新人教版六年级下册数学比例课件
合集下载
小学数学六年级下册《比例的意义和基本性质》教学课件

3:8 = 15:40 3:15 = 8:40 • :8 = 15:3 40:15 = 8:3
:8 3 = 40:15 8:40 = 3:15 15:3 = 40:8 15:40 = 8:3
(2)2.5×0.4 = 0.5 ×2
第三十八页,共三十九页。
在括号(kuòhào)里填上适当的数:
5
()
1、 ( ) = 8
2 ∶3 = 4 ∶6
6 ∶4 = 3 ∶2
2 ∶4 = 3 ∶6
6 ∶3 = 4 ∶2
4 ∶2 = 6 ∶3
3 ∶6 = 2 ∶4
4 ∶6 = 2 ∶3
3 ∶2 = 6 ∶4
第二十五页,共三十九页。
判断下列(xiàliè)各组比能否组成比例:
⑴ 6 :12 和 4 8:
()
⑵ 24:8 和 0.6:2
2
40cm
第六页,共三十九页。
求出它们的比值,你发现(fāxiàn)了什么?
= 2.4︰1.6
60︰40
或
= 2 . 4
60
1 .6
40
表示两个(liǎnɡ ɡè)比相等的式子叫做比例。
在这四面国旗的尺寸中,你还能找出 哪些比可以组成比例?
第七页,共三十九页。
判断两个比能不能组成比例(bǐlì), 要看它们的比值是否相等。
第三十页,共三十九页。
根据比例的基本性质,如果已知 比例中的任何(rènhé)三项,就可以求 出这个比例中的另外一个未知项。
求比例(bǐlì)中的未知项,叫做解比例。
第三十一页,共三十九页。
例1法、国巴黎的埃菲尔铁塔高320m。北京的“世界(shìjiè)
公园”里有一座埃菲尔铁塔的模型,它的高度与原塔的高
六年级数学下册第4单元比例2正比例和反比例第1课时正比例课件新人教版7

a.4.5 %
aa..03aa6..a%..=aa..0a. .3
6
a.把百分数化成小数 , 只要把百分号去 掉 , 同时把小数点向左移动两位。
a.用百分数解决问题
a.学生的出勤率学出=生勤总人人数数 ×100% a.最多能达
b.产品的合格率合=产格品产总品数数
到100% ∶ ×100% 合格率 、
c.小麦的出粉率小面=麦粉的的质质量量
发芽率等。 ×100% b.达不到
d. 花生的出油率花=油生的的质质量量
100%∶出 ×100% 油率 、出水
e.学生的及格率=参加及考格试人人数数
率等。 ×100%c.可超过
aa.2.350%0x aa.4.408%0x aa.3.452%0x
a.35%
a.〔40%-35%〕x = 60 a.x = 1200
a.本单元综合训练
a.求一个数比另 一个数多〔或少〕
百分之几
a.求常见 的百分率
a.用百分
a.百分数的意 义和读写法
数解决问 题
a
a.求比一个数多 (或少)百分之几
a.问题 : 笑笑参加学校的冬季长跑活动 , 已经跑 了70% , 还剩下300 m , 笑笑一共要跑多少米 ?
a.? m a.先画图看
看。
a.70%
a.300m
a.你发现了什么等量关系 ?
a.总路程×〔1-70%〕=剩下的300 m
a.解 : 设笑笑一共要跑 x 米。 a.〔1-70%〕x = 300 a.0.3 x = 300 a.x = 1000
数量/m 1 2 3 4 5 6 7 8 ...
总价/元 3.5 7 10.5 14 17.5 21 24.5 28 ...
人教版小学六年级数学下册《比例尺2(求实际距离)》优秀课件

商
除数
实际距离=图上距离÷比例尺
7.8÷
1 400000
= 3120000(cm)
3120000 cm=31.2 km
答:从苹果园站至四惠东站的实际长度大约是31.2 km。
小结一下用比例尺求实际距离的方法。
1 看比例尺。
注意单位
2 根据比例尺的定义求实际距离。
用图上距离 ÷比例尺
设为x
第四步 我的收获
x =7.8×400000
x =3120000
答。
因为图上距离的 单位是cm,此处 的单位也要写cm,
单位要一致。
3120000 cm=31.2 km 解比例的单位是厘米,要换单位
答:从苹果园站至四惠东站的实际长度大约是31.2 km。
还有别的解答方法吗?
