答案】(1)充分不必要(2)必要不充分【解析】(1)因为由a2<a,可得0<a<1,所以“a2<a”是“a<1”的充分不必要条件.(2)若A∩B={1},则a2=1,a=±1,所以充分性不满足,必要性满足,故“A∩B={1}”是“a=1”的必要不充分条件.【精要点评】在判断充分条件及必要条件时,首先要分清哪个是条件,哪个是结论;其次,要从两个方面,即“充分”与“必要”分别考查.判定时,对于有关范围的问题也可以从集合观点看,如p,q对应的范围为集合A,B,若AB,则A是B 的充分条件,B是A的必要条件;若A=B,则A,B互为充要条件.变式从“充分不必要条件”、“必要不充分条件”、“充要条件”和“既不充分也不必要条件”中,选出一种适当的填空.(1)“x=2kπ+π4(k∈Z)”是“tan x=1”的;(2)“22x y >⎧⎨>⎩,”是“44x y xy +>⎧⎨>⎩,”的 ;(3)“m<12”是“一元二次方程x 2+x+m=0有实数解”的 ; (4)对于数列{a n },“a n+1>|a n |(n ∈N *)”是“数列{a n }为递增数列”的 ;(5)“函数f (x )=x 3+2x 2+mx+1在(-∞,+∞)上单调递增”是“m ≥289x x +对任意的x>0恒成立”的 .【思维引导】判定p 是q 的什么条件,实际上就是判断“若p 则q ”和它的逆命题“若q 则p ”的真假,这部分内容经常与其他知识点相结合考查.【答案】(1)充分不必要条件 (2)充分不必要条件 (3)必要不充分条件 (4)充分不必要条件 (5)充要条件【解析】(1)因为x=2k π+π4(k ∈Z )⇒tan x=1,但反过来不一定成立,即tan x=1⇒x=k π+π4(k ∈Z ),(2)因为x>2,y>2,根据不等式的性质易得x+y>4,xy>4,但反过来不一定成立,如x=13,y=24.(3)一元二次方程x 2+x+m=0有实数解⇔m ≤14,因为m ≤14⇒m<12,反之不成立,所以是必要不充分条件.(4)因为a n+1>|a n |(n ∈N *), 所以当n ≥2时,a n >0, 即当n ≥2时,a n+1>a n . 若a 1≥0,有a 2>|a 1|=a 1,若a 1<0,a 2>a 1显然成立,充分性得证.当数列{a n }为递增数列时,设a n =1-2n⎛⎫ ⎪⎝⎭,则a 2>|a 1|不成立.(5)函数f (x )=x 3+2x 2+mx+1在(-∞,+∞)上单调递增⇔f'(x )=3x 2+4x+m ≥0恒成立⇔Δ=16-12m ≤0⇔m ≥43.m ≥289xx +对任意x>0恒成立⇔m ≥2max 89x x ⎛⎫ ⎪+⎝⎭,又289x x +=89x x +≤892x x ⋅=43,所以m ≥43. 【精要点评】在判断时注意反例的应用;在判断“若p 则q ”较繁琐时,可以利用它的逆否命题“若非q 则非p ”,判断其是否正确;有时将某些条件转化为与它等价的条件再与另一条件进行判断会更简单 .结合充要条件求参数例3 已知集合M={x|x<-3或x>5},P={x|(x-a )(x-8)≤0}. (1)求实数a 的取值范围,使它成为M ∩P={x|5<x ≤8}的充要条件; (2)求实数a 的一个值,使它成为M ∩P={x|5<x ≤8}的一个充分不必要条件; (3)求实数a 的取值范围,使它成为M ∩P={x|5<x ≤8}的一个必要不充分条件. 【思维引导】求a 的取值范围使它成为M ∩P 的不同条件,可借助集合的观点,根据要求,求出成立时a 的取值范围.【解答】(1)由M ∩P={x|5<x ≤8},得-3≤a ≤5, 因此M ∩P={x|5<x ≤8}的充要条件是-3≤a ≤5.(2)即在集合{a|-3≤a ≤5}中取一个值,如取a=0,此时必有M ∩P={x|5<x ≤8}; 反之,M ∩P={x|5<x ≤8}未必有a=0,故a=0是所求的一个充分不必要条件. (3)即求一个集合Q ,使{a|-3≤a ≤5}是集合Q 的一个真子集.如果{a|a≤5},那么未必有M∩P={x|5<x≤8},但是M∩P={x|5<x≤8}时,必有a≤5,故a≤5是所求的一个必要不充分条件.【精要点评】解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式求解.变式(2015·南通期中)若不等式x-1x>0成立的充分不必要条件是x>a,则实数a的取值范围是.【答案】[1,+∞)【解析】由不等式x-1x>0,得(1)(-1)x xx>0,得-1<x<0或x>1.由充分不必要条件的含义可知{x|x>a}为不等式解集的真子集,进而得到a≥1.充要条件的证明例4已知a,b,c都是实数,求证:方程ax2+bx+c=0有一个正根和一个负根的充要条件是ac<0.【思维引导】证明充分性,由“ac<0”推出“方程ax2+bx+c=0有一个正根和一个负根”,证明必要性是由“方程ax2+bx+c=0有一个正根和一个负根”推出“ac<0”,主要根据判别式、一元二次方程的根与系数的关系进行论证.【解答】设原方程的两根分别为x1,x2.①充分性:由ac<0,得a,c异号,所以Δ=b2-4ac>0,且x1x2=ca<0.故方程ax2+bx+c=0有一正一负两个实根.所以ac<0是原方程有一正一负两个实根的充分条件.②必要性:若方程ax2+bx+c=0有一个正根和一个负根,不妨设x1>0,x2<0,则x1x2<0,即ca<0,所以a,c异号,即ac<0.故ac<0是原方程有一正一负两个实根的必要条件.综上,ac<0是原方程有一正一负两个实根的充要条件.【精要点评】充要条件的证明应注意:(1)一般地,条件已知,证明结论成立是充分性,结论已知,推出条件成立是必要性.(2)有关充要条件的证明问题,要分清哪个是条件,哪个是结论.变式设数列{a n},{b n},{c n}满足:b n=a n-a n+2,c n=a n+2a n+1+3a n+2(n=1,2,3,…),求证:数列{a n}为等差数列的充要条件是{c n}为等差数列且b n≤b n+1(n=1,2,3,…).【解答】必要性:设{a n}是公差为d1的等差数列,则b n+1-b n=(a n+1-a n+3)-(a n-a n+2)=(a n+1-a n)-(a n+3-a n+2)=d1-d1=0,所以b n≤b n+1(n=1,2,3,…)成立.又c n+1-c n=(a n+1-a n)+2(a n+2-a n+1)+3(a n+3-a n+2)=d1+2d1+3d1=6d1(常数)(n=1,2,3,…),所以数列{c n}为等差数列.充分性:设数列{c n}是公差为d2的等差数列,且b n≤b n+1(n=1,2,3,…).因为c n=a n+2a n+1+3a n+2,①所以c n+2=a n+2+2a n+3+3a n+4,②①-②,得c n-c n+2=(a n-a n+2)+2(a n+1-a n+3)+3(a n+2-a n+4)=b n+2b n+1+3b n+2.因为c n-c n+2=(c n-c n+1)+(c n+1-c n+2)=-2d2,所以b n+2b n+1+3b n+2=-2d2,③从而有b n+1+2b n+2+3b n+3=-2d2,④④-③,得(b n+1-b n)+2(b n+2-b n+1)+3(b n+3-b n+2)=0.⑤因为b n+1-b n≥0,b n+2-b n+1≥0,b n+3-b n+2≥0,所以由⑤得b n+1-b n=0(n=1,2,3,…).由此不妨设b n=d3(n=1,2,3,…),则a n-a n+2=d3(常数).