t河床式取水构筑物word精品文档15页

合集下载

地表水取水构筑物ppt课件

地表水取水构筑物ppt课件
河床地质情况 疏松土质河床容易冲刷变形,坚硬岩石河床不易变形。
11
13.1.2 泥沙运动与河床演变对取水 构筑物的影响
河床变形
河床单向变形:指在长时间内,河床缓慢地不间断地冲刷 或淤积,不出现冲淤交错。
河床往复变形:指河道周期性往复发展的演变现象。 河床纵向变形:河床沿纵深方向的变化,表现为河床纵剖
第13章 地表水取水构筑物
1
概述
地表水取水构筑物的类型
按水源种类: 河流取水构筑物 湖泊取水构筑物 水库取水构筑物 海水取水构筑物
按取水构筑物的构造形式: 固定式取水构筑物:岸边式、河床式、斗槽式; 活动式取水构筑物:浮船式、缆车式。
在山区河流上,低坝式和低栏栅式取水构筑物。
河流横向变化是由横向输沙不平衡引起的。
造成横向输沙不平衡主要是由于环流,其中最常见的
是弯曲河段的横向环流。 水流绕过河道中的
各种沙滩或障碍物 时,也能形成环流。
13
13.1.2 泥沙运动与河床演变对取水 构筑物的影响
江河中泥沙、漂浮物及冰冻情况对取水构筑物的影响
泥沙,水草,冰块等堵塞取水口。 在设计取水构筑物时,必须了解江河的最高、最低和平均
越靠近河床含沙量越大,泥沙粒径较粗; 越靠近水面含沙量越小,泥沙粒径较细; 河心的含沙量高于两侧。
9

13.1.2 泥沙运动与河床演变对取水 构筑物的影响
河床演变
河床演变:水流与河床相互作用,使河床形态不断发生 变化的过程称河床演变。 水流与河床的相互作用通过泥沙运动体现。
挟沙能力:水流能够挟带泥沙的饱和数量。 水流条件改变时,挟沙能力也随之改变。 如果上游来沙量与本河段水流挟沙能力相适应,河床 既不外刷,也不淤积。 如果来沙量与本河段水流挟沙能力不相适应,河床将 发生冲刷或淤积。

2015-共同学习之旅-给水工程-14-地表水取水构筑物

2015-共同学习之旅-给水工程-14-地表水取水构筑物

3 取水工程
3.3 地表水取水构筑物
3.3.5 湖泊与水库取水构筑物
① 湖泊、水库中浮游生物种类和数量:近岸比湖中心多、浅水比深水多、无水草处比有水草处多; ② 水库取水构筑物的防洪标准与水库大坝等主要构筑物的防洪标准相同; ③ 隧洞取水一般适用于取水量大且水深10m以上的大型水库和湖泊取水; ④ 设置分层取水构筑物的原因: 1)暴雨过后大量泥沙进入湖泊水库,底部泥沙量大; 2)夏季藻类浅水区比深水区多; 3) 有利于水库泄洪、排砂时取水;
3 取水工程
3.3 地表水取水构筑物
3.3.3 江河固定式取水构筑物
河床式取水构筑物
石油污染土壤简述及修复技术
3 取水工程
3.3 地表水取水构筑物
3.3.3 江河固定式取水构筑物
河床式取水构筑物
石油污染土壤简述及修复技术
3 取水工程
3.3 地表水取水构筑物
3.3.3 江河固定式取水构筑物
河床式取水构筑物—典型真题
3 取水工程
3.3 地表水取水构筑物
3.3.3 江河固定式取水构筑物
岸边式取水构筑物—典型真题
2012-2-42.下列关于取水构(建)筑物的设计要求中,哪几项正确? (A)建在防洪堤内的取水泵房进口地秤设计标高为设计最高水位加0.5m (B)位于湖泊边的最底层进水孔下缘距湖底的高度不宜小于l.0m (C)位于水库中的侧面进水孔上缘在设计最低水位下的最小深度为0.3m (D)位于江河上的最底层顶面进水孔下缘河床的最小高庋为l.0m 解析: A错误,见M3教材P95及《给水规范》5.3.9条文说明,泵房建于堤内,可不按最高水位设计; B正确,见M3教材P93,或《给水规范》5.3.11; C错误,见《给水规范》5.3.12注2:“湖泊、水库、海边或大江河边的取水构筑物,还应考虑风浪的影响”,故考虑风浪的影响 后,最小深度就可能大于0.3m; D正确,见M3教材 P100,或《给水规范》5.3.10。选[BD]

