微生物学期末考试复习资料

合集下载

微生物学教程期末复习资料

微生物学教程期末复习资料

一、名词解释:微生物:微生物是形体微小、单细胞或个体结构简单的多细胞、甚或无细胞结构,用肉眼看不见或看不清的低等生物的总称。

微生物学:微生物学是一门在细胞、分子或群体水平上研究微生物的形态构造、生理代谢、遗传变异、生态分布和分类进化等生命活动基本规律,并将其应用于工业发酵、医药卫生、生物工程和环境保护等实践领域的科学,其根本任务是发掘、利用、改善和保护有益微生物,控制、消灭或改造有害微生物,为人类社会的进步服务。

原核生物:即广义的细菌,指一大类细胞核无核膜包裹,只存在称作核区的裸露DNA的原始细菌:是一类细胞细短、结构简单、胞壁坚韧、多以二分裂方式繁殖和水生性较强的原核生物。

病毒:是超显微的,无细胞结构,专性活细胞内寄生,在活细胞外具一般化学大分子特征,一旦进入宿主细胞又具有生命特征。

烈性噬菌体:凡在短时间内能连续完成吸附、侵入、增殖、成熟、裂解这五个阶段而实现其繁殖的噬菌体,称为烈性噬菌体。

C/N比:所谓C/N是指在微生物培养基中所含的碳源中碳原子的摩尔数与氮源中氮原子的摩尔数之比。

生长因子:一类对微生物正常代谢必不可少且又不能从简单的碳、氮源自行合成的所需极微量的有机物。

培养基:是一种人工配制的适合微生物生长繁殖或产生代谢产物用的混合养料,它具备微生物所需的六大营养元素,且其间比例合适。

基因:是生物体内一切具有复制能力的最小遗传功能单位,其物质基础是一条以直线排列、具有特定核苷酸序列的核酸片段。

纯培养:微生物学中将在实验条件下从一个单细胞繁殖得到的后代称为纯培养。

次生代谢产物:指某些微生物的生长到稳定期前后,以结构简单、代谢途径明确、产量较大的初生代谢作前体,通过复杂的次生代谢途径所合成的各种结构复杂化学物。

发酵:无氧条件下,底物脱氢后产生的还原力不经呼吸链而直接传递给某一中间代谢物的低效产能反应。

抗生素:微生物在其生命过程中所产生的一类低分子量代谢产物,在很低浓度下就能抑制或杀死其它微生物的生长。

微生物期末复习资料

微生物期末复习资料

微生物学复习资料第一章绪论一、名词解释微生物:是一群个体微小、结构简单的单细胞或简单多细胞、甚或是没有细胞结构的低等生物的统称。

微生物学:研究微生物及其生命活动规律的科学。

二、填空题:1.微生物与人类关系的重要性,你怎么强调都不过分,微生物是一把十分锋利的双刃剑,它们在给人类带来巨大利益的同时也带来“残忍”的破坏。

2.1347年的一场由鼠疫杆菌引起的瘟疫几乎摧毁了整个欧洲,有1/3的人(约2 500万人)死于这场灾难。

3.2003年SARS在我国一些地区迅速蔓延,正常的生活和工作节奏严重地被打乱,这是因为SARS 有很强的传染性,它是由一种新型的病毒所引起。

4.微生物包括:没有细胞结构不能独立生活的病毒、亚病毒(类病毒、拟病毒、朊病毒);具原核细胞结构的真细菌、古生菌、支原体、衣原体、立克次氏体;具真核细胞结构的真菌(酵母、霉菌、蕈菌等)、单细胞藻类、原生动物等。

5.著名的微生物学家Roger Stanier提出,确定微生物学领域不应只是根据微生物的大小,而且也应该根据有别于动、植物的研究技术。

6.重点研究微生物与寄主细胞相互关系的新型学科领域,称为细胞微生物学。

7.公元6世纪(北魏时期),我国贾思勰的巨著“齐民要术”详细地记载了制曲、酿酒、制酱和酿醋等工艺。

8.19世纪中期,以法国的巴斯德和德国的科赫为代表的科学家,揭露了微生物是造成腐败发酵和人畜疾病的原因,并建立了分离、培养、接种和灭菌等一系列独特的微生物技术,从而奠定了微生物学的基础,同时开辟了医学和工业微生物学等分支学科。