由此c n=a n+2a n+1+3a n+2⇒c n=4a n+2a n+1-3d3,从而c n+1=4a n+1+2a n+2-3d3,两式相减得c n+1-c n=2(a n+1-a n)-2d3,因此a n+1-a n=12(cn+1-c n)+d3=12d2+d3(常数)(n=1,2,3,…),所以数列{a n}为等差数列.综上,数列{a n}为等差数列的充要条件是{c n}为等差数列且b n≤b n+1(n=1,2,3,…).1.(2014·安徽卷)“x<0”是“ln(x+1)<0”的条件.【答案】必要不充分【解析】由ln(x+1)<0,得0<1+x<1,所以-1<x<0,而(-1,0)是(-∞,0)的真子集,所以“x<0”是“ln(x+1)<0”的必要不充分条件.2.(2015·安徽卷)设命题p:1<x<2,q:2x>1,则p是q的条件.【答案】充分不必要【解析】由q:2x>1=20,解得x>0,所以p⇒q,但q p,所以p是q的充分不必要条件.3.(2015·南通模考)已知集合M={x|x-2<0},N={x|x<a},若“x∈M”是“x∈N” 的充分条件,则实数a的取值范围是.【答案】[2,+∞)【解析】由题意得M={x|x-2<0}={x|x<2},因为“x∈M”是“x∈N”的充分条件,所以M⊆N,所以a≥2.4.求证:方程mx2-2x+3=0有两个同号且不相等的实数根的充要条件是0<m<1 3.【解答】①充分性:因为0<m<13,所以方程mx2-2x+3=0的判别式Δ=4-12m>0,且3m>0,所以方程mx2-2x+3=0有两个同号且不相等的实数根.②必要性:若方程mx2-2x+3=0有两个同号且不相等的实数根,则有124-1203mx xm∆=>⎧⎪⎨=>⎪⎩,,所以0<m<13.综上,得证.趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》中的练习第3~4页.【检测与评估】第2课四种命题和充要条件一、填空题1.命题“若a>b,则a+1>b”的逆否命题是.2.(2014·启东中学)若使“x≥1”与“x≥a”恰有一个成立的充要条件为{x|0≤x<1},则实数a的值是.3.(2015·重庆卷)“x>1”是“lo12g(x+2)<0”的条件.4.设集合S={0,a},T={x∈Z|x2<2},则“a=1”是“S⊆T”的条件.5.若命题“ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是.6.设n∈N*,则一元二次方程x2-4x+n=0有整数解的充要条件是n=.7.已知命题p:|x|>a,q:-12-1xx>0.若p是q的必要不充分条件,则实数a的取值范围是.8.(2015·郑州质检)给定方程:12x⎛⎫⎪⎝⎭+sin x-1=0,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(-∞,0)内有且只有一个实数根;④若x0是方程的实数根,则x0>-1.其中正确的命题是.(填序号)二、解答题9.(2014·惠州一模)已知集合A=2331224|y y x x x⎧⎫⎡⎤=-+∈⎨⎬⎢⎥⎣⎦⎩⎭,,,B={x|x+m2≥1}.若命题p:x∈A,命题q:x∈B,并且p是q的充分条件,求实数m的取值范围.10.设a,b,c为△ABC的三边,求证:方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是a2=b2+c2.11.已知函数f(x)=4sin2π4x⎛⎫+⎪⎝⎭-23cos 2x-1,且给定命题p:x<π4或x>π2,x∈R.若命题q:-2<f(x)-m<2,且¬p是q的充分条件,求实数m的取值范围.三、选做题(不要求解题过程,直接给出最终结果)12.已知集合A={x|x2+2x-3≤0},B={x|(x-2a)[x-(a2+1)]≤0}.若“x∈A”是“x∈B”的充分不必要条件,则实数a的取值范围是.13.(2015·黄山质检)在平面直角坐标系中,定义两点P(x1,y1),Q(x2,y2)之间的“直角距离”为d(P,Q)=|x1-x2|+|y1-y2|.现有以下命题:①已知两点P(2,3),Q(sin2α,cos2α),则d(P,Q)为定值;②原点O到直线x-y+1=0上任意一点P的直角距离d(O,P)的最小值为2 2;③若PQ表示P,Q两点间的距离,那么PQ≥22d(P,Q);其中为真命题的是.(填序号) 【检测与评估答案】第2课 四种命题和充要条件1.若a+1≤b ,则a ≤b2.0 【解析】由题意可得1x x a <⎧⎨≥⎩, 或1x x a ≥⎧⎨<⎩, 成立的充要条件为{x|0≤x<1},所以a=0.3.充分不必要 【解析】lo 12g (x+2)<0⇔x+2>1⇔x>-1,故“x>1”是“lo12g (x+2)<0”的充分不必要条件.4.充分不必要 【解析】当a=1时,S={0,1},又T={-1,0,1},则S ⊆T ,所以充分性成立;当S ⊆T 时,a=1或-1,所以必要性不成立.5.[-3,0] 【解析】因为命题“ax 2-2ax-3>0不成立”是真命题,则有a=0或204120a a a <⎧⎨+≤⎩,,解得a ∈[-3,0].6. 3或4 【解析】由x 2-4x+n=0,得(x-2)2=4-n ,即x=2±4-n .因为n ∈N *,方程要有整数解,所以n=3或4,故当n=3或4时方程有整数解.7. (-∞,0) 【解析】由命题p :|x|>a ⇔R 0-0x a x a x a a ∈<⎧⎨<>≥⎩,,或,,q :-12-1x x >0⇔x<12或x>1.因为p 是q 的必要不充分条件,所以使命题q 成立的不等式的解集是使命题p 成立的不等式解集的子集,所以a<0.8.②③④ 【解析】由题意可知方程12x ⎛⎫ ⎪⎝⎭+sin x-1=0的解等价于函数y=1-12x⎛⎫ ⎪⎝⎭与y=sin x 的图象交点的横坐标,在同一平面直角坐标系中分别作出它们的图象如图所示.(第8题)由图象可知:①该方程存在小于0的实数解,故①错误;②该方程有无数个实数解,故②正确;③该方程在(-∞,0)内有且只有一个实数解,故③正确;④若x 0是该方程的实数解,则x 0>-1,故④正确.9.由y=x 2-32x+1,配方得y=23-4x ⎛⎫ ⎪⎝⎭+716.因为x ∈324⎡⎤⎢⎥⎣⎦,,所以y min =716,y max =2,即y ∈7216⎡⎤⎢⎥⎣⎦,,所以A=7|216y y ⎧⎫≤≤⎨⎬⎩⎭. 由x+m 2≥1,得x ≥1-m 2,B={x|x ≥1-m 2}. 因为p 是q 的充分条件,所以A ⊆B ,所以1-m 2≤716,解得m ≥34或m ≤-34.故实数m 的取值范围是3,4⎛⎤-∞- ⎥⎝⎦∪34∞⎡⎫+⎪⎢⎣⎭,.10.设m 是两个方程的公共根,显然m ≠0. 由题设知m 2+2am+b 2=0, ① m 2+2cm-b 2=0, ② 由①+②得2m (a+c+m )=0,所以m=-(a+c),③将③代入①得(a+c)2-2a(a+c)+b2=0,化简得a2=b2+c2,所以所给的两个方程有公共根的必要条件是a2=b2+c2.下面证明充分性.因为a2=b2+c2,所以方程x2+2ax+b2=0可化为x2+2ax+a2-c2=0,它的两个根分别为x1=-(a+c),x2=c-a.同理,方程x2+2cx-b2=0的两根分别为x3=-(a+c),x4=a-c.因为x1=x3,所以方程x2+2ax+b2=0与x2+2cx-b2=0有公共根.综上所述,方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是a2=b2+c2.11.