被除数
除数=被除数÷商
图上距离 实际距离
= 比例尺
x = 7.8×400000
x = 3120000 3120000 cm=31.2 km
转换单 位哦!
答:从苹果园站至四惠东站的实际长度大约是31.2 km。
方法二:关系式法
根据
图上距离 实际距离
=比例尺,那么,
实际距离=图上距离÷比例尺。
7.8÷
1 400000
=
3120000(cm)
3120000cm=31.2km
3÷601000=180000( cm)=1800(m) 答:两地的实际距离大约是1800 m。
3.在比例尺是20∶1的地图上量得一种零件的长度为
10 cm,那么这种零件的实际长度是多少厘米?
× 10×20=200(cm)
答:这种零件的实际长度是200厘米。 辨析:弄错了比例尺的关系式。
新人教版小学数学六年级下册课件:4.1正比例(共26张ppt)

课后习题
(4)树高与对应影长成正比例关系吗?你是依据什么作出判断的?
成正比例关系,物体的长度和它影子长度比值一定,即物体的长 度和它的影子的长度的成正比例。
7.下表中x和y两个量成正比例,请把表格填写完整。
1.8
0.375
两倍。
教学新知
做一做:一辆汽车行驶的时间和路程如下表。
(1)写出几组路程与相对应的时 间的比,并比较比值的大小。(2)说一说这个比值表示什么。(3)汽车行驶的路程与时间成正比例关系吗?为什么?
80:1=80 160:2=80 比值相等
比值表示速度
成正比例关系。因为路程和时间是相关联的量,并且它们的比值速度是一定的量。
课后习题
(3)造纸吨数与造纸时间成正比例吗?为什么?(4)根据图表判断, 5小时造纸多少吨?
成正比例,因为它们的图像是一条直线,一个量随着另一具量的变化而变化。
7.5吨
6.测量小组几次经过测量不同高度的竹竿直立在地面上,测得它的影子。 其结果记录如下:
竹竿的高度(米)
1
2
3
4
5
…
影子的长度(米)
教学新知
(1)成正比例,因为路程与耗油量的比值一定;(2)成正比例的量的图像是一条直线;(3)7升多一点。
讨论:1.判断两种相关联的量成不成正比例的关键是什么?2.请你说说你对正比例的图像的理解。
教学新知
例一:根据下表填空。
时间(分钟)
1
6
8
……
做口算题数(道)
25
150
200
……
(1)上表中相关联和两具量是( )和( )。(2)写出做题数与时间的比,并求出比值。(3)给出的比值起个名字,再写出上表的文字关系式。
(4)树高与对应影长成正比例关系吗?你是依据什么作出判断的?
成正比例关系,物体的长度和它影子长度比值一定,即物体的长 度和它的影子的长度的成正比例。
7.下表中x和y两个量成正比例,请把表格填写完整。
1.8
0.375
两倍。
教学新知
做一做:一辆汽车行驶的时间和路程如下表。
(1)写出几组路程与相对应的时 间的比,并比较比值的大小。(2)说一说这个比值表示什么。(3)汽车行驶的路程与时间成正比例关系吗?为什么?
80:1=80 160:2=80 比值相等
比值表示速度
成正比例关系。因为路程和时间是相关联的量,并且它们的比值速度是一定的量。
课后习题
(3)造纸吨数与造纸时间成正比例吗?为什么?(4)根据图表判断, 5小时造纸多少吨?