巴斯德和科赫是微生物学的奠基人。

9.20世纪中后期,由于微生物学的消毒灭菌、分离培养等技术的渗透和应用的拓宽及发展,动、植物细胞也可以像微生物一样在平板或三角瓶中分离、培养和在发酵罐中进行生产。

10.目前已经完成基因组测序的3大类微生物主要是模式微生物、特殊微生物及医用微生物。

而随着基因组作图测序方法的不断进步与完善,基因组研究将成为一种常规的研究方法,为从本质上认识微生物自身以及利用和改造微生物将产生质的飞跃。

微生物学复习资料

微生物学复习资料

微生物学复习资料微生物,这个微小却又充满神秘和力量的世界,对于我们的生活、健康、环境乃至整个地球的生态系统都有着至关重要的影响。

让我们一起走进微生物学的领域,进行一次全面的复习。

一、微生物的定义与分类微生物是指那些肉眼难以看清,需要借助显微镜才能观察到的微小生物。

它们包括细菌、真菌、病毒、原生动物和藻类等多个类群。

细菌是微生物中的一大类,其形态多样,有球状、杆状和螺旋状等。

根据细菌细胞壁的结构和化学组成,可分为革兰氏阳性菌和革兰氏阴性菌。

真菌则包括酵母菌、霉菌和蕈菌等。

酵母菌常用于发酵工业,而霉菌可以产生多种有用的代谢产物,如青霉素。

病毒是由核酸和蛋白质外壳组成的非细胞生物,它们必须寄生在活细胞内才能进行生命活动。

原生动物是单细胞真核生物,具有复杂的细胞器和多样的运动方式。

藻类则是含有叶绿素等光合色素的微生物,能够进行光合作用。

二、微生物的特点微生物具有体积小、面积大,吸收多、转化快,生长旺、繁殖快,适应强、易变异等特点。

由于体积微小,微生物具有巨大的比表面积,这使得它们能够迅速与周围环境进行物质交换和能量转化。

它们能够快速吸收营养物质,并在短时间内大量繁殖。

而且,微生物能够适应各种极端环境,如高温、高压、高盐等,同时也容易发生变异,这为微生物的进化和适应环境变化提供了强大的能力。

三、微生物的营养微生物的营养物质包括碳源、氮源、能源、生长因子、无机盐和水。

碳源是微生物合成细胞物质和代谢产物的碳架来源,如糖类、脂肪和有机酸等。

氮源则是用于合成蛋白质、核酸等含氮物质,有机氮源如蛋白质、氨基酸,无机氮源如铵盐、硝酸盐等。

能源为微生物的生命活动提供能量,光能和化学能是常见的能源形式。

生长因子是微生物生长所必需但自身不能合成的微量有机物,如维生素、氨基酸和碱基等。

无机盐为微生物提供必要的矿物质元素,调节细胞渗透压和pH 值。

水是微生物细胞的重要组成成分,也是各种生化反应的介质。

四、微生物的生长微生物的生长可以通过测定细胞数量或细胞重量来衡量。

微生物学期末复习资料

微生物学期末复习资料

微生物学期末复习资料微生物绪论1、微生物是一切肉眼看不见或看不清的微小生物的总称,个体微小(一般小于0.1mm)、构造简单的低等生物,2、微生物难以认识的主要原因有以下4个:①个体微小, ②外貌不显,③杂居混生,④因果难联,3、法国科学家路易.巴斯德,就是其中最杰出的代表-曲颈瓶实验,微生物学的奠基人。

4、德国医生罗伯特.科赫,成为细菌学的奠基人.5、安东尼.列文虎克,他用自己制作的放大率约200倍的一个透镜装在金属附件中,组成一架单式显微镜,于1676年首次看到了细菌,6、微生物的五大共性:①体积小,②面积大、吸收多,③转化快、生长旺,④繁殖快、适应强,易变异、⑤分布广,种类多7、微生物的种类多及微生物多样性主要体现在以下5个方面:①物种的多样性,②生理代谢类型的多样性,③代谢产物的多样性,④遗传基因的多样性,⑤生态类型的多样性,第一章第一节1、根据微生物的进化水平和各种性状上的明显差别,可把他分为原核生物,真核生物和非细胞微生物三大类群。