由q可得()-2() 2. m f xm f x>⎧⎨<+⎩,因为¬p是q的充分条件,所以在π4≤x≤π2的条件下,()-2()2m f xm f x>⎧⎨<+⎩,恒成立.由已知得,f(x)=2π1cos22x⎡⎤⎛⎫-+⎪⎢⎥⎝⎭⎣⎦-23cos 2x-1=2sin 2x-23cos 2x+1=4sinπ2-3x⎛⎫⎪⎝⎭+1.由π4≤x≤π2,知π6≤2x-π3≤2π3,所以3≤4sinπ2-3x⎛⎫⎪⎝⎭+1≤5.故当x=5π12时,f(x)max=5,当x=π4时,f(x)min=3,所以只需5-232mm>⎧⎨<+⎩,成立,即3<m<5.所以m的取值范围是(3,5).12.3--2∞⎛⎤⎥⎝⎦,【解析】因为集合A={x|x2+2x-3≤0}={x|-3≤x≤1},B={x|2a≤x≤a2+1}.因为“x∈A”是“x∈B”的充分不必要条件,所以A B,所以2112-3aa⎧+≥⎨≤⎩,,且等号不能同时取得,解得a≤-32,故实数a的取值范围是3--2∞⎛⎤⎥⎝⎦,.13.①③【解析】已知两点P(2,3),Q(sin2α,cos2α),则d(P,Q)=|2-sin2α|+|3-cos2α|=2-sin2α+3-cos2α=4,所以①正确;设直线上任意一点为(x,x+1),则原点O 到直线x-y+1=0上任意一点P的直角距离d(O,P)=|x|+|x+1|≥|x+1-x|=1,即其最小值为1,所以命题②错误;由基本不等式a2+b2≥12(a+b)2得PQ=221212(-)(-)x x y y+≥22(|x1-x2|+|y1-y2|)=22d(P,Q),所以命题③成立,综上所述,正确的命题为①③.。
人教A版选修2-1第一章学案命题及其关系与充分、必要条件无答案

专题:命题及其关系与充分、必要条件※知识要点1.命题(1)概念:用语言、符号或式子表达的,可以叫做命题,其中判断为真的语句叫做,判断为假的语句叫做.(2)一般形式:若/如果,则/那么.2.四种命题及其关系(1)四种命题若用p和q分别表示原命题的条件和结论,四种命题的形式是:①原命题:若则或;①逆命题:若则或;①否命题:若则或;①逆否命题:若则或.注意:命题p的否定是指,记作;(2)四种命题间的关系:(3)四种命题的真假性关系①两个命题互为逆否命题,它们的真假性;①两个命题为逆命题或否命题,它们的真假性.3.充分条件与必要条件(1)若p①q,则p是q的条件,q是p的条件;(2)若p①q,则p是q的条件,q是p的条件;(3)若p①q,q /p,则p是q的条件,同时,q是p的条件;(4)若p q,q /p,则p是q的条件,同时,q是p的条件;注意:充分条件与必要条件的具备以下两个特征:①对称性:若“p⇒q”,则“”;②传递性:若“p⇒q且q⇒r”,则p与r的关系是.※题型讲练【例1】判断下列命题的正误:(1)“x2+2x-3<0”是命题()(2)“sin 45°=1”是真命题()(3)命题“若p,则q”的否命题是“若p,则非q”()(4)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真()变式训练1:1.按要求写出下列命题的相关命题并判断其真假:(1)命题“若α=π3,则cos α=12”的逆命题;(2)命题“若x=4,则x2+3x-4≥0”的否命题;(3)命题“若m>0,则方程x2+x-m=0有实根”的逆否命题;(4)命题“若x,y都是偶数,则x+y也是偶数”的逆否命题;【例2】在下列各题中,p是q的什么条件?(1)p:x2=3x+4,q:x=3x+4;(2)p:x-3=0,q:(x-3)(x-4)=0;(3)p:b2-4ac≥0(a≠0),q:ax2+bx+c=0(a≠0)有实根.变式训练2:1.给下列命题选择合适的条件:A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(1)设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD 为菱形”是“AC①BD”的;(2)若命题p:φ=π2+kπ,k①Z,命题q:f(x)=sin(ωx+φ)(ω≠0)是偶函数,则p是q的;(3)已知命题p:m<-2,命题q:方程x2-x-m=0无实根,则命题p是q的;(4)给定两个命题p,q.若¬p是q的必要而不充分条件,则命题p是¬q的.2.已知p是r的充分而不必要条件,q是r的充分条件,s是r的必要条件,q是s的必要条件,现有下列命题:①s是q的充要条件;①p是q的充分条件而不是必要条件;①r是q的必要条件而不是充分条件;①¬p 是¬s 的必要条件而不是充分条件; ①r 是s 的充分条件而不是必要条件. 则正确命题的序号是 .【例3】设x ,y ①R ,求证:|x +y |=|x |+|y |的充要条件是xy ≥0.变式训练3:1.已知数列{a n }的前n 项和S n =p n +q (p ≠0,且p ≠1), 求证:数列{a n }为等比数列的充要条件为q =-1.【例4】已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m },根据下列条件,分别求实数m 的取值范围: (1)若x ①P 是x ①S 的必要条件;(2)若¬P 是¬S 的必要不充分条件. 变式训练4:1.函数f (x )=⎩⎨⎧log 2x ,x >0,-2x +a ,x ≤0有且只有一个零点的充分不必要条件是( )A .a <0B .0<a <12C .12<a <1 D .a ≤0或a >12.若命题“x <m -1或x >m +1”是命题“x 2-2x -3>0”的必要不充分条件,则实数m 的取值范围是________.3.设p :|4x -3|≤1;q :x 2-(2a +1)x +a (a +1)≤0,若¬p 是¬q 的必要不充分条件,则实数a 的取值范围是________. ※课后练习1.命题“若x 2>y 2,则x >y ”的逆否命题是( ) A .“若x <y ,则x 2<y 2” B .“若x >y ,则x 2>y 2” C .“若x ≤y ,则x 2≤y 2” D .“若x ≥y ,则x 2≥y 2” 2.已知向量a =(m 2,-9),b =(1,-1),则命题“m =-3”是“a ∥b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.给定两个命题p 、q ,若¬p 是q 的必要不充分条件,则p 是¬q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 4.已知条件p :-2<x <4,条件q :(x +2)(x +a )<0;若q 是p的必要而不充分条件,则a 的取值范围是( )A .(4,+∞)B .(-∞,-4)C .(-∞,-4]D .[4,+∞) 5.命题“任意x ①[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( )A .a ≥4B .a ≤4C .a ≥5D .a ≤56.命题“如果x 、y ∈R ,且x 2+y 2=0,则x 、y 全为0”的否命题是 . 7.给下列命题选择合适的条件:A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 (1)“a =2”是“{1,2}⊆{1,a ,b }”的 ;(2)“m <14”是“方程x 2+x +m =0有实数解”的_______;(3)“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的_______; (4)“a =1”是“直线x -2ay =1和ax -2y =1平行”的_____; 8.函数f (x )=x 2+mx +1的图象关于直线x =1对称的充要条件是 ____ .9.已知集合A ={x |12<2x <8,x ∈R},B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是____________.10.设a ,b ,c 为△ABC 的三边,求证:方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根的充要条件是∠A =90°.11.设p :实数x 满足x 2-4ax +3a 2<0,其中a <0;q :实数x 满足x 2-x -6≤0,或x 2+2x -8>0,且¬p 是¬q 的必要不充分条件,求a 的取值范围.。
