勾股定理复习资料
勾股定理专题

专题复习 勾股定理(郑默言)本章常用知识点:1、勾股定理:直角三角形两直角边的 等于斜边的 。
如果用字母a,b,c 分别表示直角三角形的两直角边和斜边,那么勾股定理可以表示为: 。
2、勾股数:满足a 2+b 2=c 2的三个 ,称为勾股数。
常见勾股数如下:3、常见平方数:121112=; 144122=; 169132=; 196142=; 225152=;256162=289172=; 324182=; 361192=; 400202=;441212=; 484222= 529232=; 576242=; 625252=; 676262=;729272=专题一、勾股定理与面积1、、在Rt ▲ABC 中,∠C=︒90,a=5,c=3.,则Rt ▲ABC 的面积S= 。
2、一个直角三角形周长为12米,斜边长为5米,则这个三角形的面积为:3、直线l 上有三个正方形a 、b 、c ,若a 和c 的面积分别为5和11,则b 的面积为4、在直线l 上依次摆放着七个正方形(如图所示)。
已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4, 则S 1+S 2+S 3+S 4等于 。
5、三条边分别是5,12,13的三角形的面积是。
6、如果一个三角形的三边长分别为a,b,c 且满足:a2+b 2+c 2+50=6a+8b+10c,则这个三角形的面积为 。
7、如图,︒=∠90ACB ,BC=8,AB=10,CD 是斜边的高,求CD 的长?l321S 4S 3S 2S 18、如下图,在∆ABC 中,︒=∠90ABC ,AB=8cm ,BC=15cm ,P 是到∆ABC 三边距离相等的点,求点P 到∆ABC 三边的距离。
9、如右图:在四边形ABCD 中,AB=2,CD=1,∠A=60°,求四边形ABCD 的面积。
10、如图①,分别以直角三角形ABC 三边为直径向外作三个半圆,其面积分别用S 1、S 2、S 3表示,则不难证明S 1=S 2+S 3 .(1) 如图②,分别以直角三角形ABC 三边为边向外作三个正方形,其面积分别用S 1、S 2、S 3表示,那么S 1、S 2、S 3之间有什么关系?(不必证明)(2) 如图③,分别以直角三角形ABC 三边为边向外作三个正三角形,其面积分别用S 1、S 2、S 3表示,请你确定S 1、S 2、S 3之间的关系并加以证明;(3) 若分别以直角三角形ABC 三边为边向外作三个正多边形,其面积分别用S 1、S 2、S 3表示,请你猜想S 1、S 2、S 3之间的关系?.专题二、勾股定理与折叠1、如图,矩形纸片ABCD 的边AB=10cm,BC=6cm,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在DC 边上的点G 处,求BE 的长。
勾股定理全章综合复习

勾股定理全章综合复习A. 1个B . 2个C . 3个D . 4个(2)已知a, b, c为厶ABC三边,且满足(a2—b2)(a2+b2—c2)= 0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形 D.等腰三角形或直角三角形(3)三角形的三边为a、b、c,由下列条件不能判断它是直角三角形的是( )2 2 2A. a: b: c=8 : 16 :仃B. a - b =cC. a2=(b+c)(b-c)D. a: b: c=13 : 5 : 12(4)三角形的三边长为(a+b ) 2=c2+2ab,则这个三角形是( )A.等边三角形;B.钝角三角形;C.直角三角形;D.锐角三角形(5)直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为________(6)若厶ABC的三边长a,b,c满足a2 b2+c2 +200 = 12a + 16b + 20c,试判断△ ABC的形状。
例3:求最大、最小角的问题(1)若三角形三条边的长分别是7,24,25,则这个三角形的最大内角是度。
(2)已知三角形三边的比为1 : 3 : 2,则其最小角为。
考点三:勾股定理的应用例1:面积问题(1)下图是一株美丽的勾股树,其中所有的四边形都 是正方形,所有的三角形都是直角三角形,若正方形A 、 B 、C 、D 的边长分别是3、 3)(2)如图,△ ABC 为直角三角形,分别以 为直径向外作半圆,用勾股定理说明三个半圆的面积 关系,可得( ) A. S 1+ S 2> S 3B. S 1+ S 2= S 3C. S 2+S 3< S ID.以上都不是 (3 )如图所示,分别以直角三角形的三边向外作三个 正三角形,其面积分别是 S 、S 、S,贝陀们之间的关 系是( )A. S 1- S 2= S 3B. S 1+ S 2= S 3C. S 2+Sv S 1D. S 2- S 3=S 5、2、3,则最大正方形ED.(图AB, BC47 2)例2:求长度问题(1)小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后, 发现下端刚好接触地面,求旗杆的高度。
初二数学--勾股定理复习

初二数学 勾股定理复习一、知识点: 1、勾股定理:直角三角形两直角边的平方和等于斜边的平方。
数学式子:∠C=900⇒222a b c +=2、神秘的数组(勾股定理的逆定理):如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形. 数学式子:222a b c +=⇒∠C=900满足a 2+b 2=c 2三个数a 、b 、c 叫做勾股数。