2、原核生物即广义的细菌,指一大类细胞核无核膜包裹,只存在成为核区的裸露DNA的原始单细胞生物,包括真细菌和古细菌两大类群。

3、细胞壁是位于细胞最外的一层厚实、坚韧的外被,只要成分是肽聚糖,具有固定细胞外形和保护细胞不受损伤等多种生理功能。

4、G+细菌细胞壁的特点是厚度大(20~80nm,从几层到25层分子)和化学组分简单,一般含60%~95%肽聚糖和10%~30磷壁酸。

5、G-细菌肽聚糖的构造可以以E.coli为典型代表。

其肽聚糖层埋藏在外膜脂多糖(LPS)层内。

6、外膜是G-细菌细胞壁所特有的结构,它位于壁的最外层,化学成分为脂多糖、磷脂和若干种外膜蛋白。

7、脂多糖(LPS),是位于G- 细菌细胞壁最外层的一层较厚(8~10nm)的类脂多糖类物质,由类脂A、核心多糖和O-特异侧链3部分组成,其中类脂A更是G-病原菌致病物质内毒素的物质基础。

8、G+细菌与G-细菌一系列生物学特性的比较;见20页表1--4.6、假肽聚糖的结构虽与肽聚糖相似,但其多糖骨架则有N-乙酰葡萄糖胺和N—乙酰塔罗糖胺糖醛酸以β-1,3-糖苷键交替连接而成,连在后一氨基糖上放入胎尾有L-Glu、L-Ala和L-Lys三个L型氨基酸组成,肽桥则由L-Glu一个氨基酸组成。