2021_2022学年高中数学第1章常用逻辑用语1.1.1四种命题(不作要求)1.1.2充分条件和必

1.1.1 四种命题(不作要求) 1.1.2 充分条件和必要条件学习目标核心素养1.结合具体实例,理解充分条件、必要条件和充要条件的意义.(重点)2.结合具体命题,学会判断充分条件、必要条件、充要条件的方法.(重点、难点)3.培养辩证思维能力.通过充要条件的学习,培养逻辑推理素养.1.符号⇒与的含义命题真假“假设p那么q〞为真“假设p那么q〞为假表示方法p⇒q p q读法p推出q p不能推出q2.充分、必要条件的含义条件关系含义p是q的充分条件(q是p的必要条件)p⇒qp是q的充要条件p⇔qp是q的充分不必要条件p⇒q,且q pp是q的必要不充分条件p q,且q⇒pp是q的既不充分又不必要条件p q,且q p 思考:(1)p是q的充分条件与q是p的必要条件所表示的推出关系是否一样?(2)以下五种表述形式:①p⇒q;②p是q的充分条件;③q的充分条件是p;④q是p的必要条件;⑤p的必要条件是q.这五种表述形式等价吗?[提示] (1)一样,都是p⇒q(2)等价1.“x>2”是“x2-3x+2>0”成立的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件A[由x2-3x+2>0得x>2或x<1,应选A.]2.对于任意的实数a,b,c,在以下命题中,真命题是( )A.“ac>bc〞是“a>b〞的必要条件B.“ac=bc〞是“a=b〞的必要条件C.“ac<bc〞是“a<b〞的充分条件D.“ac=bc〞是“a=b〞的充分条件B[假设a=b,那么ac=bc;假设ac=bc,那么a不一定等于b,故“ac=bc〞是“a =b〞的必要条件.]3.设a,b是实数,那么“a+b>0”是“ab>0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件D[此题采用特殊值法:当a=3,b=-1时,a+b>0,但ab<0,故不是充分条件;当a=-3,b=-1时,ab>0,但a+b<0,故不是必要条件.所以“a+b>0”是“ab>0”的既不充分又不必要条件.]4.用“充分不必要〞、“必要不充分〞、“充要〞和“既不充分也不必要〞填空.(1)“a2+b2=0”是“a=b=0”的________条件.(2)两个三角形全等是这两个三角形相似的________条件.(3)“a2>0”是“a>0”的________条件.(4)“sin α>sin β〞是“α>β〞的________条件.(1)充要(2)充分不必要(3)必要不充分(4)既不充分也不必要[(1)a2+b2=0成立时,当且仅当a=b=0.故应填“充要〞.(2)因为两个三角形全等⇒两个三角形相似,但两个三角形相似D两个三角形全等,所以填“充分不必要〞.(3)因为a2>0a>0,如(-2)2>0,但-2>0不成立;又a>0⇒a2>0,所以“a2>0”是“a>0”的必要不充分条件.(4)因为y=sin x在不同区间的单调性是不同的,故“sin α>sin β〞是“α>β〞的既不充分也不必要条件.]充分条件、必要条件、充要条件的判断件〞“充分必要条件〞“既不充分也不必要条件〞中选出一种作答).(1)在△ABC中,p:∠A>∠B,q:BC>AC;(2)对于实数x ,y ,p :x +y ≠8,q :x ≠2或y ≠6; (3)p :(a -2)(a -3)=0,q :a =3; (4)p :a <b ,q :ab<1.[思路探究] 判断p ⇒q 与q ⇒p 是否成立,当p 、q 是否认形式, 可判断綈q 是綈p 的什么条件.[解] (1)在△ABC 中,显然有∠A >∠B ⇔BC >AC ,所以p 是q 的充分必要条件. (2)因为x =2且y =6⇒x +y =8,即綈q ⇒綈p ,但綈p ⇒綈q ,所 以p 是q 的充分不必要条件.(3)由(a -2)(a -3)=0可以推出a =2或a =3,不一定有a =3;由a =3可以得出(a -2)(a -3)=0.因此,p 是q 的必要不充分条件.(4)由于a <b ,当b <0时,a b>1;当b >0时,a b <1,故假设a <b ,不一定有a b<1; 当a >0,b >0,a b <1时,可以推出a <b ; 当a <0,b <0,a b<1时,可以推出a >b . 因此p 是q 的既不充分也不必要条件.充分条件与必要条件的判断方法1.定义法2.等价法:将命题转化为另一个等价的又便于判断真假的命题. 3.逆否法:这是等价法的一种特殊情况.假设綈p ⇒綈q ,那么p 是q 的必要条件,q 是p 的充分条件; 假设綈p ⇒綈q ,且綈q綈p ,那么p 是q 的必要不充分条件;假设綈p ⇔綈q ,那么p 与q 互为充要条件; 假设綈p綈q ,且綈q綈p ,那么p 是q 的既不充分也不必要条件.1.(1)设a ,b 是实数,那么“a >b 〞是“a 2>b 2”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件D [令a =1,b =-1,满足a >b ,但不满足a 2>b 2,即“a >b 〞不能推出“a 2>b 2”;再令a =-1,b =0,满足a 2>b 2,但不满足a >b ,即“a 2>b 2”不能推出“a >b 〞,所以“a >b 〞是“a 2>b 2”的既不充分也不必要条件.](2)对于二次函数f (x )=ax 2+bx +c (a ≠0),以下结论正确的选项是( ) ①Δ=b 2-4ac ≥0是函数f (x )有零点的充要条件; ②Δ=b 2-4ac =0是函数f (x )有零点的充分条件; ③Δ=b 2-4ac >0是函数f (x )有零点的必要条件; ④Δ=b 2-4ac <0是函数f (x )没有零点的充要条件. A .①④ B .①②③ C .①②③④D .①②④D [①Δ=b 2-4ac ≥0⇔方程ax 2+bx +c =0(a ≠0)有实根⇔f (x )=ax 2+bx +c (a ≠0)有零点,故①正确.②假设Δ=b 2-4ac =0,那么方程ax 2+bx +c =0(a ≠0)有实根,因此函数f (x )=ax 2+bx +c (a ≠0)有零点,故②正确.③函数f (x )=ax 2+bx +c (a ≠0)有零点时,方程ax 2+bx +c =0(a ≠0)有实根,未必有Δ=b 2-4ac >0,也可能有Δ=0,故③错误.④Δ=b 2-4ac <0⇔方程ax 2+bx +c =0(a ≠0)无实根⇔函数f (x )=ax 2+bx +c (a ≠0)无零点,故④正确.]充要条件的探求与证明(1)“x 2-4x <0”的一个充分不必要条件为( )A .0<x <4B .0<x <2C .x >0D .x <4(2)x ,y 都是非零实数,且x >y ,求证:1x <1y的充要条件是xy >0.