电源平均效率
电源效率及牛顿计算公式双电源计算公式

1-51W Vout=6V 以下,Iout 大于等于550mA 能效标准额定输出功率(W )76.41%151-51W Vout=6V 以下能效550mA 以下与6V 以上能效标准79.15%P O ≤ 1,0 WVout=6V以下能效550mA以下与6V以上能效标准P O ≤ 1,0 WVout=6V以下,Iout大于等于550mA能734.00%752.20%P O > 51,0 W 0,8700,8601-51W 5级能效0-1W51W-250W 74.37%750.00%85.00%1-51W 3级能效0-1W51W-250W 73.37%735.00%84.00%AC-DC, Basic-Voltage External Power Supply 0 to ≤ 1 watt ≥ 0.5 * Pout + 0.16> 1 to ≤ 49 watts ≥ 0.071 * ln(Pout) - 0.0014 * Pout +0.67 > 49 watts to ≤ 250 ≥ 0.880 > 250 watts 0.8751-49W 0.841AC-DC, Low-Voltage (<6V) External Power Supply0 to ≤ 1 watt ≥ 0.517 * Pout + 0.087 > 1 to ≤ 49 watts ≥ 0.0834 * ln(Pout) - 0.0014 * Pout + 0.609> 49 watts to ≤ 250 ≥ 0.870> 250 watts 0.8751-49W 0.814泰尔认证要求欧洲能效要求新要求为要达到5V以上效率要求平均效率銘牌額定電壓低220Vac於6 伏特,輸出電流大於或等於550 毫安培之外部電源供應器t=6V以下,Iout大于等于550mA能效标准≤ 0.100≤ 0.100 ≤ 0.210≤ 0.500 ≤ 0.100≤ 0.100 ≤ 0.210≤ 0.500 美国6级能效要求部電源供應器。
gjb电源标准

GJB电源标准是一种关于电源的标准,全称为GJB181,是由中国国家军用标准(GJB)制定的一种标准。
它规定了军用设备的电源要求,包括输入电压范围、输出电压稳定度、功率因数、效率、过载能力、温升等性能指标,以及可靠性要求,如平均无故障时间、失效率、长寿命设计等。
GJB电源标准适用于各种军用设备,如雷达、通信设备、电子对抗设备、导弹控制设备等。
它旨在确保这些设备在恶劣的环境条件下能够稳定可靠地工作,并满足各种任务需求。
GJB电源标准还规定了电子设备兼容性测试方法,以确保设备在不同供电工作状态下的兼容性和稳定性。
这些测试方法包括单相400Hz交流和28V直流供电方式下的测试项,以及其他飞机供电工作状态下的测试项。
总之,GJB电源标准是一种重要的军用电源标准,它为军用设备的电源设计和生产提供了明确的技术要求和指导。
开关电源6级能效标准与计算

输入电压
输入功率
输出电压
输出电流 0.25 A 0.50 A
输出功率 0.00 W 0.00 W 0.00 W 0.00 W 0.00 W
转换效率 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
平均效率
130.00%
115Vac 60Hz
0.75 A 1.00 A 0.10 A
AC-DC低电压(<6V)外部电源
最低平均效率 ≥ 0.517 * Pout + 0.091
≥0.0834*ln(Pout)-0.0011*Pout+0.60 ≥ 0.870
Level V 能效标准 AC-DC基本电压外部电源
额定输出功率 0 to≤1watt >1 to≤49watts >49watts 最低平均效率 ≥ 0.480 × Pno +0.140 ≥ 0.0626 x Ln(Pno) + 0.622 ≥ 0.87 最大待机功耗 ≤ 0.30 ≤ 0.30 ≤ 0.50