微生物期末复习资料

微生物期末复习资料

第一章: 原核生物的形态、 构造和功能
原核生物 即广义的细菌,指一大类细胞核无核膜包裹,只存在称作核区(nuclear region)的裸露 DNA 的原始单细胞生物。 根据外表特征分为 6 大类——三菌三体 细菌(真细菌、古生菌)、放线菌和蓝细菌 支原体、立克次氏体和衣原体 第一节 细菌(Bacteria) 定义:是一类细胞细短(直径 0.5um、长度 0.5-5um)、结构简单、胞壁坚韧、多以二分裂方 式繁殖和水生性较强的原核生物。 一、细菌的形态构造及其功能 (一)形态 细菌的三种基本形态——球状、杆状及螺旋状 1)球菌(coccus)及其排列状态 菌体呈球形或近似球形,以典型的二分裂殖方式繁殖,分裂后产生的新细胞常保持一定的空间
细胞壁结构 厚度 肽聚糖含量 脂类含量 磷壁酸 外膜 脂蛋白 脂多糖 革蓝氏阳性菌 厚,15—50nm 多,占胞壁干重 30-95% 一般无(<2%) 革蓝氏阴性菌 薄,10—15nm 少,占胞壁干重 5-20%左右 多,约 20%
(2)利用平板分离方法寻找并分离到许多病原菌,如炭疽病菌(1877)、结核杆菌(1882) 、 链球菌(1882)、霍乱球菌(1883)等; (3)提出了柯赫法则(1884)。 1905 年,科赫获得了诺贝尔医学和生理学奖,主要是为了表彰他在肺结核研究方面的贡献。 1982 年,我国邮电部发行了一枚纪念邮票,纪念科赫发现肺结核病原菌一百周年。 科赫法则(Koch’s postulates) 病原微生物总是在患传染病的动物中发现而不存在于健康个体中; 这一微生物可以离开动物体,并被培养为纯种培养物; 这种纯培养物接种到敏感动物体中,出现特有症状; 该微生物可以从患病的实验动物中重新分离出来, 并可在实验室中再次培养, 此后它仍然与 原始病原微生物相同。 4,生化水平研究阶段(发展期)(1897 年~1953 年) 进展: 开创了微生物生化研究的时代, 各学科相互渗透; 形成了许多应用微生物的分支学科, 如抗生素发酵、有机酸发酵、氨基酸发酵等;发现微生物的代谢统一性,开展寻找微生物的 有益代谢产物,出现了微生物学发展史上的第二个“淘金热”;青霉素的发现推动了微生物 工业化培养技术的突飞猛进。 1897 年,布赫纳(Buchner) 研究磨碎了的酵母菌的发酵作用,用无细胞酵母汁发酵葡萄糖得 到酒精,因而把生命活动和酶的化学紧密联系起来。 897 年,德国人布赫纳(E. Büchner)用酵母菌无细胞滤液进行酒精发酵取得成功,建立了现 代酶学、开创了微生物生物化学研究的新时代。 在该期,俄国人维诺格拉斯基(Winogradsky)发现了铁细菌、硫细菌、硝化细菌等化能自 养菌;第一次从土壤中分离出自生固氮菌(巴氏德梭菌等);开辟了研究微生物生态和微生 物在自然界物质循环中作用等重要课题,奠定了土壤微生物学的基础。(土壤微生物学) 荷兰微生物学家贝杰林克(Beijerinck),成功地从豆科根瘤中分离出根瘤菌,揭示了共生固 氮现象等;后来,又分离和发现了好氧的固氮细菌。(土壤微生物学) 1892 年,伊万诺夫斯基(IVanowsky)发现烟草花叶病毒,开创了病毒学。 1929 年, 英国细菌学家 Fleming 发现了青霉菌产生抑菌物质—青霉素, 为疾病的化学治疗开 辟了新的途径。促使科学家们纷纷从微生物中寻找这类抗生物质。 他在进行葡萄球菌的培养过程中发现, 污染有青霉菌菌落的周围完全不长葡萄球菌, 进一步 的研究发现,这种抑菌物质存在于青霉菌的发酵液中,称为青霉素。 1944 年,美国土壤微生物学家 Waksman 等找到了由链霉菌产生的链霉素;随后相继找到了 氯霉素、地霉素、四环素、金霉素等数百种抗生素,这些工作促使抗生素的研究从筛选到提 纯全面展开,形成了一套完整的抗生素工业系统。 从 19 世纪末到 20 世纪 40 年代末,是微生物学发展迅速的时期,各学科相互渗透,形成了 许多应用微生物的分支学科,如抗生素发酵、有机酸发酵、氨基酸发酵等。 5,分子生物学发展阶段(成熟期) (1953-至今) 1953 年~现在。从 Watson 和 Crick (1953.4.25.)在英国的《自然》上发表 DNA 结构的双 螺旋模型起,整个生命科学就进入了分子生物学研究的新阶段。

《微生物学》期末复习资料知识点

《微生物学》期末复习资料知识点

《微生物学》期末复习资料知识点绪论一.微生物概念微生物是一种形体微小、结构简单、分布广泛、增值迅速、肉眼不能直接观察到,须借助显微镜放大几百倍、乃至数万倍才能看到的微小生物。

二.微生物的分类1.非细胞型微生物:最小的一类微生物,无典型的细胞结构,多数由一种核酸(DNA或RNA)和蛋白质衣壳组成。

2.原核型细胞微生物:细胞核分化程度低,仅有DNA盘绕而成的拟核,无核膜和核仁等结构,除核糖体外,无其他细胞器。

包括细菌、放线菌、支原体、衣原体、立克次体、螺旋体等。

3.真核细胞型微生物:有细胞结构,细胞核分化程度高,有核膜、核仁和染色体,细胞质内有细胞器(如内质网、高尔基体和线粒体等),行有丝分裂。

三.正常菌群和条件治病菌人体的表面以及与外界相通的腔道(如口、鼻、咽部、肠道等)中都存在大量种类不同的微生物,在正常情况下这些微生物都是无害的,称为正常菌群。

但其中有一部分微生物在某些条件下也可以导致疾病的发生,故被称为条件致病性微生物。

第十章细菌学概论一.细菌的大小和形态1.细菌的测量单位:通常以微米(μm)为测量单位2.细菌的基本形态:1)球菌:单球菌、双球菌、链球菌、四联球菌、八叠球菌、葡萄球菌2)杆菌3)螺形菌:分为弧菌和螺菌二.细菌的细胞结构(一)细菌细胞的基本结构基本结构是维持细菌正常生理功能所必须的结构,是各种细菌细胞共同具有的结构。

