水域纳污能力计算规程
重庆市水域纳污能力计算和提出限制排污总量意见-有用的

附件:重庆市水域纳污能力计算和提出限制排污总量意见技术细则重庆市水利局重庆市水文水资源勘测局二○○八年五月一、基本要求1.本次工作的重点是进行水功能区纳污能力计算和提出限制排污总量意见。
水功能区纳污能力计算应严格按照《水域纳污能力计算规程》(SL348-2006)的要求进行计算;限制排污总量意见的提出应充分结合区(县)经济社会发展和水资源保护的需要,提出合理的水功能区限制排污总量意见。
2.本次工作范围应为各区县水功能区划成果和区县重要河流和湖(库)。
3.水功能区水质标准采用《地表水环境质量标准》(GB3838-2002),并参照《渔业水质标准》(GB 11607-89),《景观娱乐用水水质标准》(GB 12941-91)等。
4.江河、湖库的污染物控制指标,全国统一采用化学需氧量(COD)和氨氮;湖库增加总磷和总氮指标,以分析其富营养化情况。
5.市级水功能区纳污能力计算成果应与重庆市水功能区纳污能力计算成果相协调。
6.各区(县)需完成的成果如下:(1)《区(县)水域纳污能力及限制排污总量报告》(2)区(县)水功能区纳污能力计算成果表(3)区(县)水功能区限制排污总量成果表二、水功能区划各区县先后开展了水功能区划,并报区县政府审批。
根据水功能区划要求,水功能区划分为两级区划,一级区分为保护区、缓冲区、开发利用区和保留区。
二级区分为饮用水源区、工业用水区、农业用水区、渔业用水区、景观娱乐用水区、过渡区和排污控制区。
水功能区水质标准采用《地表水环境质量标准》(GB 3838—2002)。
水功能区的复核、补充与调整应以重庆市人民政府批准的水功能区划和区县划定的水功能区为基础进行,根据规划确定需要复核或补充水功能区划工作的水域,补充水功能区划成果,对区划成果的合理性进行检验,必要时可对水功能区类型、长度等进行局部调整。
(一)水功能区复核1.水功能一级区复核首先复核保护区,然后缓冲区和开发利用区,最后复核保留区。
河流纳污能力计算

节点指河流上排污口、取水口、干支流汇合口等造成河道流量、水质发生突变的点,水量与污染物在节点前后满足物质平衡规律。 河段指河流被节点分成的若干段,每个河段内污染物的自净规律符合一阶反应定律。
一维水质模型由河段和节点两部分组成:
河流一维水质模型
图 河流一维模型概化示意图
概化后的排污口位置为: x=(Q1C1x1+Q2C2x2+····+QnCnxn)/(Q1C1+Q2C2+····+QnCn)
(2)距离较远并且排污量比较小的分散排污口,可概化为非点源入河,仅影响水域水质本底值,不参与容量优化分配计算。
上界
下界
上界
下界
1 2 3
x
3、混合区的确定
1、河流简化与模型选取
水质数学模型有零维模型、一维模型、二维模型等。 对每个水功能区,应根据其空间形态、水文、水质特征选择合适的水环境容量计算模型。
二、主要技术问题
1、河流简化与模型选取
二、主要技术问题
断面宽深比大于等于20时,简化为矩形河段; 小河可以简化为矩形平直河流; 大中河流中,当河段弯曲系数小于等于1.3时,可简化为顺直河段,否则视为弯曲河流; 河道特征和水力条件有显著变化的河段,应在显著变化处分段。
图 污水与河流的混合过程:(a)河中排放;(b)岸边排放
(a)
混合区定义
在排污口下游自排污口至功能区控制点或控制断面之间的,使污染物得以进行初始混合与稀释后达到水域功能区水质标准的区域称为混合区。 混合区是污染物自排放口至功能区控制断面达标的过渡区,是允许超标的区域。 混合区越小,意味着控制越严格,混合区消失,意味着不许排放或意味着排放口排出的水质与功能区的水质相等。
水环境容量