开关电源6级能效测试标准
额定输出电压 额定输出电流 额定输出功率 5.0 V 1.00 A 5W DoE Level VI (美国-VI级) 平均效率 ≥ 73.62% 待机功耗 < 100 mW 平均效率 ≥ 73.77% CoC Tier2 (欧盟-VI级) 待机功耗 < 75 mW 10%负载平均效率 63.62% Energy 2.0 (美国-V级) 平均效率 ≥ 255.20% 待机功耗 < 300 mW Erp (欧盟-V级) 平均效率 ≥ 68.17% 待机功耗 < 300 mW
100.00%
90.00% 80.00% 70.00%
电源使用效率

但是,我们也可以通过新的空调技术实现比水冷空调再节能30%以上的空调系统(非电空调)。
非电空调俗称溴化锂空调、吸收式制冷机、燃气空调等,其工作原理是通过采用天然气、城市煤气、发电废热、工业废热、工业废水、太阳能、沼气等任何能产生80℃以上的热能为动力、以溴化锂为冷媒进行热交换,从而降低空调循环水温度,达到制冷目的;但“非电”只是空调本身的制冷不直接用电来运作,而支持空调运作的后方机组,比如风机、水泵、冷却塔都是需要耗电的。
那么是什么使PUE的数值变得如此低呢?很简单,减少分子或增加分母可以使PUE变得更小,PUE的值越小越好,因此近来出现了人为操纵的迹象,例如,有人选择了最佳的测量时机,选择户外很冷,照明系统全部关闭,用户几乎不在线时测量,甚至关闭冗余制冷系统才进行测量,这种时候测得的PUE值当然会很低,但它的确已经远远偏离了事实。
数据中心的UPS电源占机房总功耗的5%左右。而UPS自身的功率占UPS的7%左右。而且机房建设的等级越高需要UPS的数量就越多。比如:一个国标C级的机房配置一台400KVAUPS就可以满足要求,若这个机房中的负载没有变化,只是等级从C级变成A级,则UPS就会从一台400KVA变成四台400KVA的UPS。所以解决UPS的自身功耗也是非常重要的。如果机房供电的电源质量非常好,UPS的工作方式就可以采用后备式的方式。正常工作市电通过UPS的旁路直接给负载进行供电,UPS处于备份状态。市电停电以后,直接转换成UPS电池供电模式。通过这样的方式可以节约所有UPS的自身功耗的电量。
从前面给出的等式可以得知,数据中心输入总功率越小,PUE可能越好,不知道是怎么测量IT负载功率的,如果是读取的UPS输出功率,那么还得加上PDU(配电装置)的传输损耗,布线损耗,机柜风扇用电等,这样才能让等式中的分母变大,使PUE变得更小,如果数据中心的供电是建筑物内其它功能设施共享,如办公室,会议室,餐厅和大堂,或共享空调系统制冷机房或冷却塔,如果不能独立测量,那需要精确估算数据中心输入功率,这对计算PUE是至关重要的。
二、电源的功率、效率及三类曲线

二、电源的功率、效率及三类曲线【知识要点】一、导体的伏安特性曲线导体中的电流跟电压的关系用图线表示出来,就称为导体的伏安特性曲线。
分析时要注意以下两点:(如图1)1、注意I-U 曲线和U-I 曲线的区别。
(斜率的含义不同)2、对于线性元件伏安特性曲线是 ,对于非线性元件伏安特性曲线是 或 直线。
二、电源的功率、效率1、闭合电路中各部分的功率(1)电源的功率(电源的总功率)P 总= (2)电源的输出功率P 出= (3)电源内部消耗的功率P 内= 2、电源的效率:η= =3、若外电路为纯电阻电路(1)电源输出功率随外电阻变化的图线如图2所示。
由图可知,当内外电阻相等时,电源的输出功率最大,为m P = 。
由图像还可知,当R<r 时,若R 增加,则P 出增大;当R>r 时,若R 增大,则P 出减小。
对应于电源的非最大输出功率可以有两个不同的外电阻R l 和R 2使得电源输出功率相等,且; (2)电源的效率随外电路电阻的增大而增大,当R=r 时效率为 。