要点回顾【知识点 1】 勾股定理内容: 〖基础回顾〗1、 在Rt △ABC 中, a ,b ,c 分别是三条边,∠C =90°,已知,a b 则c = ; 已知,a c 则b = 。
2、在Rt △ABC 中, a ,b ,c 分别是三条边,∠B =90°,已知a =6,b =10,则c= 。
3、在ABC Rt ∆中,,4,3cm b cm a == 则=c 。
4、在Rt △ABC 中,已知两边长分别是6和8,则其面积为 。
【知识点 2】 勾股数 回忆常见的勾股数 〖基础回顾〗1、下列各组数中,不能作为直角三角形三边长度的是( ) A .72425a b c === B . 1.52 2.5a b c === C .111345a b c === D .15817a b c === 2、、判断a 、b 、c 是否是勾股数。
(1)a=7,b=24,c=25 (2)a=5,b=13,c=12 (3)a=4,b=5,c=6 ⑷Aa【知识点 3】定理与逆定理的应用 〖基础回顾〗1、三角形的三边长为ab c b a 2)(22+=+,则这个三角形是 。
2、已知a 、b 、c 为三个正整数,如果a +b +c =12,那么以a 、b 、c 为边能组成的三角形是:①等腰三角形;②等边三角形;③直角三角形;④钝角三角形.以上符合条件的正确结论是______.3、在△ABC 中, AB=15,AD=12,BD=9,AC=13,求△ABC 的周长和面积。
勾股定理中考章节复习(知识点+经典题型分析总结)

勾股定理中考章节复习(知识点+经典题型分析总结)【知识要点】1. 勾股定理的概念:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么 a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方。
2. 勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形,其中c 为斜边。
3. 勾股数:①满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。
)②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)4.命题、定理、证明⑴ 命题的概念:判断一件事情的语句,叫做命题。
理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。
⑵ 命题的分类(按正确、错误与否分)真命题(正确的命题)命题假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
⑶ 公理:人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。
⑷ 定理:用推理的方法判断为正确的命题叫做定理。
⑸ 证明:判断一个命题的正确性的推理过程叫做证明。
⑹ 证明的一般步骤① 根据题意,画出图形。
② 根据题设、结论、结合图形,写出已知、求证。
③ 经过分析,找出由已知推出求证的途径,写出证明过程。
AB C a b c 弦股勾A BD 5.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。
第十八章 勾股定理总复习

第十八章勾股定理总复习:1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCB A方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =- ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数) 2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°D CB A ADB CCB DACA B D人教版八年级下册勾股定理全章类题总结类型一:等面积法求高【例题】如图,△ABC 中,∠ACB=900,AC=7,BC=24,C D ⊥AB 于D 。
期末复习(二) 勾股定理

解:根据题意,得 , .又 , .又 , .
(2) 的度数.
[答案] , , , , 为直角三角形, .由(1)得 为等腰直角三角形, , .
重难点3 勾股定理在实际生活中的应用
【例3】如图,高速公路的一侧有 , 两个村庄,它们到高速公路所在直线 的距离分别为
(1)你认为这个零件符合要求吗?为什么?
解:这个零件符合要求. , , . .又 , , . .
(2)求这个零件的面积.
[答案] 由(1)知 , ,∴这个零件的面积为 .
19.(12分)给出定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.
A
A. 直角三角形 B. 锐角三角形C. 钝角三角形 D. 以上答案都不对
第5题图
5.如图,“赵爽弦图”是吴国的赵爽创制的.以直角三角形的斜边为边长得到一个正方形,该正方形由4个全等的直角三角形再加上中间的小正方形组成,在一次游园活动中,数学小组制作了一面“赵爽弦图锣”,其中
C
A. B. C. D.
第7题图
7.图1是由边长为1的六个小正方形组成的图形,它可以围成图2所示的正方体,则图1中正方形的顶点 , 在图2围成的正方体中的距离是( )
C
A. B. C. D.
8.如图,在 中, 于点 , , , ,则 的为( )
B
A. B. C. D.
3.图1是放置在水平面上的可折叠式护眼灯,其中底座的高 ,连杆 ,灯罩 .如图2,转动 , ,使得 成平角,且灯罩端点 离桌面 的高度 为 ,求 的距离.