水域纳污能力计算:1、河流纳污能力计算1.1、河道类型划分:Q ≥150m 3/s 为大型河段、15—150m 3/s 为中型河段、Q ≤15m 3/s 为小型河段。
1.2、河道特征和水文过程简化:(1)宽/深≥20时简化为矩形河段,(2)弯曲系数≤1.3时简化为顺直河道,(3)河道特征和水力条件有显著变化的河段在显著变化处分段。
1.3、设计水文条件:常年河流采用90%保证率最枯月平均流量或近10年最枯月平均流量作为设计流量、季节性/冰封河流采用不为0的最小月平均流量为样本参照常年河流计算设计流量、流向不定的水网地区/潮汐河流采用90%保证率流速为0时的低水位水量为设计流量、有水利工程的河段采用最小下泄流量或生态基流为设计流量。
1.4 河流模型(1)零维模型:污染物在河段内均匀混合,适用于水网地区的河段或小型河段。
根据入河污染物的分布情况划分不同浓度的均匀混合段,分段计算水域纳污能力。
)/()(0Q Q Q C Q C C p p p +⋅+⋅=C —污染物浓度(mg/L )C p —排放的废污水污染物浓度(mg/L )Q p —废污水排放流量(m 3/s )C 0—初始断面污染物浓度(mg/L )Q —初始断面入流流量(m 3/s )。
)()(0p s Q Q C C M +⋅-=M —水域纳污能力(g/s )C s —水质目标浓度值(mg/L )。
(2)一维模型污染物在河流横断面上均匀混合,适用于Q<150m 3/s 的中小型河段。
u xK x e C C -⋅=0x —沿河段的纵向距离(m )Cx —流经x 距离后的污染物浓度(mg/L )u —设计流量下河道断面的平均流速(m/s )K —污染物综合衰减系数(1/s ))()(p x s Q Q C C M +⋅-=排污口位于河段中部(x=L/2)时,u LK u LK L x e Q m e C C --=⋅+⋅=0 m —污染物入河速率(g/s )C x=L —水功能区下段面污染物浓度(mg/L )(3)二维模型污染物在河段横断面上非均匀混合,适用于Q ≥150m 3/s 的大型河段。
宽浅型河道纳污能力计算方法

收稿日期:2001Ο03Ο20作者简介:韩龙喜(1964—),男,江苏扬州人,副教授,博士,主要从事水力学及水环境科学研究.宽浅型河道纳污能力计算方法韩龙喜1,朱党生2,姚 琪1(1.河海大学水文水资源及环境学院,江苏南京 210098;2.水利部水利水电规划设计总院,北京 100001)摘要:对于宽浅型河道,排放到水体中的污染物质在功能区相应的距离内不能达到横向均匀混合,常用的环境容量计算方法不再适用.针对这一情况,从水资源保护规划出发,对进入河段的污染源沿河长进行了概化.在此基础上,提出了纳污能力的计算方法及公式,并给出宽浅河道不同功能区组合情况下纳污能力的计算方法,为大范围水资源保护规划提供了一种简单、实用的工具.关键词:功能区划;宽浅型河道;污染源概化;纳污能力中图分类号:X522 文献标识码:A 文章编号:1000Ο1980(2001)04Ο0072Ο04对于宽浅型河道,污染物质在排放到水体中后,因宽深比较大,污染物沿流程在很长距离的河段内不能达到断面内均匀混合,污染物浓度在断面上沿横向变化较大,常用的环境容量计算公式不再适用.为考虑浓度在平面上的变化情况,可用二维水质数学模型模拟污染物沿河流纵向、横向的迁移转化规律.因此,不同功能区的纳污能力应以功能区相应的水质目标为依据,以二维水质数学模型数值解或解析解为工具,考虑功能区间的相互衔接关系进行计算.本文采用水质平面二维解析解,导得纳污能力的计算公式.1 宽浅河道二维水质解析解对宽浅型河道,若水深沿纵向、横向变化较小,在水流恒定的情况下,河道内水流可近似地看成均匀流,若排入河道的污染源源强为恒定,则在下游形成恒定的浓度场.