固定式取水构筑物

固定式取水构筑物
(4)河床地质情况 疏松土质河床容易冲刷变形,坚硬岩石河床不易变形。
4、漂浮物、冰冻 河流中的漂浮物包括:水草、树枝、树叶、废弃物、泥沙、冰块甚至山
区河流中所放的木排等。 5、人类活动的影响
第6章 地表水取水工程
6.1 地表水取水工程概述
6.1.3 取水构筑物设计原则和位置的选择
一、设计原则:
(1)取水构筑物必须保证在各种季节,都能按规范要求取足相应保证率的设计 水量,设计最高水位应按百年一遇频率确定。
2、有稳定河床和河岸,靠近主流,有足够的水深 (1)在弯曲河段、顺直河段、蜿蜒弯曲、分叉段的选址如下图;在有河漫滩 的河段上,应尽可能避开河漫滩,并要充分估计河漫滩的变化趋势;在有沙 洲的河段上,应离开沙洲500m以外,当砂洲有向取水方向移动趋势时,这一 距离还需适当加大。 (2)在有支流汇入的河段上,应注意汇入口附近“泥沙堆积堆”的扩大和影 响,取水口应与汇入口保持足够的距离,一般取水口多设在汇入口干流的上 游河段。
(2)取水水质应符合有关水质标准要求。 (3)取水构筑物应根据水源情况,采取防护的相应保护措施。 (4)取水构筑物的布置应符合城市近远期总体规划要求。 (5)取水构筑物的布置必须结合河流的综合利用,取水构筑物不得影响河流航
运,必须满足防洪规范要求。 (6)在取水工程设计中,凡有条件的情况下,应尽量设计成节能型。输水管的
(2)取水构筑物与丁坝同岸时,应设在丁坝上游,与坝前浅滩起点相距一定距离 处,也可设在丁坝的对岸;如图6-4(P151)
6.1.3 取水构筑物设计原则和位置的选择
3、有良好的地质、地形及施工条件 (1)地质构造稳定、承载力高的地基上, (2)不宜设在淤泥、流沙、滑坡、风化严重和岩溶发育地段。 (3)取水构筑物不宜设在有宽广河漫滩的地方,以免进水管过长。 4、注意人工构筑物或天然障碍物

地表水取水构筑物共81页

地表水取水构筑物共81页
地表水取水构筑物
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 观而不 盲目。 ——马!
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚

地下水取水构筑物95页PPT

地下水取水构筑物95页PPT
法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿

地表水取水构筑物举例 ppt课件

地表水取水构筑物举例  ppt课件
地表水取水构筑物设计举例
岸边式取水构筑物设计计算 河床式取水构筑物设计计算
ppt课件
1
取水构筑物形式选择
影响取水构筑物形式选择的主要因素有: 1 河床和岸边的地形
岸陡、主流近岸时可选用岸边式取水构筑物;岸平缓, 主流离岸时,宜采用河床式取水构筑物;河岸平缓,岸 边无足够水深时,可采用桥墩式取水构筑物。 2 水位变幅 水位变幅大可考虑采用湿井式泵房、淹没式泵房或薄壁 瓶式泵房;水位变幅不大,可采用岸边式或河床式取水 构筑物。水位变幅大、无结冰的水体,但修建固定式有 困难,可采用移动式取水构筑物。最低水位不能满足取 水深度时,可采用底栏栅取水或低坝取水。 3 含砂量 河流在洪水期含砂量较高,且沿垂直方向分布有明显变 化时,可采用分层取水的取水构筑物。
3.岸边式取水构筑物的基本形式有哪些?各有何特点?适用条件如何? 4.河床式取水构筑物的构造组成是怎样的?常见的取水头部形式有
哪些?分别适用于什么场合? 5.什么是浮船式取水构筑物?有哪些特点? 6.缆车式取水构筑物由哪几部分组成? 7.斗槽式取水构筑物按槽中水流方向与河流水流方向的关系可分为哪
几种形式?如何选择? 8.试从湖泊、水库的水文特征分析它们采用的取水构筑物形式与江
及剖面图,泵房平面布置图。
完成作业时间:5月9日
ppt课件
36
ppt课件
37
ppt课件
38
ppt课件
39
ppt课件
40
ppt课件
41
思考题
1.地表水取水构筑物按其构造形式不同可分为哪几种类型?各自的适用 条件如何?
2.选择江河取水构筑物位置时应考虑哪些因素?弯曲河段取水构筑物位 置选在何处为宜?
28
2)进水间最低动水位