三、电源的伏安特性曲线如图3所示,路端电压U 与电流I 的关系曲线,也就是U =E —Ir 式的函数图象,称为电源的伏安特性曲线。
当电路断路即I =0时,纵坐标的截距为电动势E ;当外电路电压为U =0时,横坐标的截距I 短=E/r 为短路电流;图线斜率的绝对值为电源的内阻。
四、两类曲线的综合如图4中a 为电源的U-I 图象;b 为外电路电阻的U-I 图象;两者的交点坐标表示该电阻接入电路时电路的总电流和路端电压;该点和原点之间的矩形的面积表示输出功率;a 的斜率的绝对值表示电源内阻的大小;b 的斜率的绝对值表示外电阻的大小;当两个斜率相等时,即内、外电阻相等时图中矩形面积最大,即输出功率最大,可以得出此时路端电压是电动势的一半,电流是最大电流的一半。
图3图UI EU 0 M (I 0,U 0)β α b a NI 0 I m图 4IO U O IU1 2 1 2图1212r R R【专项练习】1、实验室用的小灯泡灯丝的I-U特性曲线可用以下哪个图象来表示()2、下图所列的4个图象中,最能正确地表示家庭常用的白炽电灯在不同电压下消耗的电功率P与电压平方U 2之间的函数关系的是以下哪个图象()3、将阻值为R且不随温度而变化的电阻接在电压为U的电源两端,则描述其电压U、电阻R及流过电流I间的关系图象中,正确的()4、两电阻R1,R2的伏安特性曲线如图所示,可知两电阻的大小之比R1:R2等于()A、1:3B、3:1 C 、D 、5、如图所示,电源的电动势是6V,内阻是0.5Ω,小电动机M的线圈电阻为0.5Ω,限流电阻R0为3Ω,若电压表的示数为3V,试求:(1)电源的总功率和电源的输出功率(2)电动机消耗的功率和电动机输出的机械功率6、如图,E =6V,r =4Ω,R1=2Ω,R2的最大值为10Ω。
二、电源的功率、效率及三类曲线

二、电源的功率、效率及三类曲线【知识要点】一、导体的伏安特性曲线导体中的电流跟电压的关系用图线表示出来,就称为导体的伏安特性曲线。
分析时要注意以下两点:(如图1)1、注意I-U 曲线和U-I 曲线的区别。
(斜率的含义不同)2、对于线性元件伏安特性曲线是 ,对于非线性元件伏安特性曲线是 或 直线。
二、电源的功率、效率1、闭合电路中各部分的功率(1)电源的功率(电源的总功率)P 总= (2)电源的输出功率P 出= (3)电源内部消耗的功率P 内= 2、电源的效率:η= =3、若外电路为纯电阻电路(1)电源输出功率随外电阻变化的图线如图2所示。
由图可知,当内外电阻相等时,电源的输出功率最大,为m P = 。
由图像还可知,当R<r 时,若R 增加,则P 出增大;当R>r 时,若R 增大,则P 出减小。
对应于电源的非最大输出功率可以有两个不同的外电阻R l 和R 2使得电源输出功率相等,且; (2)电源的效率随外电路电阻的增大而增大,当R=r 时效率为 。
三、电源的伏安特性曲线如图3所示,路端电压U 与电流I 的关系曲线,也就是U =E —Ir 式的函数图象,称为电源的伏安特性曲线。
当电路断路即I =0时,纵坐标的截距为电动势E ;当外电路电压为U =0时,横坐标的截距I 短=E/r 为短路电流;图线斜率的绝对值为电源的内阻。
四、两类曲线的综合如图4中a 为电源的U-I 图象;b 为外电路电阻的U-I 图象;两者的交点坐标表示该电阻接入电路时电路的总电流和路端电压;该点和原点之间的矩形的面积表示输出功率;a 的斜率的绝对值表示电源内阻的大小;b 的斜率的绝对值表示外电阻的大小;当两个斜率相等时,即内、外电阻相等时图中矩形面积最大,即输出功率最大,可以得出此时路端电压是电动势的一半,电流是最大电流的一半。