[思路探究] (1)先解不等式x 2-4x <0得到充要条件,那么充分不必要条件应是不等式x 2-4x <0的解集的子集.(2)充要条件的证明可用其定义,即条件⇒结论且结论⇒条件.如果每一步的推出都是等价的(⇔),也可以把两个方面的证明合并在一起,用“⇔〞写出证明.[解析] (1)由x 2-4x <0得0<x <4,那么充分不必要条件是集合{x |0<x <4}的子集,应选B.[答案] B(2)法一:充分性:由xy >0及x >y ,得x xy >yxy, 即1x <1y.必要性:由1x <1y ,得1x -1y <0,即y -xxy<0.因为x >y ,所以y -x <0,所以xy >0. 所以1x <1y的充要条件是xy >0.法二:1x <1y ⇔1x -1y <0⇔y -x xy<0.由条件x >y ⇔y -x <0,故由y -xxy<0⇔xy >0. 所以1x <1y⇔xy >0,即1x <1y的充要条件是xy >0.1.探求充要条件一般有两种方法:(1)探求A 成立的充要条件时,先将A 视为条件,并由A 推导结论(设为B ),再证明B 是A 的充分条件,这样就能说明A 成立的充要条件是B ,即从充分性和必要性两方面说明.(2)将原命题进展等价变形或转换,直至获得其成立的充要条件,探求的过程同时也是证明的过程,因为探求过程每一步都是等价的,所以不需要将充分性和必要性分开来说明.2.充要条件的证明(1)证明p 是q 的充要条件,既要证明命题“p ⇒q 〞为真,又要证明“q ⇒p 〞为真,前者证明的是充分性,后者证明的是必要性.(2)证明充要条件,即说明原命题和逆命题都成立,要注意“p 是q 的充要条件〞与“p 的充要条件是q 〞这两种说法的差异,分清哪个是条件,哪个是结论.2.(1)不等式x (x -2)<0成立的一个必要不充分条件是( ) A .x ∈(0,2) B .x ∈[-1,+∞) C .x ∈(0,1)D .x ∈(1,3)B[由x(x-2)<0得0<x<2,因为(0,2)[-1,+∞),所以“x∈[-1,+∞)〞是“不等式x(x-2)<0成立〞的一个必要不充分条件.](2)求证:关于x的方程ax2+bx+c=0有一个根是1的充要条件是a+b+c=0.[证明] 假设p:方程ax2+bx+c=0有一个根是1,q:a+b+c=0.①证明p⇒q,即证明必要性.∵x=1是方程ax2+bx+c=0的根,∴a×12+b×1+c=0,即a+b+c=0.②证明q⇒p,即证明充分性.由a+b+c=0,得c=-a-b.∵ax2+bx+c=0,∴ax2+bx-a-b=0,即a(x2-1)+b(x-1)=0.故(x-1)(ax+a+b)=0.∴x=1是方程的一个根.故方程ax2+bx+c=0有一个根是1的充要条件是a+b+c=0.充分、必要条件的应用[探究问题]1.假设集合A B,那么“x∈A〞是“x∈B〞的什么条件?“x∈B〞是“x∈A〞的什么条件?[提示] 因为A B,所以x∈A成立时,一定有x∈B,反之不一定成立,所以“x∈A〞是“x∈B〞的充分不必要条件,而“x∈B〞是“x∈A〞的必要不充分条件.2.对于集合A和B,在什么情况下,“x∈A〞是“x∈B〞的既不充分也不必要条件?[提示] 当A B且B A时,“x∈A〞是“x∈B〞的既不充分也不必要条件.3.集合A={x|x≥a},B={x|x≥2}.假设A是B的充要条件,实数a的值确定吗,假设集合A是B的充分不必要条件?实数a的值确定吗?[提示] 当A是B的充要条件时,A=B,这时a的值是确定的,即a=2;当A是B的充分不必要条件时,A B,这时a的值不确定,实数a的取值范围是(2,+∞).【例3】p:x2-8x-20≤0,q:x2-2x+1-m2≤0(m>0),且p是q的充分不必要条件,那么实数m的取值范围为________.[思路探究] p是q的充分不必要条件→p代表的集合是q代表的集合的真子集→列不等式组求解{m|m≥9}(或[9,+∞))[由x2-8x-20≤0,得-2≤x≤10,由x2-2x+1-m2≤0(m>0),得1-m≤x≤1+m(m>0).因为p 是q 的充分不必要条件,所以p ⇒q 且qD p .即{x |-2≤x ≤10}是{x |1-m ≤x ≤1+m ,m >0}的真子集,所以⎩⎪⎨⎪⎧m >0,1-m <-2,1+m ≥10或⎩⎪⎨⎪⎧1-m ≤-2,m >0,1+m >10,解得m ≥9.所以实数m 的取值范围为{m |m ≥9}.]1.本例中“p 是q 的充分不必要条件〞改为“p 是q 的必要不充分条件〞,其他条件不变,试求m 的取值范围.[解] 由x 2-8x -20≤0得-2≤x ≤10,由x 2-2x +1-m 2≤0(m >0)得1-m ≤x ≤1+m (m >0) 因为p 是q 的必要不充分条件,所以q ⇒p ,且p q .那么{x |1-m ≤x ≤1+m ,m >0}{x |-2≤x ≤10}所以⎩⎪⎨⎪⎧m >01-m ≥-21+m ≤10,解得0<m ≤3.即m 的取值范围是(0,3].2.假设本例题改为:P ={x |a -4<x <a +4},Q ={x |1<x <3},“x ∈P 〞是“x ∈Q 〞的必要条件,求实数a 的取值范围.[解] 因为“x ∈P 〞是x ∈Q 的必要条件,所以Q ⊆P .所以⎩⎪⎨⎪⎧a -4≤1a +4≥3解得-1≤a ≤5即a 的取值范围是[-1,5].利用充分、必要、充分必要条件的关系求参数范围1.化简p 、q 两命题,2.根据p 与q 的关系(充分、必要、充要条件)转化为集合间的关系, 3.利用集合间的关系建立不等关系, 4.求解参数范围.1.充分条件、必要条件的判断方法: (1)定义法:直接利用定义进展判断.(2)等价法:利用逆否命题的等价性判断,即要证p ⇒q ,只需证它的逆否命题綈q⇒綈p即可;同理要证q⇒p,只需证綈p⇒綈q即可.(3)利用集合间的包含关系进展判断.2.根据充分条件、必要条件求参数的取值范围时,主要根据充分条件、必要条件与集合间的关系,将问题转化为相应的两个集合之间的包含关系,然后建立关于参数的不等式(组)进展求解.1.判断(正确的打“√〞,错误的打“×〞)(1)如果p是q的充分条件,那么命题“假设p那么q〞为真.( )(2)命题“假设p那么q〞为假,记作“q⇒p〞.( )(3)假设p是q的充分条件,那么p是唯一的.( )(4)假设“p q〞,那么q不是p的充分条件,p不是q的必要条件.( )[答案] (1)√(2)×(3)×(4)×2.“x2-4x-5=0”是“x=5”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件B[由x2-4x-5=0得x=5或x=-1,那么当x=5时,x2-4x-5=0成立,但x2-4x -5=0时,x=5不一定成立,应选B.]3.假设“x<m〞是“(x-1)(x-2)>0”的充分不必要条件,那么m的取值范围是________.(-∞,1] [由(x-1)(x-2)>0可得x>2或x<1,由条件,知{x|x<m}{x|x>2或x<1},∴m≤1.]4.求证:关于x的方程x2+mx+1=0有两个负实数根的充要条件是m≥2.[证明] (1)充分性:因为m≥2,所以Δ=m2-4≥0,所以方程x2+mx+1=0有实根,设两根为x1,x2,由根与系数的关系知,x1·x2=1>0,所以x1,x2同号.又x1+x2=-m≤-2<0,所以x1,x2同为负数.即x2+mx+1=0有两个负实根的充分条件是m≥2.(2)必要性:因为x2+mx+1=0有两个负实根,设其为x1,x2,且x1x2=1,所以⎩⎪⎨⎪⎧Δ=m 2-4≥0,x 1+x 2=-m <0,即⎩⎪⎨⎪⎧m ≥2或m ≤-2,m >0,所以m ≥2,即x 2+mx +1=0有两个负实根的必要条件是m ≥2. 综上可知,m ≥2是x 2+mx +1=0有两个负实根的充分必要条件.。