设某宽浅河道污染源岸边排放,强度为S ,因河道较宽,可不考虑对岸反射的影响,在下游位置(x ,z )处产生的浓度为[1]C (x ,z )=S/H 4πE z ux exp -uz 24E z x -K x u (1)式中:x ———纵向坐标,代表计算点至排放口的纵向距离;z ———横向坐标,代表计算点至排放口的横向距离;H ———断面平均水深;u ———断面平均流速;K ———污染物的自净系数;E z ———横向紊动扩散系数,可用下式求解:E z =αz HU 3(2)式中:αz ———经验系数;U 3———摩阻流速.2 宽浅河道纳污能力计算方法211 宽浅河道纳污能力定义对宽浅河道,在一定的水量条件下,在保障河道水质满足功能区要求的水质标准情况下,排污口所能容纳的污染物的最大数量称为纳污能力.据此定义可知,在水流条件及水域环境功能确定的情况下,纳污能力与排污口位置有关.由于假定污染物从某一空间点排入水体,即使排污量很小,在排污口的下游水域也存在着一定范围的污染带.因此,与排污口相应的纳污能力允许存在污染带.但污染带范围大小与排污源强有关.因此,要确定纳污能力,必须首先确定允许的污染带的范围.排污口位置、污染带范围一旦给定,纳污能力也就唯一确定.设宽阔水域纳污能力为W ,从理论上讲水域中任一点的水质浓度应为两岸排污的叠加.对宽深比足够第29卷第4期2001年7月河海大学学报JOURNA L OF H OH AI UNI VERSITY V ol.29N o.4Jul.2001大的河道,因B/H 很大,一侧岸边的排污对对岸水质影响很小,功能分区及纳污能力计算可分两岸分别独立进行.212 污染源概化通常情况下,对同一个水功能区划相应的河段而言,污染物排放口不规则地分布于河流的不同断面.功能区控制断面的断面平均浓度将由所有排污口污染源在控制断面产生的浓度叠加得到.而纳污能力应是控制断面在满足水质目标的条件下,在规划准则的引导下,各排污口所能排放的污染物的最大数量.但考虑到此项工作的复杂性及水环境规划本身的要求,可将排污口在功能区内的分布加以概化,即认为污染源源强在同一功能区内沿河长均匀分布.此概化实际上体现了污染物分布的一种平均状况,对某一河段也许存在一定偏差,但从统计、规划的特点来看,却综合反映了若干河段污染物排放的一种平均状态.图1 宽浅河道污染源概化示意图Fig.1 G eneralization of Pollutant sources213 纳污能力计算如图1所示,某功能区宽浅河道长度为L ,断面平均流速为u ,其纳污能力用W 表示.假定污染物沿河岸均匀分布,此功能区的水质标准为C S ,可近似地用出口断面浓度来控制功能区水质.由二维解析解知,连续源d m 在出口断面产生的浓度:d C =2d m 4πE z u (L -x )exp -uz 24E z (L -x )-K L -x u(3)由假设得:d m =W LHd x ,令z =0,可得岸边浓度在纵向的变化d C =W H L πE z u (L -x )exp (-K L -x u )・d x (4)沿岸均匀排放的所有污染物在出口断面产生的浓度应为各微元产生的浓度的累加,数学表示为C =WH L ∫L 0exp (-K L -x u )πE z u (L -x )d x (5)该式难以求解积分,有两种处理方法:第一种方法为用有限求和代替积分.将河长L 分为N 等份,计算任一子河段排放污染源在出口产生的浓度,再进行叠加,计算公式为Δx =L N C =W H L 6N i =1exp [-K L -i Δx u ]πE z u (L -i Δx )Δx (6)令C +C 0exp (-K L u)=C S ,有W =[C S -C 0exp (-K L u )]H L 6Ni =1exp [-K L -i Δx u ]πE z u (L -i Δx )Δx ×86.4×0.365 (t/a )(7)式中C 0为入口断面浓度,取值根据上游功能区划确定.