解:过点 作 于点 . , ,∴四边形 为矩形. , . , ,
∴在 中, . 的距离为 .
勾股定理知识点总结

第18章勾股定理复习一。
知识归纳1。
勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为,,斜边为,那么勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理。
我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2。
勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:,,化简可证。
方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为大正方形面积为所以方法三:,,化简得证3。
勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在中,,则,,②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5、利用勾股定理作长为的线段作长为、、的线段。
思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为和1的直角三角形斜边长就是,类似地可作.作法:如图所示ﻫ(1)作直角边为1(单位长)的等腰直角△ACB,使AB为斜边;ﻫ(2)以AB为一条直角边,作另一直角边为1的直角。
斜边为;(3)顺次这样做下去,最后做到直角三角形,这样斜边、、、的长度就是ﻫ、、、。
ﻫ举一反三【变式】在数轴上表示的点。
解析:可以把看作是直角三角形的斜边,,为了有利于画图让其他两边的长为整数,ﻫ而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。
勾股定理复习

勾 股 定 理一、考点点津1、勾股定理(1) 定理:直角三角形两条直角边b a 、 的平方和等于斜边c 的平方:222c b a =+(2)逆定理:假如三角形的三边长有下面关系:222c b a =+,那么这个三角形是直角三角形.2、直角三角形(1)定义:有一个角是直角的三角形叫直角三角形.(2)性质:①直角三角形的两个锐角互余.②直角三角形中,假如一个锐角等于 30°,那么它所对的直角边等于斜边的一半. ③直角三角形斜边上的中线等于斜边的一半.二、例题解析例1: 如图, 四边形ABCD 中, ∠A =60°, ∠B =∠D =90°, AB =10, CD =6, 求S A BCD .例2: △ABC 中, ∠BAC =90°, ∠C =30°, AD 平分∠BAC 交BC 于D, AB =AB =3+1求CD 的长.例3:一架长2.5m 的梯子,斜立在一竖起的墙上,梯子底端距离墙底0.7m ,假如梯子的 顶端沿墙下滑0.4m ,那么梯子底端将向左滑动多少米?例4:如图,等腰ABC 底边长为8cm ,腰长为5cm ,一动点P 在底边上从B 向C 以0.25cm/s 的速度移动,请你探究:当P 运动几秒时,P 点与顶点A 的连线PA 与腰垂直.例5: △ACD 中, AD =4, CD =3,(1) 如图1,若∠ADC =30°, 以AC 为边向外作等边△ACB, 求DB 的长;(2) 如图2,若∠ADC =45°, 以AC 为边向外作等腰Rt △ACB, 其中∠CAB =90°, 求BD 的长.三、课后精炼1、如图,△ABC 中, AC =15, AB =14, BC =13, CD 是高, 求 CD 的长及S △ABC..2、把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB = 3 cm ,BC = 5 cm , (1)重叠局部△DEF 的面积是多少cm2?(2)求EF 的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《勾股定理》期末复习资料一.知识点:1. 勾股定理及逆定理①勾股定理:如果直角三角形的两直角边长分别为 ,斜边为 ,那么 __ 。
直角三角形2+b 2=c 2(数) (形)公式的变形:(1)c 2= , c= ;(2)a 2= , a= ; (3)b 2= , b= ;②勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足 ___ ,那么这个三角形是 __ .a 2+b 2=c 2(数直角三角形注:(1)勾股定理主要反映了直角三角形三边之间的数量关系,它是解决直角三角形中有关计算与证明的主要依据; (2)勾股定理的逆定理主要的应用是把数转化为形,通过计算三角形三边之间的关系来判断一个三角形是否是直角三角形,它可作为直角三角形的判定依据.利用勾股定理逆定理证明三角形是否是直角三角形的步骤: ①先判断哪条边最大;②分别用代数法计算 a 2+b 2 和c 2 的值;③判断a 2+b 2和 c 2 是否相等。