充分条件、必要条件、充要条件题型解析

ʏ朱珠充分条件与必要条件是高中数学的重要概念,因其抽象性而成为同学们难以理解的内容㊂下面就这方面的题型进行举例分析㊂一㊁充分条件㊁必要条件㊁充要条件的判断充分条件与必要条件:若p⇒q,则p是q的充分条件,q是p的必要条件;若p⇒/q,则p不是q的充分条件,q不是p的必要条件㊂一般地,如果p⇒q,且q⇒p,就记作p⇔q,则p是q的充分必要条件,简称充要条件㊂概括地说,如果p⇔q,那么p与q互为充要条件㊂判断p是q的什么条件,主要判断p⇒q,及q⇒p这两个命题的正确性,若p⇒q真,则p是q成立的充分条件;若q⇒p 真,则p是q成立的必要条件㊂要否定p与q不能相互推出时,举出一个反例即可㊂例1(1)已知实系数一元二次方程a x2+b x+c=0(aʂ0),则下列结论正确的是()㊂①Δ=b2-4a cȡ0是这个方程有实根的充要条件;②Δ=b2-4a c=0是这个方程有实根的充分条件;③Δ=b2-4a c>0是这个方程有实根的必要条件;④Δ=b2-4a c<0是这个方程没有实根的充要条件㊂A.③④B.②③C.①②③D.①②④(2)若p:AɘB=A,q:∁U B⊆∁U A,则p 是q的()㊂A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件分析:对于(1),利用Δ=b2-4a c判断方程根的情况,当Δ=0时,一元二次方程有两个等根;当Δ>0时,一元二次方程有两个不相等的根;当Δ<0时,一元二次方程没有实数根㊂对于(2),画出V e n n图(如图1),结合图形,可帮助求解㊂图1解:(1)Δȡ0⇔一元二次方程a x2+b x+ c=0(aʂ0)有实根,①正确㊂Δ=0⇒一元二次方程a x2+b x+c=0(aʂ0)有实根,②正确㊂Δ>0⇒一元二次方程a x2+b x+c=0 (aʂ0)有实根,但a x2+b x+c=0(aʂ0)有实根⇒/Δ>0,③错误㊂Δ<0⇔一元二次方程a x2+b x+c=0(aʂ0)无实根,④正确㊂应选D㊂(2)结合图1可得AɘB=A⇔A⊆B⇔∁U A⊇∁U B,即p是q的充要条件㊂应选C㊂充分条件与必要条件的两种判断方法:直接利用定义判断;集合法,将命题p,q分别看作集合A, B,当A⊆B时,p是q的充分条件,q是p的必要条件,当A=B时,p,q互为充要条件㊂二㊁充分条件㊁必要条件㊁充要条件的应用利用充分条件㊁必要条件求参数的取值范围问题,常利用集合法求解,先化简集合A={x|p(x)}和B={x|q(x)},然后根据p 与q的关系(充分㊁必要㊁充要条件),得出集合A与B的包含关系,进而得到相关不等式组,最后求出参数的取值范围㊂例2已知集合A={x|a<x<a+2}, B={x|x<-1或x>3},且A是B的充分不必要条件,求实数a的取值范围㊂分析:由A是B的充分不必要条件,说0 1知识结构与拓展高一数学2023年9月Copyright©博看网. All Rights Reserved.明集合A 是B 的真子集,即A ⫋B ,由此可得实数a 满足的条件,从而得到实数a 的取值范围㊂解:因为A 是B 的充分不必要条件,所以A ⫋B ㊂又因为A ={x |a <x <a +2},B ={x |x <-1或x >3},所以a +2ɤ-1或a ȡ3,解得a ȡ3或a ɤ-3,所以实数a 的取值范围是{a |a ȡ3或a ɤ-3}㊂充分条件㊁必要条件中的含参数问题,往往是通过集合的包含关系来解答的㊂三㊁充要条件的证明充要条件的证明,可分为充分性和必要性的证明,证明时要注意两种叙述方式的区别:①p 是q 的充要条件,由p ⇒q 是充分性,由q ⇒p 是必要性;②p 的充要条件是q ,由p ⇒q 是必要性,由q ⇒p 是充分性㊂例3 求证:方程m x 2-2x +3=0有两个同号且不相等实根的充要条件是0<m <13㊂分析:先找出条件和结论,然后证明充分性和必要性都成立㊂证明:先证充分性(由条件推结论)㊂因为0<m <13,所以方程m x 2-2x +3=0的判别式Δ=4-12m >0,所以方程有两个不相等的实根㊂设方程的两根为x 1,x 2,当0<m <13时,x 1+x 2=2m >0且x 1x 2=3m>0,所以方程m x 2-2x +3=0有两个同号且不相等的实根,所以0<m <13⇒方程m x 2-2x +3=0有两个同号且不相等的实根㊂再证必要性(由结论推条件)㊂若方程m x 2-2x +3=0有两个同号且不相等的实根,则Δ=4-12m >0,x 1x 2=3m>0,所以0<m <13,所以方程m x 2-2x +3=0有两个同号且不相等的实根⇒0<m <13㊂综上可得,方程m x 2-2x +3=0有两个同号且不相等的实根的充要条件是0<m <13㊂ 证明p 是q 的充要条件,既要证明命题 p ⇒q为真,又要证明 q ⇒p 为真,前者证明的是充分性,后者证明的是必要性㊂证明充要条件,即证明原命题和逆命题都成立㊂要注意 p 是q 的充要条件 与 p 的充要条件是q 这两种说法的差异,要分清哪个是条件,哪个是结论㊂1.求证:关于x 的方程a x 2+b x +c =0有一个根是1的充要条件是a +b +c =0㊂提示:先证明p ⇒q ,即证明必要性,再证明q ⇒p ,即证明充分性㊂设命题p :方程a x 2+b x +c =0有一个根是1,命题q :a +b +c =0㊂先证明p ⇒q ,即证明必要性,由x =1是方程a x 2+b x +c =0的根,可得a ㊃12+b ㊃1+c =0,即a +b +c =0㊂再证明q ⇒p ,即证明充分性,由a +b +c =0,可得c =-a -b ,因为a x 2+b x +c =0,所以a x 2+b x -a -b =0,即a (x 2-1)+b (x -1)=0,也即(x -1)(a x +a +b )=0,所以x =1是方程的一个根㊂综上可知,方程a x 2+b x +c =0有一个根是1的充要条件是a +b +c =0㊂2.已知三个不等式:a b >0,b c -a d >0,c a -db>0(其中a ,b ,c ,d 均为实数)㊂用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,则可组成的正确命题的个数是( )㊂A.0 B .1 C .2 D .3提示:a b >0为①,b c -a d >0为②,ca-d b >0为③㊂若①②成立,则1a b (b c -a d )>,可得c a -d b >0,即③成立㊂若①③成立,则a bc a -d b>0,可得b c -a d >0,即②成立㊂若②③成立,则由③得b c -a da b>0,由②b c -a d >0得a b >0,即①成立㊂应选D ㊂作者单位:江苏省阜宁县东沟中学(责任编辑 郭正华)11知识结构与拓展高一数学 2023年9月Copyright ©博看网. All Rights Reserved.。
高中数学—命题和充要条件—学生版

命题和充要条件知识梳理 一、命题的概念1、一般地,我们把可以判断真假的语句叫做命题。
2、命题通常用陈述句表示,正确的命题叫做真命题,错误的命题叫做假命题。
3、一般地,如果命题α成立可以推出命题β也成立,那么就说由可以推出,记作βα⇒。
相反的,如果成立不能推出成立,那么就说由不可以推出,记作αβ。
4、如果,并且αβ⇒,那么就说与等价,记作βα⇔。
二、四种命题形式1、一个数学命题用条件,结论表示就是“如果α,那么”,把结论与条件交换,就得到一个新命题“如果 ,那么”,我们把这个命题叫做原命题的逆命题。