第二种方法是将污染源简化处理,为此近似地认为均匀排放的污染物在出流断面产生的浓度效应与同样的排污量在河段中部岸边排放产生的效应相当,即将区划内各排污口产生的浓度用河段中部集中排放产生的浓度代替,以此计算纳污能力:C 0・exp (-K L u )+W H πE z uL/2exp [-K L/2u ]=C S (8)37第29卷第4期韩龙喜,等 宽浅型河道纳污能力计算方法W =C S -C 0・exp (-KL u )exp [-K L/2u ]H πE z uL/2×86.4×0.365 (t/a )(9)图2 某宽浅河道功能区分布示意图Fig.2 Distribution of functional regions 214 计算方法及步骤图2所示为某宽浅型微弯天然河道功能区分布情况,该河道设计流量为Q ,设计水位为Z.下面给出纳污能力的计算流程及计算方法.各功能区中,饮用水源区、景观区有明确的定义.排污控制区指没有明确水环境功能、水质目标的水域,而过渡区通常设立在低功能区向高功能区过渡段之间,在过渡区内,上游的低功能水体完成向下游高功能水体的过渡,在过渡区的出口断面,水质达到下游高功能区的水质目标.纳污能力的计算流程如图3.图3 纳污能力的计算流程Fig.3 F low ch art of calculation of w ater environment cap acity以第二种算法为例,计算步骤如下:a.确定水力参数Q 和Z ,推求断面面积A ,u ,E z ;b.由C S 景、过渡区实际排污S 过推求排污控制区允许最大出流浓度C 排max .因C 排max exp (-K L 过u )+S 过H πE z u L 过/2exp (-K L 过2u )=C S 景,故C 排max =C S 景-S 过H πE z uL 过/2exp (-K L 过2u )exp (-K L 过u )(10) 特别地,若过渡区无排污,则令S 过=0.c.由C S 饮和C 排max 推求排污控制区纳污能力W 排.排污控制区入流浓度即饮用水源区的水质标准,因C S 饮exp (-K L 排u )+W 排H πE z uL 排/2exp (-K L 排2u )=C 排max 有W 排=C 排max -C S 饮exp (-KL 排u )exp (-K L 排2u )H πE z uL 排/2×86.4×0.365 (t/a )(11) d.由饮用水源区入流浓度C 饮入和C S 饮推求饮用水源区纳污能力W 饮.C 饮入取值由上游功能区、饮用水源区水质目标的相互关系确定,对C OD 类的污染因子,有C 饮入=47河 海 大 学 学 报2001年7月min (C SX ,C S 饮),则W 饮=C S 饮-C 饮入exp (-KL 饮u )exp (-K L 饮2u )H πE z uL 饮/2×86.4×0.365 (t/a )(12)若采用第一种方法计算纳污能力,可利用公式(7),采用相同的思路进行求解.2 算 例表1 纳污能力计算值T able 1 C alculated w ater environment cap acity污染源分布纳污能力/(t ・a -1)均匀分布32.3集中分布35.3 某宽浅型河段长2000m ,水面宽400m ,水深1m ,流量为20m 3/s ,功能区划为Ⅲ类水,相应的C OD 水质标准为8mg/L ,上游为饮用水功能区,相应的C OD 水质标准为6mg/L ,下游为农业用水区,C OD 的自净系数为0.1d -1,分别用污染源均匀分布、集中分布两种方法计算纳污能力.污染源概化为均匀分布计算时,河段分为10个子河段.横向分散系数由谢才公式求得水力坡度,再求得摩阻流速,最后由经验公式得到.