包括细胞壁、细胞膜、细胞质、核质及细胞质内的内容物等。

1.细胞壁的主要功能:赋形、保护、纳泄、抗原作用。

2.胞质颗粒:细菌细胞内的一些颗粒状内含物,多为细菌贮存的营养物质,也有的属于细菌的代谢产物。

(二)细菌细胞的特殊结构某些细菌细胞在一定情况下才有的结构称为特殊结构。

包括荚膜、芽胞、鞭毛、菌毛。

1.荚膜的主要功能:抗吞噬作用、黏附作用、抗有害物质的杀伤作用、抗原性。

2.芽胞:休眠结构。

3.鞭毛:细菌的运动“器官”。

分为四种——单鞭毛、双鞭毛、丛鞭毛、周鞭毛。

4.菌毛:分为普通菌毛和性菌毛,性菌毛与细菌的遗传物质有关。

微生物学复习资料-周德庆-期末总结

微生物学复习资料-周德庆-期末总结

微生物学复习资料第一章原核微生物的形态、构造和功能伴孢晶体:少数芽孢杆菌在形成芽孢的同时,会在芽孢旁形成一颗菱形、方形或不规则形的碱溶性蛋白质晶体,称为伴孢晶体(即ð内毒素).L型细菌:在某些环境条件下(实验室或宿主体内)通过自发突变而形成的遗传性稳定的细胞壁缺陷变异型.1.没有完整而坚韧的细胞壁,细胞呈多形态,有些能通过细菌滤器,故又称“滤过型细菌”.对渗透敏感,在固体培养基上形成“油煎蛋”似的小菌落(直径在0.1mm左右)古生菌:又称古细菌,是一个在进化途径上很早就与真细菌和真核生物相互独立的生物类群,主要包括一些独特生态类型的原核生物,如产甲烷菌及大多数嗜极菌。

革兰氏染色机制:结晶紫液初染和碘液媒染:在细菌的细胞膜内可形成不溶于水的结晶紫与碘的复合物。

乙醇脱色:G+细胞壁较厚、肽聚糖网层次多和交联致密且不含类脂,把结晶紫与碘的复合物牢牢留在壁内,使其保持紫色;G—细胞壁薄、外膜层类脂含量高、肽聚糖层薄和交联度差,结晶紫与碘复合物的溶出,使细胞退成无色.复染:G-细菌呈现红色,而G+细菌则仍保留最初的紫色。

重要性: 革兰氏染色有着十分重要的理论与实践意义.通过这一染色,几乎可把所有的细菌分成革兰氏阳性菌与革兰氏阴性菌两个大类,因此它是分类鉴定菌种时的重要指标。

又由于这两大类细菌在细胞结构、成分、形态、生理、生化、遗传、免疫、生态和药物敏感性等方面都呈现出明显的差异,因此任何细菌只要通过简单的革兰氏染色,就可提供不少其他重要的生物学特性方面的信息。

第二章真核微生物的形态、构造和功能1子实体:是指在其里面或上面可产生无性或有性孢子,有一定形状和构造的任何菌丝体组织2 菌物界:指与动物界,植物界相并列的一大群无叶绿素,依靠细胞表面吸收有机养料,细胞壁一般含几丁质的真核微生物3 二级菌丝:又称气生菌丝,由基内营养菌丝长出培养基外伸向空间的菌丝。

它是担子菌中由相应的异性的初生菌丝进行体细胞接合而形成的菌丝。

微生物学期末考试复习资料

微生物学期末考试复习资料

微生物学期末考试复习资料一、名词解释1细菌乙醇发酵与酵母菌乙醇发酵酵母菌乙醇发酵,在厌氧和偏酸(pH3.5-4.5)的条件下,经过糖酵解(EMP)途径将葡萄糖落解为2分子丙酮酸,丙酮酸再在丙酮酸脱羧酶作用下生成乙醛,乙醛在乙醇脱氢酶的作用下还原成乙醇,1分子葡萄糖产生2分子乙醇、2分子二氧化碳和净产生2分子ATP。