若相等,则是直角三角形;若不相等,则不是直角三角形。
2、勾股数满足a 2 + b 2= c 2的三个正整数,称为勾股数。
注意:①勾股数必须是正整数,不能是分数或小数。
②一组勾股数扩大相同的正整数倍后,仍是勾股数。
常见勾股数如下:3、互逆命题和互逆定理 互逆命题:两个命题中,如果第一个命题的 恰为第二个命题的 ,而第一个命题的 恰为第二个命题的 ,像这样的两个命题叫做 .如果把其中一个叫做原命题,那么另一个叫做它的 .互逆定理:一般的,如果一个定理的逆命题经过证明是 ,那么它也是一个 ,称这两个定理互为 ,其中一个叫做另一个的逆定理.4、勾股定理的应用(最短路线、梯子下滑、船在水中航行等)C5、常见平方数:121112=; 144122=; 169132=; 196142=; 225152=;256162=289172=; 324182=; 361192=; 400202=;441212=; 484222= 529232=; 576242=; 625252=; 676262=;729272=二.考点剖析考点1:在直角三角形中,已知两边求第三边 1、一种盛饮料的圆柱形杯,测得内部底面半径为2.5cm ,高为12cm ,吸管放进杯里,杯口外面至少要露出4.6cm ,问吸管要做 cm .2、已知△ABC 中,AB =17,AC =10,BC 边上的高,AD =8,则边BC 的长为(A .21B .15C .9D .以上答案都不对 3、已知直角三角形的两边长为6、8,则另一条边长是 。
4、已知直角三角形两直角边长分别为5和12, 求斜边上的高.考点2:勾股定理与面积1、在Rt ▲ABC 中,∠C=︒90,a=5,c=3.,则Rt ▲ABC 的面积S= 。
2、一个直角三角形周长为12米,斜边长为5米,则这个三角形的面积为: 。
3、直线l b 的面积为4、在直线S 1、S 2等于 。
5、三条边分别是5,12,13的三角形的面积是 。
7、如下图,在∆ABC 中,︒=∠90ABC ,AB=8cm ,BC=15cm ,P 是到∆ABC 三边距离相等的点,求点P 到∆ABC 三边的距离。
8、有一块土地形状如图所示,︒=∠=∠90D B ,AB=20米,BC=15米,CD=7米,请计算这块土地的面积。
(添加辅助线构造直角三角形)9、如右图:在四边形ABCD 中,AB=2,CD=1,∠A=60°,求四边形ABCD图4EG C D BA10、已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD 的面积。
11.如图1-3-5所示的一块地,已知AD =4m ,CD =3m ,AD ⊥DC ,AB =13m ,BC =12m ,求这块地的面积.12如图,把矩形ABCD 沿直线BD 向上折叠,使点C 落在C ′的位置上,已知AB=•3,BC=7,求:重合部分△EBD 的面积13、如图①,分别以直角三角形ABC 三边为直径向外作三个半圆,其面积分别用S 1、S 2、S 3表示,则不难证明S 1=S 2+S 3 .(1) 如图②,分别以直角三角形ABC 三边为边向外作三个正方形,其面积分别用S 1、S 2、S 3表示,那么S 1、S 2、S 3之间有什么关系?(不必证明)(2) 如图③,分别以直角三角形ABC 三边为边向外作三个正三角形,其面积分别用S 1、S 2、S 3表示,请你确定S 1、S 2、S 3之间的关系并加以证明;(3) 若分别以直角三角形ABC 三边为边向外作三个正多边形,其面积分别用S 1、S 2、S 3表示,请你猜想S 1、S 2、S 3之间的关系?.考点3:勾股定理与折叠1、如图4,矩形纸片ABCD 的边AB=10cm,BC=6cm,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在DC 边上的点G 处,求BE 的长。
A DC B 图1-3-5D E2、如图,有一片直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,试求CD 的长。
3、如图,四边形ABCD 是长方形,把 △ACD 沿AC 折叠到△ACD /,△ACD /与BC 交于E,若AD=4,CD=3,求BE 的长.4、如图6,在矩形纸片ABCD 中,AB=33,BC=6,沿EF 折叠后,点C 落在AB 边上的点P 处,点D 落在Q 点处,AD 与PQ 相交于点H ,∠BPE=︒30(1) 求BE 、QF 的长(2) 求四边形QEFH 的面积。