地表水取水构筑物

地表水取水构筑物
边,岸边水深不够或水质不好,而河中心具有 足够的水深或水质较好。
➢ 在岸边式或河床式取水构筑物之前,在河流岸
边用堤坝围成或在岸内开挖形成进水斗槽。
➢ 适用于取水量大、河流含沙量高、漂浮物较多、
冰絮较严重且有适合地形的情况。
.
26
13.3.1 岸边式取水构筑物
岸边式取水构筑物
➢ 直接从江河岸边取水的构筑物称为岸边式取水构筑物。 ➢ 岸边式取水构筑物由进水间和泵房两部分组成。 ➢ 岸边式取水构筑物适用于岸边较陡,主流近岸,岸边有足
平均流速。
.
4
13.1.1 江河的径流特征
确定设计水位和水量的原则
➢ 地表水取水构筑物的设计最高水位的设计频率,一般按百 年一遇(即1%)确定。
➢ 设计枯水位和设计枯水流量的保证率,应根据水源情况和 供水重要性选定。 当地表水作为城镇供水水源时,其设计枯水位和设计 枯水流量的保证率,一般可采用90%~97%。 当地表水作为工业企业供水水源时,其设计枯水流量 的保证率应技行有关部门的规定选取。
➢ 这类泥沙一般粒径较粗,通常占江河总挟沙量的5%~10%。
悬移质
➢ 悬浮在水中,随水流前进的泥沙称为悬移质(也称悬沙)。 ➢ 这类泥沙一般颗粒较细。在冲积平原河流中约占总挟沙量
的90%~95%。
➢ 两类泥沙既有区别又有联系。同一组成泥沙,在较缓水流作 用下,表现为推移质. ;在较强水流作用下,表现为悬移质。 7
.
14
13.2 江河取水构筑物位置的选择
.
15
13.2 江河取水构筑物位置的选择
江河取水构筑物位置的选择是否恰当,直接影响取水的 水质和水量、取水的安全可靠性、投资、施工、运行管理以 及河流的综合利用。

《取水建筑物》课件

《取水建筑物》课件
农业灌溉需求。
近代取水
随着工业革命的发展,人类开始建 设大型的水库、泵站等取水建筑物 ,以满足工业和城市用水需求。
现代取水
随着科技的发展,取水建筑物在结 构形式、材料选择、施工方法等方 面不断创新,同时考虑环境保护和 可持续发展。
02
取水建筑物的设计与建设
取水建筑物的设计原则
安全可靠
确保取水建筑物的结构安全, 能够抵御自然灾害和其他潜在 风险,保障水源的稳定供应。
钢材
用于构建取水建筑物的支架、 框架和网架等,具有较高的强
度和稳定性。
防水材料
用于取水建筑物的防水处理, 防止水分渗漏和侵蚀。
其他材料
根据具体情况选择适当的材料 ,如滤料、填料等,以满足特
定的功能需求。
03
取水建筑物的运行与管理
取水建筑物的运行方式
自然取水
分散取水
利用河流、湖泊、水库等自然水源, 通过引水渠、集水井等方式将水引入 取水建筑物。
《取水建筑物》ppt课件
contents
目录
• 取水建筑物的概述 • 取水建筑物的设计与建设 • 取水建筑物的运行与管理 • 取水建筑物的案例分析 • 取水建筑物的未来展望
01
取水建筑物的概述
取水建筑物的定义
定义
取水建筑物是指从河流、湖泊、 水库等水源中提取和输送到用水 地点的构筑物,是水利工程中的 重要组成部分。
期工作。
施工建设
按照设计要求进行施工 ,确保施工质量符合规
范要求。
验收与试运行
完成施工后进行验收和 试运行,确保取水建筑
物正常运行。
维护与管理
定期进行维护保养和检 查,确保取水建筑物的
长期稳定运行。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 工程资料1.1 河流自然条件(1)河流水位取P=1 %的设计洪水位为35.40m,取水保证率为97%的设计最低水位为20.50m。