细菌乙醇发酵,细菌即可利用EMP途径也可利用ED途径举行乙醇发酵,经ED途径发酵产生乙醇的过程与酵母菌经过EMP途径生产乙醇别同,故称细菌乙醇发酵。

1分子葡萄糖经ED途径举行乙醇发酵,生成2分子乙醇和2分子二氧化碳,净产生1分子ATP。

2菌降与菌苔菌降,生长在固体培养基上,通常来源于一具细胞、肉眼可见的微生物细胞群体叫做菌降。

菌苔,当菌体培养基表面密集生长时,多个菌降相互连接成一片,称菌苔。

3原生质体与原生质球原生质体指人工条件下用溶菌酶除尽原有的细胞壁,或用青霉素抑制细胞壁的合成后,所剩下的仅由细胞膜包裹着的细胞,普通由革兰氏阳性细菌形成。

原生质球指用同样的办法处理,仍有部分细胞壁物质未除去所剩下的部分,普通由革兰氏阴性细菌所形成。

4温柔噬菌体与烈性噬菌体温柔噬菌体,有点噬菌体感染细菌后并别增殖,也别裂解细菌,这种噬菌体称为温柔噬菌体烈性噬菌体,能在寄主细菌细胞内增殖,产生大量噬菌体并引起细菌裂解的噬菌体称为烈性噬菌体。

5挑选性培养基与鉴不培养基挑选性培养基,是依照某一种或某一类微生物的特别营养要求或对某种化合物的敏感性别同而设计的一类培养基。

利用这种培养基能够将某种或某类微生物从混杂的微生物群体中分离出来。

鉴不培养基,是依照微生物的代谢特点在一般培养基中加入某种试剂或化学药品,经过培养后的显群反应区不别同微生物的培养基。

6延续培养与分批培养延续培养,在培养容器中别断补充新奇营养物质,并别断地以同样速度排除培养物,使培养系统中细菌数量和营养状态保持恒定,这算是延续培养法分批培养,将少量单细胞纯培养物接种到恒定容器新奇培养基中,在适宜条件下培养,定时取样测定细菌数量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、名词解释
1细菌乙醇发酵与酵母菌乙醇发酵
酵母菌乙醇发酵,在厌氧和偏酸(pH3.5-4.5)的条件下,通过糖酵解(EMP)途径将葡萄糖降解为2分子丙酮酸,丙酮酸再在丙酮酸脱羧酶作用下生成乙醛,乙醛在乙醇脱氢酶的作用下还原成乙醇,1分子葡萄糖产生2分子乙醇、2分子二氧化碳和净产生2分子ATP。

细菌乙醇发酵,细菌即可利用EMP途径也可利用ED途径进行乙醇发酵,经ED途径发酵产生乙醇的过程与酵母菌通过EMP途径生产乙醇不同,故称细菌乙醇发酵。

1分子葡萄糖经ED途径进行乙醇发酵,生成2分子乙醇和2分子二氧化碳,净产生1分子ATP。

2菌落与菌苔
菌落,生长在固体培养基上,通常来源于一个细胞、肉眼可见的微生物细胞群体叫做菌落。

菌苔,当菌体培养基表面密集生长时,多个菌落相互连接成一片,称菌苔。

3原生质体与原生质球
原生质体指人工条件下用溶菌酶除尽原有的细胞壁,或用青霉素抑制细胞壁的合成后,所剩下的仅由细胞膜包裹着的细胞,一般由革兰氏阳性细菌形成。

原生质球指用同样的方法处理,仍有部分细胞壁物质未除去所剩下的部分,一般由革兰氏阴性细菌所形成。

4温和噬菌体与烈性噬菌体
温和噬菌体,有些噬菌体感染细菌后并不增殖,也不裂解细菌,这种噬菌体称为温和噬菌体烈性噬菌体,能在寄主细菌细胞内增殖,产生大量噬菌体并引起细菌裂解的噬菌体称为烈性噬菌体。