考点4:利用股沟定理列方程求线段的长度1、如图,铁路上A 、B 两站相距25千米,C 、D 为两村庄,DA ⊥AB 于A 点,CB ⊥AB 于点B ,DA=15千米,CB=10千米,现在要在铁路上建设一个土特产收购站E ,使得C 、D 两村庄到收购站的距离相等,则收购站E 应建在距离A 站多远的距离?2.一架长为5米的梯子,斜立在一竖直的墙上,这时梯子的底端B滑1米到D 处,梯子的底端在水平方向沿一条直线也将下滑动1米到E2、 △ABC 中,AB=AC=20,BC=32,D 是BC 上一点,且AD ⊥AC ,求BD 的长.考点5:勾股数的应用1、下列是勾股数的一组是( )A 4,5,6,B 5,7,12C 12,13,15D 14 ,48,502、一个直角三角形的三边长是不大于10的三个连续偶数,则它的周长是 。
3、下列是勾股数的一组是( )A 2,3,4,B 5,6,7,C 9,40,41D 10 24 254、观察下面表格中所给出的三个数a,b,c ,其中a,b,c 为正整数,且a<b<c(1):试找给他们的共同点,并证明你的结论 (2):当a=21时,求b,c 的值,3,4,5 32+42=52 5,12,13 52+122=1327,24,25 72+242=252 9,40,41 92+402=412…….. …… 21,b,c212+b 2=c 2考点6:勾股定理及逆定理有关的几何证明1.若一个三角形的周长 123cm ,一边长为33cm ,其他两边之差为3cm , 则这个三角形是____________.2.若△ABC 的三边为a 、b 、c 满足a :b :c=1:1:2,则△ABC 的形状为 。
3.若△ABC 的三边a ,b ,c 满足条件a 2+b 2+c 2+338=10a+24b+26c,试判定△ABC 的形状.4.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE =CB 41,求证:AF ⊥FE .1. 在四边形ABCD 中,∠C 是直角,AB=13,BC=3,CD=4,AD=12 证明:AD ⊥BDDCBADFCEBA图(1) B B B A A A C C C图(2) 图(3) BA AB AB 6.CD 是▲ABC 中AB 边上的高,且CD 2=AD •DB ,试说明∠ACB=︒907.在正方形ABCD 中,E 是BC 的中点,F 为CD 上一点 且CF=41CD试说明▲AEF 是直角三角形。
8.▲ABC 三边的长为a,b, c ,根据下列条件判断▲ABC 的形状(1):a 2+b 2+c 2+200=12a+16b+20c ; (2):a 3-a 2b+ab 2-ac 2+bc 2-b 3=09.如图2-12,△ABC 中,∠C=90°,M 是BC 的中点,MD ⊥AB 于D . 求证:A D 2=AC 2+BD 2.10.如图ABC ∆中,P AC AB BAC ,,90=︒=∠为BC 上任意一点,求证:2222AP CP BP =+.11.BC 中,BC=a,AC=b,AB=c,若∠C=︒90,如下图(1)根据勾股定理可以得出:a 2+b 2=c 2,若▲ABC 不是直角三角形,如图(2)与图(3),请你类比勾股定理猜想a 2+b 2与c 2的关系,并且证明你的结论。
考点7:最短路线问题1、 有一正方体盒子,棱长是10cm ,在A 点处有一只蚂蚁它想到B 点处觅食,那么它爬行的最短路线是___________cm.(第1题) (第2题) (第3题) (第4题) AB2、有一个长方体盒子。
它的长是70cm ,宽和高都是50cm ,在A 点处有一只蚂蚁它想到B 点处觅食,那么它爬行的最短路线是___________cm.3、如图所示,一个二级台阶,每一级的长、宽、高分别为60cm 、30cm 、10cm ,A 和B 是这个台阶上两个相对的端点,在A 点处有一只蚂蚁它想到B 点处觅食,那么它爬行的最短路线是___________cm. 4、如下图、王力的家在高楼15层,一天他去买竹竿,如果电梯的长、宽、高分别为1.2m,1.2m,1.3m ,则他所买的竹竿最大长度是___________m.5、如图,已知圆锥的母线AS =10㎝,侧面展开图的夹角是90°,点C 为AS 的中点,A 处有一只蜗牛想吃到C 处的食物,但它不能直接爬到C 处,只能沿圆锥曲面爬行,请你画出蜗牛爬行的最短路程的图形并求出最短路程.6、有一圆形油罐底面圆的周长为24m ,高为6m ,一只老鼠从距底面1m A 处爬行到对角B处吃食物,它爬行的最短路线长为 C BA A考点8:勾股定理的实际应用1、如图,一辆小汽车在一条东西走向的城市公路上直道行驶,某一时刻刚好行驶到路边的检测仪的正前方30m 处,过了2s 后,测得小汽车与车速检测仪的距离为50m ,问这辆小汽车是否超速了?(小汽车在城市公路上行驶的速度不得超过70km/h )B C2.某日早5点,甲、乙两艘轮船同时从同一港口出发,甲以30海里/小时向北偏东45°航行,乙以15海里/小时向北偏西45°航行,问早7点时两船的距离是多少?。