成正比例,因为它们的图像是一条直线,一个量随着另一具量的变化而变化。
7.5吨
6.测量小组几次经过测量不同高度的竹竿直立在地面上,测得它的影子。 其结果记录如下:
竹竿的高度(米)
1
2
3
4
5
…
影子的长度(米)
教学新知
(1)成正比例,因为路程与耗油量的比值一定;(2)成正比例的量的图像是一条直线;(3)7升多一点。
讨论:1.判断两种相关联的量成不成正比例的关键是什么?2.请你说说你对正比例的图像的理解。
教学新知
例一:根据下表填空。
时间(分钟)
1
6
8
……
做口算题数(道)
25
150
200
……
(1)上表中相关联和两具量是( )和( )。(2)写出做题数与时间的比,并求出比值。(3)给出的比值起个名字,再写出上表的文字关系式。
比和比例(课件)-六年级数学下册人教版

答:需要糖0.1千克,水1.9千克。
➢ 用正、反比例的知识解决问题
甲工程队铺一条路,前5天 乙工程队铺路,原计划每天
铺了16千米,照这样的速度, 铺3.2千米,15天铺完。实
铺完这条路用了15天。这条 际每天铺4千米,实际需要
路长多少千米? 正比例
多少天铺完? 反比例
在练习本上解 答这两题。
➢ 用正、反比例的知识解决问题 • 解题步骤 ✓ 分析数量关系,判断成什么比例关系。 ✓ 找等量关系。若成正比例,则按“等比”找等量关系式; 若成反比例,则按“等积”找等量关系式。 ✓ 列比例。设未知数x,并代入等量关系式。 ✓ 解比例。 ✓ 检验写答。
=
5 32
前比 后
比
项号 项
值
3∶ 2 = 6 ∶4
内项 外项
➢ 比和比例的区别
• 基本性质
化简比 的根据
比的基本性质:比的前项和后项同时乘或除以 解比例 相同的数(0除外),比值相等。
的根据
比例的基本性质:在比例里,两个外项的积等于
两个内项的积。
➢ 比和比例的联系 • 比是比例的基础,比例是比的扩展; • 两个相等的比可以组成比例。
➢ 判断正、反比例的方法
一找:分析数量关系,确定哪两种量是相关联的量 二看:分析这两种相关联的量,看它们之间的关系是
乘积一定还是比值一定 三判断:如果乘积一定,成反比例
如果比值一定,成正比例 如果乘积和比值都不一定,不成比例
用比和比例的知识解决问题
➢ 按一定的比分配问题
一种糖水是糖与水按1∶19的比例配制而成的。要配制 这种糖水2千克,需要糖和水各多少千克?
成整数比再化简。 把比的前、后项同时乘分母的最小公倍数,转化成整 分数比 数比再化简。
六年级数学下册第四单元比例课时2解比例(例2、例3)教学课件新人教版

解比例
根据比例的基本性质,如果已知比例中的 任何三项,就可以求出这个比例中的另外一个 未知项。求比例中的未知项,叫做解比例。
二、例题讲解
例2 法国巴黎的埃菲尔铁 塔高度约320m。北京的世 界公园里有一座埃菲尔铁 塔的模型,它的高度与原 塔高度的比是1:10。这座 模型高多少米?
解:设这座模型的高度是xm。
1.2x=0.4×2 x= 0.4 2
1.2
x= 2
3
(3) 12 = 3
2.4 x
12x=2.4×3
x= 2.4 3
12
x=0.6
2.餐馆给餐具消毒,要用100 mL消毒液配成消毒水, 如果消毒液与水的比是1:150,应加入水多少毫升?
解:设应加入xmL水。 100∶x=1∶150 x=100×150 x=15000
5∶8=40∶x
5x=8×40
x=64
(2)x与 3 的比等于 1 与 2 的比。
4
55
x∶ 3 = 1∶2
4 55
2 x= 1 × 3
5 54
x= 3
8
(3)比例的两个内项分别是2和5,两个外项分别 是x和2.5。
x:2=5×2.5 2.5x=10
x=4
答案不唯一
3.汽车厂按1:20的比生产了一批汽车模型。 (1)轿车模型长24.3cm,轿车的实际长度是少? (2)公共汽车长11.76m.模型车的长度是多少? (1)解:设轿车的实际长度是xcm。
x∶320=1∶10 10x=320×1 x= 320 1
10
x=32
答:这座模型高32m。
解比例时要注意什么呢?