5选择性培养基与鉴别培养基
选择性培养基,是根据某一种或某一类微生物的特殊营养要求或对某种化合物的敏感性不同而设计的一类培养基。

利用这种培养基可以将某种或某类微生物从混杂的微生物群体中分离出来。

鉴别培养基,是根据微生物的代谢特点在普通培养基中加入某种试剂或化学药品,通过培养后的显色反应区别不同微生物的培养基。

6连续培养与分批培养
连续培养,在培养容器中不断补充新鲜营养物质,并不断地以同样速度排除培养物,使培养系统中细菌数量和营养状态保持恒定,这就是连续培养法
分批培养,将少量单细胞纯培养物接种到恒定容器新鲜培养基中,在适宜条件下培养,定时取样测定细菌数量。

培养基一次加入,不补充,不更换。

7恒化培养法与恒浊培养法
恒化培养法,通过控制某种限制性营养物质的浓度调节微生物的生长速度及其细胞密度,使装置内营养物质浓度恒定的培养方法
恒浊培养法,根据培养液细胞密度调节培养液流入的速度,使装置内细胞密度保持恒定的培养方法
8随机培养法与同步培养法
同步培养法,使被研究的微生物群体处于相同生长阶段的培养方法
随机培养法,在一般培养中,微生物各个体细胞处于不同的生长阶段的培养方法
9碱基转换与颠换
碱基转换,DNA链中嘌呤被另外一个嘌呤,或嘧啶被另一个嘧啶所置换,叫做转换
颠换,DNA链中嘌呤被另外一个嘧啶,或者嘧啶被另外一个嘌呤所置换,叫做颠换。

10 转化与转导
转化,是受体菌直接吸收来自供体菌的DNA片段,通过交换将其整合到自己的基因组中,
从而获得供体菌部分遗传性状的现象。

转导,通过缺陷型噬菌体将供体菌的DNA片段携带到受体菌中,使后者获得前者部分遗传性状的现象。

11普遍性转导特异性转导
普遍性传导,指供体菌中任何部位的基因都能被某一噬菌体携带并传递给受菌体的转导。

局限性传导,指通过某些部分缺陷的温和噬菌体将供体菌的少数特定基因携带至受体菌的转导。

12特异性免疫非特异性免疫
非特异性免疫又叫先天免疫,是机体先天具有的正常生理防御机能,没有选择性。

特异性免疫是指机体针对一种或某一类微生物或其产物所产生的特异性抵抗力,它是个体在生活过程中获得的,故又称后天获得性免疫
13自然自动免疫,自然被动免疫,人工自动免疫,人工被动免疫
自然自动免疫,在自然状态下,机体受微生物抗原刺激后,自己产生的免疫力
自然被动免疫,在自然条件下,婴儿接受现成的免疫力,自己没有起主动地作用。

人工自动免疫,给机体注射抗原如微生物(疫苗)或其经化学处理后的代谢产物(类毒素),使其在体内自动产生抗体。

人工被动免疫,注射现成的抗体,机体立即获得免疫力
14外毒素内毒素
外毒素是病原细菌在生长过程中产生的一种分泌物,能游离于菌体外。

内毒素是存在于菌体内,菌体裂解时,才能游离出来。

15体液免疫细胞免疫
体液免疫由抗体介导的免疫作用。

细胞免疫由T细胞介导的特异性免疫。

二简答题
1什么是F因子,F因子的存在形式有哪些
答:F因子又称致育因子,是一种质粒,是染色体外的小型环状DNA分子,相对分子质量为5*107,其DNA含量约占细胞DNA总量的20%,能编码40-60种蛋白质。

F因子具有自主地与染色体进行同步复制和转移到其他细胞中去的能力。

F因子的存在形式有三种,(1)F+,F因子游离在细菌内;(2)Hfr,F因子整合在染色体的特定位点上;(3)F’, F因子由于不正常切割脱离染色体组时,形成含有游离的但带有一小段细胞核DNA的特殊F因子。

2细菌生长曲线是什么,对数期有何特点?
答:以细菌数量的对数或生长速率为纵坐标,以生长时间为横坐标,绘制成的曲线称为细菌的繁殖曲线,单细胞的细菌以菌数增加作为群体生长指标,成生长曲线。