两种方法所得纳污能力见表1.由表可知,两者结果相当.由此可知,污染源集中分布虽对污染源分布进行了简化处理,但却基本反映了原分布对环境水体的影响.3 结 论a.对宽浅型河流,本文提出了纳污能力的两种计算方法及计算公式,并给出不同功能区组合情况下的纳污能力计算方法,可用于水资源保护规划、水环境管理.b.对不同功能区相互衔接的情况,计算纳污能力时关键在于入、出流断面浓度的取值.对一般功能区,出流断面浓度即本功能区水质标准;对过渡区,出流断面浓度应满足下游功能区水质标准;对排污控制区,无出水水质标准,但其纳污能力通过其下游的过渡区而间接受到过渡区下游功能区的制约.入流断面浓度,受制于本功能区与上游功能区的相互关系,取上游功能区出水水质浓度.参考文献:[1]张书农.环境水力学[M].南京:河海大学出版社,1998.86~87.W ater E nvironment C apacity C alculating Methodfor Shallow 2Broad RiversHAN Long 2xi 1,ZHU Dang 2shen 2,YAO Q i 1(1.College o f Water Resources and Environment ,Hohai Univ.,Nanjing 210098,China ;2.Water Power Planning and Design Institute o f the Ministry o f Water Resources ,Beijing 100011,China )Abstract :When waste water is discharged into a shallow 2broad river ,pollutants cannot be mixed uniformly in the lateral direction ,and only the 2D water quality m odel can be used to calculate pollutant concentration.In this paper ,based on the 2D theoretical s olution ,a formula for the calculation of water environment capacity of shallow 2broad rivers is proposed.K ey w ords :functional regionalization ;shallow 2broad river ;generalization of pollution s ources ;water environment capacity57第29卷第4期韩龙喜,等 宽浅型河道纳污能力计算方法。
新兴江水域河流水功能区纳污能力分析计算

第54卷第4期 2018年4月甘肃水利水电技术GANSU WATER RESOURCES AND HYDROPOWER TECHNOLOGYVol .54,No .4 Apr . ,2018DOI : 10.19645/j .issn 2095-0144.2018.04.003.新兴江水域河流水功能区纳污能力分析计算林鸿敏(广东省水文局肇庆水文分局,广东肇庆526060)摘要:新兴江属珠江水系西江干流的支流,是重要的水上交通要道和农业灌就主渠道,也是沿岸城市的靓丽凤景线。
通 过对新兴江主干流和重要支流已经区划的河流水功能区进行分析,选用合理的纳污能力计算模型,计算新兴江水域各 河流水功能区的纳污能力,为各河流制定排污总量提供基础保障。