图3图UI EU 0 M (I 0,U 0)β α b a NI 0 I m图 4IO U O IU1 2 1 2图1212r R R【专项练习】1、实验室用的小灯泡灯丝的I-U特性曲线可用以下哪个图象来表示()2、下图所列的4个图象中,最能正确地表示家庭常用的白炽电灯在不同电压下消耗的电功率P与电压平方U 2之间的函数关系的是以下哪个图象()3、将阻值为R且不随温度而变化的电阻接在电压为U的电源两端,则描述其电压U、电阻R及流过电流I间的关系图象中,正确的()4、两电阻R1,R2的伏安特性曲线如图所示,可知两电阻的大小之比R1:R2等于()A、1:3B、3:1 C 、D 、5、如图所示,电源的电动势是6V,内阻是0.5Ω,小电动机M的线圈电阻为0.5Ω,限流电阻R0为3Ω,若电压表的示数为3V,试求:(1)电源的总功率和电源的输出功率(2)电动机消耗的功率和电动机输出的机械功率6、如图,E =6V,r =4Ω,R1=2Ω,R2的最大值为10Ω。
能效标准要求

AC-AC电源AC-DC电源0.5W 0.3W 0.5W0.5WAC-AC电源(低压外部电源除外)≥0.48*Po+0.14≥0.49*Po W≥0.87WAC-DC电源(低压外部电源除外)≥0.497*Po+0.067≥0.86W工作模式下最低平均能效0.5*Po W 0.09*Ln(Po)+0.5 W0.85W空载模式下最大功率0.5W工作模式下最低平均能效≥0.075*Ln(Po)+0.561低压外部电源0.3W 不合适≥0.063*Ln(Po)+0.6221.美国加州能效CEC外置Power能效标准要求:标称输出功率(Po)Po<1W 1W≤Po≤51W Po>51WPo≤250W注:Ln(Po)=Po的自然对数2.欧洲ErP外置电源能效指标: 1).空载消耗不得大于下列值:输出功率Po Po≤51W Po>51W注:低压外部电源是指标称输出电压小于6V,并且输出电流大于等于550mA的电源供应器。
2).平均工作效率不应小于以下值:标称输出功率PoPo<1W 1W≤Po≤51W Po>51W注:Ln(Po)=Po的自然对数平均工作效率是指产品在标称输出功率的25%,50%,75%和100%四种情况下的平均效率。
3.澳洲单电压外置AC-DC,AC-AC电源供应器MEPS能效要求:1).外置电源的标准要求(能效标志III的要求)标称输出功率(Po)0W≤Po<1W≥0.09*Ln(Po)+0.5 W≥0.09*Ln(Po)+0.49 W≥0.84W 工作模式下最低平均能效≥0.5*Po W 无要求空载模式下最大功率≤0.75WAC-DCAC-AC ≤0.5W 无要求≥0.85W 空载模式下最大功率AC-DCAC-AC ≤0.5W无要求对数工作模式下最低平均能效≥0.497*Po W+0.067≥0.0626*Ln(Po)+0.622 W≥0.87W≥0.075*Ln(Po)+0.561 W≥0.86W工作模式下最低平均能效≥0.480*Po W+0.141W≤Po≤49W 49W<Po≤250W0W≤Po≤10W 10W<Po≤250W注:Ln(Po)=Po的自然对数2.外置电源最高能效要求(能效表示Ⅳ要求)标称输出功率(Po)0W≤Po<1W 1W≤Po≤51W 51W<Po≤250W0W≤Po≤250W注:Ln(Po)=Po的自然3.外置电源最高能效要求(能效表示Ⅴ要求)输出电压小于6V,输出电流大于等于0.55mA,要求如下:标称输出功率(Po)0W≤Po<1W 1W≤Po≤49W 49W<Po≤250W除输出电压小于6V,输出电流大于等于0.55mA之外的要求如下:标称输出功率(Po)0W≤Po<1W 1W≤Po≤49W 49W<Po≤250W。
6级能效标准与计算

平均效率
76.00%
115Vac 60Hz
40.88 W 54.97 W
74.19%
74.00% 72.00%
CoC 10% Load 标准
70.00%
Efficiency
待机功耗 输入电压