生长曲线代表了细菌在新的适宜环境中生长繁殖直至衰老死亡全过程的动态变化。

对数期的特点:细胞代谢活性最强,酶活力高而稳定,组成新细胞物质最快,生长速率最大,代时最短,对环境变化敏感。

4双名法如何命名微生物的?
答:学名由属名和种名加词构成,属名用表达该种微生物主要特征的拉丁文或拉丁化的名称,放在前面,词首字母大写。

种名加词用描述该种微生物次要特征的拉丁文火拉丁化的形容词表示,一律小写。

5简述病毒的增殖过程
答:病毒的一般增值过程是吸附、侵入、合成、装配、释放5步
6举例说明微生物与生物环境之间的关系
答:(1)互生关系;(2)共生关系;(3)拮抗关系;(4)竞争关系;(5)寄生关系;(6)猎食关系
7简述微生物的营养类型
答:(1)光能无机营养型
(2)光能有机营养型
(3)化能无机营养型
(4)化能有机营养型
8什么是鉴别培养基,试举例说明
答:鉴别培养基是根据微生物的代谢特点在普通培养基中加入某种试剂或化学药品,通过培养后的显色反应区别不同微生物的培养基。

例如肠道致病菌的伊红美兰培养基,常用于区别大肠杆菌和产气杆菌,大肠杆菌发酵乳糖产酸,使伊红美兰呈黑色菌落,而产气杆菌不发酵乳糖,不产酸,菌落呈棕色。

9试分析微生物细胞壁、磷壁酸的功能
答:细胞壁的功能:
(1)维持细胞外形
(2)保护细胞免受外界因素的损伤
(3)是鞭毛运动所必需的支点
(4)阻挡有害物质进入
(5)与细菌的抗原性、致病性以及对噬菌体的敏感性有关。

磷壁酸的功能:
(1)带负电,故可与环境中的金属阳离子结合,提高阳离子在膜周围的浓度,保证细胞膜上一些合成酶维持高活性的需要
(2)保证革兰氏阳性致病菌与其宿主间的粘连
(3)构成革兰氏阳性细菌表面抗原的主要成分
(4)作为噬菌体吸附的受体
三论述题
1革兰氏染色的基本原理是什么,主要现象有哪些
答革兰氏染色是微生物学中重要的染色方法,操作分初染、媒染、脱色、复染4步。

革兰氏染色的基本原理,与细菌细胞壁的化学组成和结构有关,在细胞膜或原生质体上染上了不容于水的结晶紫与碘的大分子复合物。

革兰氏阳性细菌细胞壁厚,肽聚糖含量高,交联度大,网孔小,乙醇脱色时,肽聚糖网孔因脱水而明显收缩,加上不含类脂,故不会因乙醇处理使壁出现孔隙,结果结晶紫与碘的复合物留在细胞壁内,使之呈现紫色。

相反革兰氏阴性菌因壁薄、肽聚糖含量低,交联度小,网孔大,乙醇脱色时,肽聚糖收缩不明显,加上它类脂含量高,会被乙醇溶解而使壁出现较大孔隙,结晶紫与碘复合物就容易抽提出来,细胞退去紫色,复染时染上番红的红色。

主要现象:乙醇脱色后保持深紫色,为革兰氏阳性菌,乙醇脱去紫色,复染呈红色为革兰氏阴性菌。

2根据下列培养基的成分,说出其六大生长要素的来处,并分析这一培养基的主要类型与培养对象
培养基A:
(NH4)2SO40.4g MgSO4 7H2O 0.5g FeSO40.01g KH2PO44g
CaCl20.25g S 10g H2O 1000ml
答:六大生长要素来处
(1)碳源CO2
(2)氮源(NH4)2SO4
(3)水H2O
(4)能源(NH4)2SO4FeSO4 S
(5)无机盐MgSO4 7H2O KH2PO4 FeSO4 CaCl2(6)生长因素无,可能为自养微生物
培养基A是化能无机营养型氧化硫杆菌培养基。

相关文档
最新文档