(2)河流流量最大流量:27000 3/m s最小流量:320 3/m s。

(3)河流流速最大流速:2.48 /m s;最小流速:0.32 /m s。

(4)含砂量最大含砂量:0.473kg/m;最小含砂量;00153kg/m。

(5)水中其他悬浮物有一定效量的水草及青苔,无冰絮。

(6)河流主流及河床情况河流岸坡平缓,主流离岸边约90m处,最小水深为3.80m。

(7)水泵所需扬程26m。

1.2 设计任务设计一座河床式取水构筑物,,采用箱式取水头部,自流管进水。

计算书一份,图纸两张,包括取水头部平面图与剖面图,泵房平面布置图。

2 河床式取水构筑物简介河床式取水构筑物适用于河床稳定,岸坡平缓,主流离岸较远,岸边水深不够或水质不好,而河中具有足够水深或较好水质时。

其构成是:取水头部、进水管、吸水间和泵站。

(1)取水头部其要求是:①避免吸入泥沙;②不引起附近河床的冲刷;③避免其进水口被水内冰堵塞;④不被船只、木排及流冰撞击;⑤便于清洗。

其设计要求:①具有合理的外形;②取水头部进水口的位置适当,其上缘在最低水位以下0.5~1.0,冰盖底面以下0.2~0.5m,其下缘高出河底1.0~1.5m;③进口水流速度适当。

其类型有:喇叭管、蘑菇型、鱼型罩、箱式、墩式、斜板式、活动式。

设计中采用箱式取水头部。

箱式取水头部由周边开设进水孔的钢筋砼箱和设在箱内的喇叭管组成。

进水孔总面积较大,能减少冰渍和泥沙进入量。

适用于冬季冰凌较多或含沙量不大,水深较小的河流上采用,中小型取水工程用得较多。

中南地区含沙量较小的河流上箱的平面形状:圆形、矩形、棱形。

(2)进水管进水管有自流管与虹吸管之分,其自流管取水:自流管淹没在水中,河水靠重力自流,工作较可靠,水中含沙量较高时,为取得含沙少的水可在集水间壁上开设进水孔,可设置高位自流管。

适用于自流管埋深不大,或可以开挖隧道;而当河水位高于虹吸管顶时,无需抽真空即可自流进水;当河水位低于虹吸管顶,需先将虹吸管抽真空可进水。

虹吸高度2—6m。

适用于河滩宽阔,河岸较高,且为坚硬岩石,埋设自流管需开挖大量土石方,或管道需要穿越防洪堤时可采用虹吸管。

优点:减少水下土石方量,缩短工期,节约投资。

缺点:对管材、施工质量要较高,运行管理要求严,要装置真空设备,严密不漏气,可靠性不如自流管。

设计中采用的是自流管进水。

(3)吸水间其作用:(1)沉淀一部分泥沙及杂质;(2)便于安设格网;(3)可以根据吸水井中的水位变化判断取水系统的工作情况;(4)可以减少水泵吸水管的长度及埋深;(5)便于清洗自流管。