先把比例转化成外项乘积与内项乘积相 等的形式,一般要把含有x的乘积写在等号的 左边。
人教版六年级数学下册第四单元 比例复习课件

城市之间高速公路的距离是5.5cm。在另一幅比例尺是
1:5000000的地图上,这条公路的图上距离是多少?
(教材P66第3题)
5.5×2000000= 11000000(cm)
1
11000000÷
= 2.2(cm)
5000000
答:这条公路的图上距离是2.2 cm。
3
同一时间、同一地点测得旗杆高度和影长的数据如下表。
7 :14 和 6 :12
0.4 :1.6 和 3 :12
0.5
0.5
7 :14 = 6 :12
0.25
0.25
0.4 :1.6 = 3 :12
0.5 :2 和
0.25
1
4
1
:
16
1
3
1
:
4
和
4
3
4
1
3
1
:
4
=
1
6
1
:
8
4
3
1
1
:
6
8
2
解比例。
0.6 1.5
=
12
解:0.6x = 1.5×12
1.5×12
01 计算表中两种量的比值或乘积。
若两种量的比值一定,则成正比例;
02
若两种量的乘积一定,则成反比例。
(1)从甲地到乙地的路程是240km,汽车行驶的速度与时间如下表。
速度/(千米/时)
40
50
60
80
100
时间/时
6
4.8
4
3
2.4
(1)40×6 = 50×4.8 = 60×4=80×3 = 100×2.4 = 240
1:5000000的地图上,这条公路的图上距离是多少?
(教材P66第3题)
5.5×2000000= 11000000(cm)
1
11000000÷
= 2.2(cm)
5000000
答:这条公路的图上距离是2.2 cm。
3
同一时间、同一地点测得旗杆高度和影长的数据如下表。
7 :14 和 6 :12
0.4 :1.6 和 3 :12
0.5
0.5
7 :14 = 6 :12
0.25
0.25
0.4 :1.6 = 3 :12
0.5 :2 和
0.25
1
4
1
:
16
1
3
1
:
4
和
4
3
4
1
3
1
:
4
=
1
6
1
:
8
4
3
1
1
:
6
8
2
解比例。
0.6 1.5
=
12
解:0.6x = 1.5×12
1.5×12
01 计算表中两种量的比值或乘积。
若两种量的比值一定,则成正比例;
02
若两种量的乘积一定,则成反比例。
(1)从甲地到乙地的路程是240km,汽车行驶的速度与时间如下表。
速度/(千米/时)
40
50
60
80
100
时间/时
6
4.8
4
3
2.4
(1)40×6 = 50×4.8 = 60×4=80×3 = 100×2.4 = 240
人教版六年级数学下册第四单元第3课时《解比例》(授课课件)

(3)若 4∶a=21∶45,则 a=(
32 5
)。
知识点 2 依据比例的基本性质解比例
2.解比例。
(1)x∶8=12∶32
解:x=
(
8 )×( 12 ) ( 32 )
x= ( 3 )
(2)25∶71=21∶x x=258
(3) 2x5=17.52
解:x=
( 25 )×( 1.2 ) ( 75 )
x=7.5
1.2x÷1.2=0.8÷1.2 2
x= 3
探究点 2
ac
解形如 = 的比例
bd
解比例
2.4 1.5
=
6。 x
写成分数形式的比例,你会解吗?试一试并把你想
提醒大家的在组内交流。
解:2.4x=1.5×6
x=
(1.5 )×( ( 2.4 )
6)
x=( 3.75 )
提示:
在将分数形式的比例改写成乘 积相等的式子时,一般要把含 有x的乘积写在等号的左边。
(3)若4∶a= 1∶4 ,则a=( 32 )。
25
5
(4)在一个比例中,两个内项互为倒数,一个外项
是最小的质数,另一个外项是(
1 )。
2
(5)大、小齿轮的齿数之比是7∶4,大齿轮有56个
齿,则小齿轮有( 32 )个齿。
2.选择。(将正确答案的字母填在括号里)
(1) 如果0.6∶15=x∶10,那么( A )。
x= ( 0.4 )
(4) 40..62=8x x=283
知识点 3 利用比例解决问题
3.手机专卖店按10∶1的比制作手机模型。 (1)A品牌手机模型的长是150 cm,A品牌手机的实际长度
是多少厘米?解:设A品牌手机的实际长度是x cm。 10∶1=150∶x x=15 答:A品牌手机的实际长度是15 cm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 3.2 5000000
3.2 5000000
16000000 (cm) 160(km)
答:大理到楚雄的实际距离大约是160km。
6、在一张1:500的设计图纸上,量得一正方形建筑 的边长是20cm,这个建筑物的实际占地面积是多少 平方米? (1)求边长的实际距离: (2)求建筑物实际占地面积: 1 2 = 10000(m2) 20 100 500 20 500 10000 (cm) 100(m)
2 因为 6 : 15 5 2 8 : 20 5 2 2 5 5 所以 6 : 15 8 : 20
因为 15 8 120
6 20 120
120 120
所以 6 : 15 8 : 20
根据比例的意义判断:
根据比例的基本性质判断:
判断下面每组中的两个比能否组成比例?