45 mW 输入功率 13.91 W 27.42 W 输出电压 12.23 V 12.21 V 12.19 V 12.14 V 输出电流 0.83 A 1.67 A 2.50 A 3.33 A 0.33 A 输出功率 10.18 W 20.33 W 30.44 W 40.43 W 0.00 W 转换效率 73.20% 74.14% 73.57% 72.71% #DIV/0! CoC 10% Load 标准 73.40% 平均效率
AC-DC低电压(<6V)外部电源
额定输出功率 0 to≤1watt >1 to≤49watts >49watts to≤250watts >250watts 最低平均效率 ≥ 0.517 * Pout + 0.087 ≥0.0834*ln(Pout)-0.0014*Pout+0.609 ≥ 0.870 0.875 最大待机功耗 ≤ 0.10 ≤ 0.10 ≤ 0.21 ≤ 0.50
AC-DC低电压(<6V)外部电源
额定输出功率 0 to≤1watt >1 to≤49watts >49watts 最低平均效率 ≥ 0.49பைடு நூலகம் × Pno +0.067 ≥ 0.075 × Ln(Pno) + 0.561 ≥ 0.860 最大待机功耗 ≤ 0.30 ≤ 0.30 ≤ 0.50
68.00% 66.00% 64.00% 62.00% 60.00% 0.00 A 1.00 A 2.00 A 3.00 A 4.00 A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电源平均效率
电源平均效率是指电源将输入的电能转换为输出的电能的效率。
它是衡量电源能量利用效率的重要指标之一。
电源平均效率的高低直接影响着电源的能效和节能性能。
在日常生活和工业生产中,电源平均效率的提高对于节约能源、减少能源浪费具有重要意义。
电源平均效率的计算方法是输出功率除以输入功率。
在实际应用中,电源平均效率常常受到多种因素的影响,如电源的设计和制造质量、工作温度、负载大小等。
因此,提高电源平均效率需要从多个方面入手。
电源设计的合理性是提高电源平均效率的关键。
电源设计应考虑匹配负载的特性,以减少电能在转换过程中的损耗。
同时,合理选择电源的拓扑结构和元件参数,优化电源的工作状态,能够有效提高电源平均效率。
电源的拓扑结构有多种,如开关电源、线性电源等。
其中,开关电源因其高效率、小体积和轻质化等特点而被广泛应用。
开关电源采用开关管实现电能的转换,其转换效率一般较高。
而线性电源由于其简单的电路结构,转换效率相对较低。
因此,在实际应用中,根据不同的需求和场景,选择合适的电源拓扑结构是提高电源平均效率的重要一环。
电源的元件参数也会对电源平均效率产生重要影响。
例如,在开关
电源中,选择合适的开关管和输出电感等元件,能够有效减小电能转换过程中的损耗。
而在线性电源中,选择低压降的稳压二极管和大功率放大器,能够提高电源平均效率。
因此,在电源设计中,合理选择和配置元件参数,能够最大程度地提高电源平均效率。
电源的工作温度也是影响电源平均效率的重要因素之一。
电源在工作过程中会产生一定的热量,如果不能及时散热,会导致电源温度升高,从而降低电源平均效率。
因此,在电源设计中,应合理选择散热材料和散热结构,确保电源能够在适当的温度范围内工作,从而提高电源平均效率。
负载大小也会对电源平均效率产生影响。
在实际应用中,电源的输出功率和负载功率之间的匹配关系直接影响着电源的效率。
如果负载功率较小,电源平均效率通常较低。
因此,在设计和选择电源时,应根据实际负载情况,合理选择电源的输出功率和负载的匹配程度,以提高电源平均效率。
电源平均效率的提高需要从多个方面入手。
电源设计的合理性、拓扑结构的选择、元件参数的优化、工作温度的控制以及负载的匹配等都是影响电源平均效率的重要因素。
通过综合考虑这些因素,并进行合理的设计和配置,能够有效提高电源平均效率,实现能源的高效利用,为可持续发展提供有力支持。