3. 河床式取水构筑物设计计算3.1 取水构筑物形式的选择因河流河岸较缓,主流远离岸边,宜采用固定式河床取水构筑物。

河心处用箱式取水头部,经自流管流入集水井,再经格栅、格网截留杂质后,用离心泵送出。

3.2 设计水量3.3 取水头部设计计算取水头部平剖面取为菱形,整体为箱式, 角取090侧面进水。

3.3.1 进水孔(格栅)计算其计算公式与岸边式取水构筑物进水孔面积计算公式一致。

式中 0F :进水孔或格栅的面积,2m ;Q :进水孔的设计流量,3/m s ;0v :进水孔设计流速,有冰絮时:00.10.3/v m s =- ;无冰絮时: 1k :栅条引起的面积减少系数,1b k b s=+;b 为栅条净距, 30—120mm , s 为栅条厚度(直径),10mm ;2k :格栅阻塞系数,采用0.75。

设计中取进水孔流速0v =0.4/m s ;栅条采用圆钢,其直径s =10mm ;取栅条净距 b=50mm ,取格栅阻塞系数2k =0.75,则:进水孔数量采用4个,设在两侧,则每个面积:20 2.1880.5544F F m === 进水孔尺寸采用:11900700B H mm mm ⨯=⨯格栅尺寸采用: 1000800B H mm mm ⨯=⨯实际进水孔面积:'20.634 2.52F m =⨯= 实际过孔流速:'0'120.5470.35/0.8330.75 2.52Q v m s k k F ===⨯⨯ 水流通过格栅的水头损失一般为0.05—0.1m ,设计取0.1m 。

根据航道要求,取水头部上缘距最枯水位深取1m ,进水孔下缘距河床底高1.5m ,进水箱底部埋深1.5m 。

取水头部设于河床主流深槽处,以保证有足够的取水深度,其最小水深为3.8m ,此处与进水间距离90m 。

取水头部形式与尺寸见图1,用隔墙分为两格,以便于清洗与检修。

为防止头部被水流冲刷,其底部基础设在河床以下1.5m 处,在冲刷范围头部周围抛石锚固。

具体见下图:图1.取水头部示意图3.3.2 自流管设计计算(1)自流管设计为两条,每条设计流量为:初选自流管流速:0.9/v m s =初步计算直径为:0.622D m ===,选650D mm = 自流管实际流速为:考虑到使用后自流管道淤积与结垢的情况,粗糙系数取0.016n =,自流 管长90L m =。

自流管水力半径:0.650.162544D R === 流速系数:116611(0.1625)46.170.016C R n ==⨯=水力坡度:22220.820.0019446.170.1625v i C R ===⨯自 自流管沿程水头损失:0.00194900.1746f h iL ==⨯=m自流管上设喇叭管进口一个、焊接090弯头一个、阀门一个、出口一个, 其局部阻力损失分别为:10.2ξ=、20.96ξ=、30.1ξ=、4 1.0ξ=。

自流管局部损失: 2212340.82()(0.20.960.1 1.0)0.0782g 29.8j v h ξξξξ=+++=+++⨯=⨯自m 正常工作时,自流管水头损失为:0.15520.0780.2526f j h h h =+=+=m自流管采用在河流高水位时单根重力流正向冲洗的方式。

(2)自流管校核当一根自流管故障时,另一根自流管应能通过设计流量的70%, 即:'30.70.70.5470.3829/Q Q m s ==⨯=,此时管中流速为: 故障时产生的水头损失为:'''f j h h h =+此时,水头损失为:'''0.3440.1520.496f j h h h =+=+=m3.3.3 集水间计算集水间用隔墙分为进水室和吸水室,为便于清洗与维修,进水室和吸水室用隔墙分别分成两格,隔墙上设连通管,管上设阀门。

( 1)格网计算采用平板格网,过网流速10.3/v m s =,网眼尺寸采用55mm mm ⨯,网丝直径2d mm =,设计取ε=0.8。

式中:1F —平板格网的面积,2m ;Q —通过格网的流量,3/m s ;1v —通过格网的流速,1v =0.2—0.4m/s ;1k —网丝引起的面积减少系数,212()b k b d =+ b —为网眼尺寸,mm ;d —为金属丝直径,mm ;2k —格网阻塞面积减少系数,2k =0.5;ε—水流收缩系数,0.64—0.80。