2、如果一个命题的条件与结论分别是另一个命题的条件与结论的否定,我们把这两个命题叫做互否命题。
如果其中一个叫做原命题,那么另外一个叫做原命题的否命题。
3、命题、的否定分别记作α、β。
4、如果把原命题“如果,那么”结论的否定作条件,把条件的否定作结论,那么就可以得到一个新命题,我们将它叫做原命题的逆否命题。
5、四种命题形式及其相互关系:6、常见结论的否定形式:(拓展内容)三、充要条件1、充分条件与必要条件:一般地,用α、β分别表示两个命题,如果成立,可以推出也成立,即,那么叫做的充分条件。
叫做的必要条件。
2、充要条件:如果既有,又有,即有βα⇔,那么既是的充分条件又是的必要条件,这时我们就说是的充要条件。
例题解析一、有关命题的概念【例1】判断下列语句是否是命题:⑴张三是四川人;⑵1010是个很大的数;⑶220x x +=;⑷260x +>;⑸112+>;【例2】判断下列语句是不是命题,若是,判断出其真假,若不是,说明理由. (1)矩形难道不是平行四边形吗?(2)垂直于同一条直线的两条直线必平行吗?(3)求证:R x ∈,方程012=++x x 无实根.(4)5>x(5)人类在2020年登上火星.【例3】下面有四个命题:①若a -不属于N ,则a 属于N ;②若a b ∈∈N N ,,则a b +的最小值为2;③212x x +=的解可表示为{}11,.其中真命题的个数为( )A .0个B .1个C .2个D .3个【例4】下列判断中正确的是 ( ).A. “12是偶数且是18的约数”是真命题B. “方程210x x ++=没有实数根”是假命题C. “存在实数x ,使得23x +≤且216x >”是真命题D. “三角形的三个内角的和大于或等于120︒”是假命题【例5】对于直角坐标平面内的任意两点11(),A x y 、22(),B x y ,定义它们之间的一种“距离”: 1212AB x x y y =-+-.给出下列三个命题:①若点C 在线段AB 上,则AC CB AB +=; ②在ABC ∆中,若90C ∠=︒,则222AC CB AB +=; ③在ABC ∆中,AC CB AB +>.其中真命题的个数为( )A .1个B .2个C .3个D .4个【巩固训练】1、判断命题真假:如果2a <,那么2a < ( )2、若[]2,5x ∈和{}|14x x x x ∈<>或都是假命题,则x 的范围是__________3、已知,A B 是两个集合,下列四个命题:①B ,A x A x B ⇔∈∉不包含于对任意有②B A A B ⇔⋂=∅不包含于③B A A ⇔不包含于不包含B ④B ,A x A x B ⇔∈∉不包含于存在,其中真命题的序号是4、下面有四个命题:①集合N 中最小的数是1;②若a -不属于N ,则a 属于N ;③若,,N b N a ∈∈则b a +的最小值为2;④x x 212=+的解可表示为{}1,1.其中真命题的个数为( )A .0个B .1个C .2个D .3个二、命题的四种形式及其关系【例6】命题“若x y =,则||||x y =”,写出它的逆命题、否命题、逆否命题,并判断它们的真假【例7】有4个命题:(1)没有男生爱踢足球;(2)所有男生都不爱踢足球;(3)至少有一个男生不爱踢足球;(4)所有女生都爱踢足球;其中是命题“所有男生都爱踢足球”的否定是_______【例8】写出命题“若b a ,都是偶数,则b a +是偶数”的逆命题,否命题,逆否命题,并判断它们的真假.【例9】写出下列命题的逆命题,否命题,逆否命题,并判断它们的真假. ⑴“负数的平方是正数”;⑵“若a 和b 都是偶数,则a b +是偶数”; ⑶“当0c >时,若a b >,则ac bc >”; ⑷“若5x y +=,则3x =且2y =”;【例10】已知命题p :方程210x mx ++=有两个不相等的实负根,命题q :方程24(2)10x m x +-+=无实根;若p 与q 中有且仅有一个为真命题,求实数m 的取值范围.【巩固训练】1、有下列四个命题:①“若0x y +=,则,x y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若1q ≤,则220x x q ++=有实根”的逆否命题; ④“等边三角形的三个内角相等”逆命题; 其中真命题的个数为( ) A .1 B .2 C .3 D .42、原命题:“设a b c ∈R ,,,若a b >,则22ac bc >”以及它的逆命题、否命题、逆否命题中,真命题共有( )个. A .0 B .1 C .2 D .43、命题:“若21x <,则11x -<<”的逆否命题是( )A .若21x ≥,则1x ≥或1x -≤B .若11x -<<,则21x <C .若1x >或1x <-,则21x >D .若1x ≥或1x -≤,则21x ≥4、有下列四个命题:①命题“若1xy =,则x ,y 互为倒数”的逆命题;②命题“面积相等的三角形全等”的否命题;③命题“若1≤m ,则220x x m -+=有实根”的逆否命题;④命题“若A B B =I ,则A B ⊆”的逆否命题. 其中是真命题的是 (填上你认为正确的命题的序号).5.原命题的否命题是“三条边相等的三角形是等边三角形”,原命题的逆命题是三、有关等价命题【例12】与命题“,,不全是负数”等价的命题是( ) A 、,,中至少有一个是正数 B 、,,全不是负数C 、,,中只有一个是负数D 、,,中至少有一个是非负数 【例13】与“一元二次方程有一正根、一负根”等价的命题是( D )A 、B 、C 、D 、【例14】命题:已知a ,b 为实数,若20x ax b ++≤有非空解集,则240a b -≥。
充分条件、必要条件与命题的四种形式

学案三 充分条件、必要条件与命题的四种形式一、目标要求理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系。
二、知识梳理1、充要条件(1)定义:(2)若p ⇒q ,但q ⇒/p,则p 是q 的若q ⇒p ,但p ⇒/q ,则p 是q 的2、四种命题(1)命题的四种形式:原命题: 逆命题:否命题: 逆否(2)四种命题的关系如下:三、基础训练1、a=3是直线ax+2y+3a=0和直线3x+(a-1)y=a-7平行且不重合的( ) A 充分非必要条件 B 必要非充分条件 C 充要条件 D 既非充分也非必要条件2、在ABC ∆中条件A 〉B 是B A 22cos cos <的 条件3、“ab<0”是方程a c by x =+22表示双曲线的 条件4、(2008山东文)给出命题:若函数y=f(x)是幂函数,则函数y=f(x)的图像不过第四象限。
在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是 ( )A 、 3B 、 2C 、 1D 、 0 四、典例精析例1(2007山东 理)下列各小题中,p 是q 的充要条件的是① p:62>-<m m 或; q:32+++=m mx x y 有两个不同的零点。
② p:1)()(=-x f x f ;q:)(x f y =是偶函数。
③ p:βαcos cos =;q:βαtan tan =。
④ p:A =B A ;q:AC B C U U ⊆。
A. ①② B.②③ C.③④ D.①④例2已知p:2311≤--x ;q:).0(01222>≤-+-m m x x 若p ⌝是q ⌝的必要不充分条件,求实数m 的取值范围。
例3已知数列{n a }的前n 项和)10(≠≠+=p p q p s n n 且,求数列{n a }成等比数列的充要条件。