=10(m)
杏花村
荷花村 0 4km
答:两个村的实际距离是10m。
4、量得北京到天津的图上距离是3cm, 实际距离是多少千米?
3×50 =150(km) 答:北京到天津的实际 距离是150km。 比例尺
0 50km
5、在比例尺是1︰5000000的云南地图上,量得大理到 楚雄的距离是3.2厘米。计算一下,大理到楚雄的实际 距离大约是多少千米?
比例尺的分类:
数值比例尺 按形式分: 线段比例尺
0 50km
1:5000000
缩小比例尺
1:5000000 50:1
按用途分:
放大比例尺
与比例尺有关的计算:
1、右图中,荷花村 到杏花村的图上距离 为2.5厘米,表示实 际距离10千米。求这 幅图的比例尺。
2.5cm : 10km
杏花村
荷花村
=2.5cm : 1000000cm
强 调
(1)比例尺与一般的尺不同,它是一个比,不能 带有计量单位;
(3)求比例尺时,一般要把较小的项化简成“1”。
(4)无论是计算比例尺、计算实际距离,还是计 算图上距离,都要先把参加计算的数量统一成较小的 长度单位,然后再计算。这样方便一些。 (5)计算实际距离和计算图上距离时,数值比例 尺最好写成分数形式,这样可以把比例尺当作一个分 数来参加计算。
比例的基本性质:
在比例里,两个外项的积等于两个内项的积,这
叫做比例的基本性质。
用字母表示为: 如果a:b=c:d,那么ad=bc。
a c 或 , 那么ad bc 。 b d
比和比例的区别与联系:
意义 比 表示两个 数相除 项数 2项 基本性质 比的前项和后项同时 乘或除以相同的数(0 除外),比值不变。 区别 比是一个 除法算式
1.5 6 解比例: = 2.5 解: 1.5
4
x
x = 6× 2.5 x
6 × 2.5 = 1.5
1
x=
10
比例尺:
一幅图的图上距离和实际距离的比,叫做 这幅图的比例尺。
图上距离 :实际距离 比例尺
或
图上距离 比例尺 实际距离
图上距离 比例尺 实际距离 实际距离 比例尺 图上距离
20:40=3:6 3和40当内项
3:6=20:40 6和20当内项
解比例:
根据比例的基本性质,如果已知比例中的任意 三项,求另外一个未知项。叫做解比例。
解比例的方法: 根据比例的基本性质,把比例式转化为乘积相 等的等式,再根据以前学过的解方程的方法求解。
例:X : 320 = 1 : 10
解:10X = 320×1 320×1 X= 10 X =32
5 因为 0.5 : 0.4 4 4 2 : 2.5 5 5 4 4 5 所以 0.5 : 0.4和2 : 2.5
(2) 0.5 : 0.4 和 2 : 2.5
因为 0.4 2 0.8
0.5 2.5 1.25
0.8 1.25
所以 0.5 : 0.4和2 : 2.5 不能组成比例。
答:这个建筑物的实际占地面积是10000m2。
7、修建一个长80m、宽60m的长方形操场,用 1:1000的比例尺画在图纸上,长和宽各画多少cm?