关键词:水功能区;纳污能力计算;分析;计算中图分类号:X 522文献标志码:B文章编号:2095-0144(2018)04-0010-03纳污能力是指在设计水文条件下,满足计算水 域的水质目标要求时,所能容纳的某种污染物的量 最大数量!1]。
水功能区是指为满足水资源合理开发 利用和保护的需求,根据水资源的自然条件和开发 利用现状,按照流域综合规划、水资源保护规划和 社会发展要求,依其主导功能划定并执行相应水环 境质量的水域!2]。
影响水体自净过程的因素很多,其 中主要因素包括:水体的水文条件、复氧能力、水 温、微生物数量和种类以及水体中污染物的组成与 浓度等。
河流纳污能力的计算必须综合考虑河流水 量、水质目标以及污染物降解能力等方面的影响, 在此基础上建立河流纳污能力的计算模型。
通过分 析计算得出河流的纳污容量,为水环境保护提供技 术支撑。
1计算范围与内容1.1计算范围新兴江水域目前共区划河流一级水功能区5 个,其中源头保护区1个,开发利用区4个。
二级区 划仅在开发利用区中进行,目前已经区划的河流二 级区共8个。
源头保护区水域需禁止排放污染物, 所以本次纳污能力计算范围为8个河流二级水功 能区[3]。
水功能区水域纳污能力及分阶段限制排污总量控制

第 4期
河北 联合 大 学学 报 ( 自然科 学 版 )
J o u r n a l o f He b e i U n i t e d U n i v e r s i t y( Na t u r a l S c i e n c e E d i t i o n )
业、 工 业 用水 区 3个 , 饮用 、 农业 、 工业 用 水 区 1 个L 2 ] 。
2 水 质达 标 分 析
以2 0 1 0年为 基准 年做 全指 标 ( 地表 水 环 境质 量 标 准 中 的常 规 检 测项 目) 和 双 指标 ( C OD、 NH。 一H) 评 价, 基准 年奉 节县 各 流域水 质较 好 , 水质 评价 为 Ⅱ一 Ⅲ类 , 由达 标分 析结 果可 以看 出 , 基 准 年水 功能 区总 的达 标 率为 8 8 . 8 9 。结 合奉 节县 的实际情 况 , 确定 奉节 县工 作 范 围内的 2 0 1 5 年 水 功能 区总达 标率 不变 , 与 基准 年 相 同仍 为 8 8 . 8 9 , 但 会通 过 控制水 功 能 区污 染 物 减量 使 水 质 有所 改 善 。2 0 2 0年 的水 功 能 区水 质 总 达标 率 提高 到 9 2 . 5 9 。奉 节县 水功 能 区达标 情况 见 表 1 。
3 污 染 源 调 查
据 调查 , 奉节 县 点污 染物 C OD入 河 排 放 总量5 . 6 1吨/ 年; 流域 面积
收 稿 日期 : 2 0 1 4 — 0 5 — 2 6
1 1 6
河 北联 合大 学学 报 ( 自然科 学版 )
河 和新 民河 等河 流上 。奉节 县面 污染 源范 围主要包 括奉 节 县农 业使 用 的 化肥 农 药 、 农村 的生 活 污水 及 生 活
我国现行水域纳污能力计算方法的思考

同期水质状况却未必都是超标 的 . 这种 控制 量对 于管 理工作 也就 失去 了实际
意义 . 因此很有必要 开展不同来水条件
总负荷 的 8 %左 右 。 0
非 点源 污 染 主要 有 以 下特 点 : 发 生具 有 随机 性 : 染物 的 来源 和 排放 污 点不 固定 . 放具 有 间歇 性 : 染 负 排 污
面源 产 生 的 污 染 负 荷 总氮 为 1. 22万
拟 .采 用 的模 拟 工 具 主 要 有 H P S F、
S T、W MM 等 WA S
显 现 出动态 变 化特 征 . 决定 了水体 的
纳 污能 力必 然是 一个 变数 如果仅按 照一个确定 的纳污能力作为控制 标准 . 而且这个量值偏于安全 . 么大多数时 那 段的污染负荷都会超过这个量值 但是
3排污口概化 .