五、综合训练一、选择题1、 条件p:∣x+1|>2;条件q:x>2,则p ⌝是q ⌝的( ) (A )充分不必要条件 (B ) 必要不充分条件︳(C)充要条件 (D )既不充分也不必要条件2、 是⎩⎨⎧>>3321x x ⎩⎨⎧>>+9x x 6x x 2121成立的 ( ) (A )充分不必要条件 (B ) 必要不充分条件︳(C)充要条件 ( D )既不充分也不必要条件3、四个条件b>0>a,0>a>b,a>0>b,a>b>0中,能使ba 11<成立的充分条件的个数是( ) (A )1 (B )2 (C)3 (D )44、已知真命题“a c b ⇒≥>d ”和“a<b f e ≤⇔”,那么“d c ≤”是“f e ≤”的( )(A )充分条件 (B ) 必要条件(C)充要条件 (D )既不充分也不必要条件5、下列四个命题:(1) “若xy=1,则x,y 互为倒数”的逆命题,(2) “相似三角形的周长相等”的否命题,(3) “若a 1≤,则方程0222=++-a a ax x 有实根”的逆命题,(4) “若,B B A =⋃则B A ⊇”的逆否命题其中真命题的是 ( )A (1)(2) B(2)(3) C (1)(3) D (3)(4)6、已知=a,=b,=c,则a+b+c=0是A,B,C 三点构成三角形的是( )(A )充分不必要条件 (B ) 必要不充分条件(C)充要条件 (D )既不充分也不必要条件7、 已知222111,,,,,c b a c b a 均为非零实数,不等式0022221121>++>++c x b x a c x b x a 和的解集分别为集合M 和N,那么“212121c c b b a a ==”是 “M=N ”的( )(A )充分不必要条件 (B ) 必要不充分条件(C)充要条件 (D )既不充分也不必要条件8、 设有如下三个命题:甲:相交的直线l,m 都在平面α内,并且都不在平面β内;乙:直线l,m 中至少有一条与平面β相交;丙:平面α与平面β相交。
第一章第三节充分条件、必要条件与命题的四种形式

5.(教材习题改编)设集合M={1,2},N={a2},则 “a=1”是“N⊆M”的________条件.
解析:若N⊆M,则需满足a2=1或a2=2,解得a=±1或 a=± 2.故“a=1”是“N⊆M”的充分不必要条件.
答案:充分不必要
返回
返回
1.充分条件与必要条件的两个特征. (1)对称性:若p是q的充分条件,则q是p的必要条件,即
D.既不充分又不必要条件
解析:|x|>1⇔x>1或x<-1,故x>1⇒|x|>1,但|x|>1x>1, ∴|x|>1是x>1的必要不充分条件.
答案:B
返回
2.(2019·福建高考)若向量a=(x,3)(x∈R),则“x=4”是
“|a|=5”的
()
A.充分而不必要条件 B.必要而不充分条件
C.充要条件
返回
怎么考 1. 本部分主要考查四种命题的概念及其相互关系,考查
充分条件、必要条件、充要条件的概念及应用. 2. 题型主要以选择题、填空题的形式出现,常与集合、
不等式、几何等知识相结合命题.
返回
返回
一、充分条件、必要条件与充要条件 1.“若p,则q”形式的命题为真时,记作p⇒q,称p是q
的充分条件,q是p的 必要 条件. 2.如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的 充
返回
返回
[精析考题]
[例1] (2019·山东高考)已知a,b,c∈R,命题“若a+b+c=
3,则a2+b2+c2≥3”的否命题是
()
A.若a+b+c≠3,则a2+b2+c2<3
B.若a+b+c=3,则a2+b2+c2<3
C.若a+b+c≠3,则a2+b2+c2≥3
第2讲 充分必要条件和命题教师

题型二 根据充要条件求解参数的取值范围
例 2 “关于 x 的不等式 x2 2ax a 0 的解集为 R”的一个必要不充分条件是 ( )
A. 0 a 1 C. 0 a 1
【答案】C
B. 0 a 1 3
D. a 0 或 a 1 3
【解析】因为关于 x 的不等式 x2 2ax a 0 的解集为 R ,
所以函数 f (x) x2 2ax a 的图象始终落在 x 轴的上方,即 4a2 4a 0 ,解得 0 a 1,
因为要找其必要不充分条件,从而得到 (0,1) 是对应集合的真子集,
对比可得 C 选项满足条件,故选 C. 【玩转跟踪】
1.已知
p
:
x
1
2
1
,
q
:|
x
a
|
2
,若
p
是
q
的充分不必要条件,则实数
玩转数学
高一同步系列
安老师培优课堂
第 2 讲 充分必要条件和命题
[玩前必备]
1.充分条件、必要条件与充要条件的概念
若 p⇒q,则 p 是 q 的充分条件,q 是 p 的必要条件
p 是 q 的充分不必要条件 p 是 q 的必要不充分条件
p⇒q 且 q⇏p p⇏q 且 q⇒p
p 是 q 的充要条件
p⇔q
3.若集合 A x | x 0 ,下列各式是“ a A ”的充分不必要条件的是( )
A. a 1
【答案】B
B. a 1
C. a 0
D. a 0
更多资料下载请加 QQ 群安老师高一玩转数学研讨群,群号 1036995874,
玩转数学
高一同步系列
安老师培优课堂
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学练习200106
班级________姓名__________座号___________
一、选择题
1.若p 、q 是两个简单命题,且“p 或q ”的否定是真命题,则必有( )
A p 真q 真
B p 假q 假
C p 真q 假
D p 假q 真
2.命题“若a>b ,则a -5>b -5”的逆否命题是( )
A 若a<b ,则a -5<b -5
B 若a -5>b -5,则a>b
C 若a b ≤则a -5≤b -5
D 若a -5≤b -5,则a b ≤
3.设p:0<x<5,q:|x -2|<5,那么p 是q 的( )
A 充分不必要条件
B 必要不充分条件
C 充要条件
D 既不充分也不必要条件
4.已知命题p :若a ∈A ,则b ∈B ,那么命题p 是( )
A 若a A ∈则b
B ∉ B 若a A ∉则b B ∉
C 若A a ∈则b B ∈
D 若a B ∉则a A ∈
二、填空题
1. 已知A 和B 是两个命题,如果A 是B 的充分条件,那么B 是A 的______________________A 是B 的_______________
2. 命题“圆的两条平行弦所夹的弧相等”的否命题是____________________________________________________________________
3. “若x ∈{x|62<<x },则x -21<0”的逆否命题是____________________________________________________它为_____命题(填真或假)
4. 已知p,q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,则s 是q 的____________条件,r 是q 的___________条件,p 是q 的_______________条件
三、解答题
1. 写出命题“x,y Z ∈,若x,y 是奇数,则x+y 是偶数”的逆命题、否命题、逆否命题,并判定它们的真假
∈,如果a+b>0,那么a和b中至少有一个大于0
2.用反证法证明:a,b R
≠)的一个根”的充要条件
3.求证:“a+b+c=0”是“x=1为方程ax2+bx+c=0(a0
4.已知命题p:-2<b<0,0<c<1;q:关于x的方程x2+bx+c=0有两个小于1的正根,则p是q 的什么条件?并说明理由。