(1)求长的图上距离: 80m=8000cm 1 8000 8( cm) 1000 (2)求宽的图上距离: 60m=6000cm 1 6000 6( cm) 1000 答:长画8cm,宽画6cm。
表示两个 比例 比相等
两个外项的积等于两个 4项 内项的积。
比例是一 个等式
比例的判断:
判断两个比能不能组成比例,可以有两种方法:
(1)根据比例的意义断:看两个内项的积
是否等于两个外项的积。
判断下面每组中的两个比能否组成比例? (1) 6:15 和 8:20
不能组成比例。
根据比例的意义判断:
根据比例的基本性质判断:
根据比例的基本性质我们知道,两个内项的积等 于两个外项的积。倒过来理解,乘积相等(并且不为0) 的两个乘法式子,也可以改写成比例。 例:已知3×40 = 20×6, 你能把上面的等式改写成比例吗? 20:3=40:6 6:3=40:20 6:40=3:20 3:20=6:40 40:20=6:3 40:6=20:3
1、填空
(1)在a:7=9:b中,(7、9 )是内项,( a、b)是
外项,a×b=( 63 )。
(2)一个比例的两个内项分别是3和8,则两个外项的 积是(24 ),两个外项可能是( )和( )。 (3)在一个比例里,两个外项互为倒数,那么两个内 项的积是( 1 ),如果一个外项是 3 ,另一个 7 7 外项是( )。
=2.5 :1000000 =1 :400000 答:这幅图的比例尺为1:400000。
2、把图中的线段比例尺改成数值比例尺。
1cm:50km =1cm:5000000cm =1:5000000
比例尺
0
50km
3、右图中,荷花村 到杏花村的图上距离 为2.5厘米,根据线 段比例尺,求出两个 村的实际距离是多少? 2.5×4
人教版六年级数学下册第六单元
小学数学总复 习
比和 比 例
比例的意义:
表示两个比相等的式子叫做比例。 组成比例的四个数,叫做比例的项。两端的两项 叫做比例的外项,中间的两项叫做比例的内项。
例如: 2.4 ∶1.6 =
内项 外项
60 ∶40
(外项) (内项 )
2.4 60 1.6 40
(内项 ) (外项 )
3.2 5000000
16000000 (cm) 160(km)
答:大理到楚雄的实际距离大约是160km。
6、在一张1:500的设计图纸上,量得一正方形建筑 的边长是20cm,这个建筑物的实际占地面积是多少 平方米? (1)求边长的实际距离: (2)求建筑物实际占地面积: 1 2 = 10000(m2) 20 100 500 20 500 10000 (cm) 100(m)
2 因为 6 : 15 5 2 8 : 20 5 2 2 5 5 所以 6 : 15 8 : 20
因为 15 8 120
6 20 120
120 120
所以 6 : 15 8 : 20
根据比例的意义判断:
根据比例的基本性质判断:
判断下面每组中的两个比能否组成比例?
=10(m)
杏花村
荷花村 0 4km
答:两个村的实际距离是10m。
4、量得北京到天津的图上距离是3cm, 实际距离是多少千米?
3×50 =150(km) 答:北京到天津的实际 距离是150km。 比例尺
0 50km
5、在比例尺是1︰5000000的云南地图上,量得大理到 楚雄的距离是3.2厘米。计算一下,大理到楚雄的实际 距离大约是多少千米?