《 算 规 程》 中对 排 污 口概 化 的 计 规定 为“ 多个 人河排 污 口的水 域 . 有 可
以 根 据 排 污 口 的 分 布 、排 放 量 和 对 水
如 . 磷 为 06 t . 源 污 染 负 荷 占 总 . / 面 6a
域水质 影响进行 简化 ” 对 于如何 简化 并无具 体规定 . 可操 作性 比较差 。 而且
收 稿 日期 : 0 1 1 — 2 2 1- 1 0
作 者 简 介 : 鑫 . 士 , 要从 事流 域 水 环 境 数 值 模 拟 研 究 。 赵 博 主
基 金 项 目 : 利 部 公 益 性 行 业 专 项 经 费 项 目“ 江 中下 游 干 流 纳污 总 量 控 制 研 究 ” 2 1 0 0 6 ; 江 水 利 委 员 会 长 江 科 学 院 中央 级 公 益 性 科 研 水 长 (0 0 1 0 )长 院 所 基 本 科 研 业 务 费 项 目 “ 域 纳污 能 力计 算 关 键 技 术 研 究 ” CK F 0 1 1 / + ) 助 。 水 ( S 2 1 0 0SH HL 资
河流纳污能力计算

QE,CE QR,CR
点细分为n个河段,由公式计算
出第i 河段的水环境容量为:
C0
x,k
CS
图 河段一维问题示意图
QEi CEi … i-1 QRi CRi C0i
QEi+
1
QEi+
2
CEi+1
CEi+2 Ci+2 i+1 … Cs
一、计算步骤
5
计算分析:以控制节点的水质目标为约束条件,(采用试算法) 对选定的水质模型进行反解(即逐步调整功能区内各入河排污口 的入河通量,直到控制节点的水质预测浓度达标为止),即可计 算出该水域的水环境容量。当计算水域内有多个入河排污口时, 试算过程应从现状入河量开始,原则上各入河口按同样的缩放系 数逐步调整其入河排污量。
在同一连续区段中,所有混合区长度总和小于对应大江大
河岸线总长的8%。
混合区浓度计算
(a) 岸边排放混合区示意图 图
图 河流污染带计算坐标示意图
采用二维混合模式:
(b)
污染带的等浓度线结构及功能分区方法
图 某排污口COD浓度场分布示意图
岸边排放,其浓度场的等浓度线沿水流方向成细长半椭圆状
狭长河道:当河流宽度小于200m时,单向河流使用一维断
面平均衰减模型,感潮河段使用潮平均一维衰减模型,感 潮河网采用一维潮平均有限分段水质模型。
大江大河:当河流宽度大于200m时,单向河流选用二维垂
向平均衰减模型,感潮河段使用潮平均二维衰减模型。
西江、东江、北江等河流的流量较大,稀释扩散能力强,
结构。 横断面分区及控制方法:即以任何一个断面(x,0)点为控 制点时,其上游为相应水质标准的污染带混合区,下游为功 能区。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水域纳污能力计算规程
一、总前提
1、由于水体自身水质无法承受再添加因子限值(见表1),必须根据本污染源给水体带来的污染物质量,进行水体纳污能力的核算;
2、依据《中华人民共和国水污染防治法》精神,以污染物质量折算污染程度进行水体纳污能力核算,可利用以往(实验)数据改进计算;
3、本规程所示计算方法,仅适用于单一污染物的纳污能力计算。
二、评价原理
(1)污染物与水体自身水质要求对比。
根据《国家质量标准:淡水水体自身水质要求》表1中给出的污染物最大允许浓度值与本污染源排放的污染物浓度差值计算,如下式:
A1=∑Cb-C’b
其中:
A1 表示给水体带来的污染程度;
Cb 为表1中给出的污染物最大允许浓度值;
C’b 为本污染源排放的污染物浓度;
(2)A1折算水体纳污能力。
根据水体吸纳污染物容忍能力特征,以SD折算污染程度,如下式:SD=A1/Cb
其中:
SD 表示水体纳污能力;
Cb 为表1中给出的污染物最大允许浓度值。
三、SD计算规程
1、计算方法
以A1折算水体纳污能力的方法即:
SD=A1/Cb
由于SD也代表污染浓度的增加百分比,可根据A1的数值确定污染浓度的增加比例。
2、SD划分
SD值数小于或等于1时,表明水体纳污能力足够,可接受本污染源额定排放;
(1)SD值大于1小于1.25时,表明水体纳污能力较足够,可接受本污染源有一定调整的排放;
(2)SD值大于1.25小于1.5时,表明水体纳污能力有限,只能接受本污染源有较大调整的排放;
(3)SD值大于1.5时,表明水体纳污能力较差,本污染源不能排放,必须停止排放;
(4)SD值大于1.75时,表明水体纳污能力极差,需将排放量减少到
极低,乃至停止排放;
四、核算示例
以XX污染源某月排放水量为200m3/d,污染物浓度分别如表2所示,
按照SD计算规程,求出水体纳污能力。
结果:SD =0.935,∴水体纳污能力足够,可以接受本污染源额定排放。