则: 22250.51(52)k ==+, 格网所需面积:210.5478.940.510.50.80.3F m ==⨯⨯⨯ 设置4个格网,每个格网所需面积为:进水孔尺寸采用:1117501500B H mm mm ⨯=⨯格网尺寸采用: 18801630B H mm mm ⨯=⨯则:实际进水孔面积:'21.75 1.5410.5F m =⨯⨯=实际过网流速:'1'120.5470.26/0.510.50.810.5Q v m s k k F ε===⨯⨯⨯ 通过平板格网的水头损失一般为0.1—0.2m ,设计取0.2m 。

(2) 集水间标高计算① 顶面标高当采用非淹没式时,集水间顶面标高=1%洪水位+浪高+0.5m ,即: ② 进水间最低动水位进水间最低动水位=97%枯水位-取水头部到进水间的管段水头损失-格栅损失=20.5-0.2526-0.1=20.15m③ 吸水间最低动水位吸水间最低动水位标高=进水间最低动水位标高-进水间到吸水间的平板格网水头损失=20.15-0.2=19.95m④ 集水间底部标高平板格网净高为1.63m ,其上缘淹没在吸水间动水位以下,取为0.1m ;其下缘应高于底面,取为0.3m ;则集水间底面标高为:19.95-0.1-1.63-0.4=17.82m集水间深度为:顶部标高-底面标高=36.3-17.82=18.48m 。

(4) 集水间深度校核:当自流管用一根管输送'30.70.70.5470.3829/Q Q m s ==⨯=,其流速''2440.3829 1.15/3.140.65Q v m s D π⨯===⨯时,水头损失为'0.496h =,此时,吸水间最低动水位为:20.5-0.1-0.496-0.2=19.704m ,则吸水间最低水位为:19.704-17.82=1.884m ,可满足水泵吸水要求。

3.3.4 集水间平面图为便于清洗与检修,进水室用隔墙分成两部分,吸水室用隔墙分为4部分,具体布置如下图:图2.集水间平面图3.3.5 格网起吊设备(1)平板格网起吊重量()W G PfF K =+式中:W :平板格网起吊重量;G :平板格网与钢绳的重量 1.47G KN =P :由格栅、格网或闸板两侧水位差而产生的压力,1.96P KPa =F :每个格网的面积,22.625F m =f :摩擦系数,视设备与导向槽的材料而定,0.44f =K :安全系数, 1.5K =则: (1.47 1.96 2.6250.44) 1.5 5.6W KN =+⨯⨯⨯=(2)吊架高度的计算与起吊设备选择平板格网高2.13m ,格网吊环高0.25m ,电动葫芦吊钩至工字梁下缘最小距离为0.78m ,格网吊至平台以上的距离取0.2m ,操作平台高为36.3m ,则起吊架工字梁下缘的标高为:36.3+0.2+2.13+0.25+0.78=39.66m 。

格网起吊高度=起吊架工字梁下缘标高—电动葫芦吊钩至工字梁下缘最小距离—集水间底部标高—平板格网下缘与集水间底部高差—平板格网高度—平板格网吊环高=39.66-0.78-17.52-0.2-2.13-0.25=18.78m选用CD1型电动葫芦,起吊重量为9.8kn ,起吊最大高度为24m 。

3.3.6排泥冲洗设备因河水泥砂量不大,故只设冲洗给水栓,不设排泥设备,定期放空,人工挖泥清洗。

3.3.7 取水泵房的设计(1)水泵选择水泵选4台,3用1备,有流量30.547/Q m s =,扬程26H m =,选卧式离心水泵30032S A ,其性能为:3537790/Q m h =:;扬程29.522.8H m =:;转速:1450/min n r =;泵轴功率:58.168N kw =:;电动机功率75N kw =,型号2804Y S -,效率80%78%η=:;水泵允许吸上真空高度 4.6s H m =。

相关文档
最新文档