比例尺的分类:
数值比例尺 按形式分: 线段比例尺
0 50km
1:5000000
缩小比例尺
1:5000000 50:1
按用途分:
放大比例尺
与比例尺有关的计算:
1、右图中,荷花村 到杏花村的图上距离 为2.5厘米,表示实 际距离10千米。求这 幅图的比例尺。
2.5cm : 10km
杏花村
荷花村
=2.5cm : 1000000cm
强 调
(1)比例尺与一般的尺不同,它是一个比,不能 带有计量单位;
(3)求比例尺时,一般要把较小的项化简成“1”。
(4)无论是计算比例尺、计算实际距离,还是计 算图上距离,都要先把参加计算的数量统一成较小的 长度单位,然后再计算。这样方便一些。 (5)计算实际距离和计算图上距离时,数值比例 尺最好写成分数形式,这样可以把比例尺当作一个分 数来参加计算。
比例的基本性质:
在比例里,两个外项的积等于两个内项的积,这
叫做比例的基本性质。
用字母表示为: 如果a:b=c:d,那么ad=bc。
a c 或 , 那么ad bc 。 b d
比和比例的区别与联系:
意义 比 表示两个 数相除 项数 2项 基本性质 比的前项和后项同时 乘或除以相同的数(0 除外),比值不变。 区别 比是一个 除法算式
1.5 6 解比例: = 2.5 解: 1.5
4
x
x = 6× 2.5 x
6 × 2.5 = 1.5
1
x=
10
比例尺:
一幅图的图上距离和实际距离的比,叫做 这幅图的比例尺。
图上距离 :实际距离 比例尺
或
图上距离 比例尺 实际距离
图上距离 比例尺 实际距离 实际距离 比例尺 图上距离
20:40=3:6 3和40当内项
3:6=20:40 6和20当内项
解比例:
根据比例的基本性质,如果已知比例中的任意 三项,求另外一个未知项。叫做解比例。
解比例的方法: 根据比例的基本性质,把比例式转化为乘积相 等的等式,再根据以前学过的解方程的方法求解。
例:X : 320 = 1 : 10
解:10X = 320×1 320×1 X= 10 X =32
5 因为 0.5 : 0.4 4 4 2 : 2.5 5 5 4 4 5 所以 0.5 : 0.4和2 : 2.5
(2) 0.5 : 0.4 和 2 : 2.5
因为 0.4 2 0.8
0.5 2.5 1.25
0.8 1.25
所以 0.5 : 0.4和2 : 2.5 不能组成比例。
答:这个建筑物的实际占地面积是10000m2。
7、修建一个长80m、宽60m的长方形操场,用 1:1000的比例尺画在图纸上,长和宽各画多少cm?
(1)求长的图上距离: 80m=8000cm 1 8000 8( cm) 1000 (2)求宽的图上距离: 60m=6000cm 1 6000 6( cm) 1000 答:长画8cm,宽画6cm。
表示两个 比例 比相等
两个外项的积等于两个 4项 内项的积。
比例是一 个等式
比例的判断:
判断两个比能不能组成比例,可以有两种方法:
(1)根据比例的意义断:看两个内项的积
是否等于两个外项的积。
判断下面每组中的两个比能否组成比例? (1) 6:15 和 8:20
不能组成比例。
根据比例的意义判断:
根据比例的基本性质判断:
根据比例的基本性质我们知道,两个内项的积等 于两个外项的积。倒过来理解,乘积相等(并且不为0) 的两个乘法式子,也可以改写成比例。 例:已知3×40 = 20×6, 你能把上面的等式改写成比例吗? 20:3=40:6 6:3=40:20 6:40=3:20 3:20=6:40 40:20=6:3 40:6=20:3
1、填空
(1)在a:7=9:b中,(7、9 )是内项,( a、b)是
外项,a×b=( 63 )。
(2)一个比例的两个内项分别是3和8,则两个外项的 积是(24 ),两个外项可能是( )和( )。 (3)在一个比例里,两个外项互为倒数,那么两个内 项的积是( 1 ),如果一个外项是 3 ,另一个 7 7 外项是( )。
=2.5 :1000000 =1 :400000 答:这幅图的比例尺为1:400000。
2、把图中的线段比例尺改成数值比例尺。
1cm:50km =1cm:5000000cm =1:5000000
比例尺
0
50km
3、右图中,荷花村 到杏花村的图上距离 为2.5厘米,根据线 段比例尺,求出两个 村的实际距离是多少? 2.5×4
人教版六年级数学下册第六单元
小学数学总复 习
比和 比 例
比例的意义:
表示两个比相等的式子叫做比例。 组成比例的四个数,叫做比例的项。两端的两项 叫做比例的外项,中间的两项叫做比例的内项。
例如: 2.4 ∶1.6 =
内项 外项
60 ∶40
(外项) (内项 )
2.4 60 1.6 40
(内项 ) (外项 )