lcd实时日历时钟评测报告

合集下载

实时时钟设计试验报告

实时时钟设计试验报告

实验报告5.按下Key4 Key3执行时,该按键执行加一操作,Led灯按照5秒顺时针一个一个亮。

6.按下Key5 Key3执行时,该按键执行减一操作,Led灯按照5秒顺时针一个一个亮。

7.按下Key6 Key3执行时,该按键执行确定操作,Led灯按照5秒顺时针一个一个亮。

8.按下INT 闹钟关闭。

5、实验总结本次实验是对课本上“电子日历钟设计”的加深。

通过本次试验我对led和led显示有了更加熟悉的认识,能熟练应用它们的功能。

同时我对时钟计数器也有了一定的认识,可以使用定时中断实现实时时钟,更重要的是我的实践能力有很大的提高。

程序设计中遇到的问题(1)、问题:初始完成程序后秒针走的时间很快,不是精确的一秒走一次。

原因:单片机只能用主系统时间,修改fprs后可以真确显示。

(2)、问题:时间切换函数与显示函数和设计的不一样,如只需要显示时,却多显示分。

原因:在仔细看代码后发现每次按键中断都在调用time1()函数,而seeond++在里面,所以每次都会加快秒的运行。

把seeond++移到外面放入time()函数后这个问题就解决了。

(3)、问题:运行时发现按键中断总会加快秒的运行,不是很精确。

原因:最后设置了一个虚拟的key7,当执行完时间指向ease7,然后调用Freshddisplaybuffer函数,这样就很好的解决了这个问题。

在程序调试过程中,设置断点并且在断点处增加一个LED灯,通过判断灯是否亮可以判断程序是否执行到该位置,对程序调试有很大的帮助。

开始WhileKey? 6 1 3 2 4 结束主程序流程图附件程序流程图:Yd_c_inter() Freshddisp laybuffer(); Set_D_T(); noise(); key=7; , 5 NDownNum() ; Freshddispl aybuffer(); Set_D_T(); noise(); key=7; FreshddisplaybufferTime1();Show_Time();Show_Time(); Time1() Freshddis playbuffer ();; Display_D ate(); noise(); 初始化蜂鸣器并关闭蜂鸣器BZOE = 0;初始化 INT 按键 Init_Inter();初始化 Lcd 和 Led; Init_Lcd(),Init_Led();UpNum(); Freshddis playbuffer (); Set_D_T(); noise(); key=7; key = 0; noise(); Time1(); Freshddis playbuffer (); Set_D_T(); noise();初始化按键中断InitKey_INTKR();Time1(); noise();关中断DI ()关中断EI()开中断EI();源代码:#pragma sfr#pragma EI#pragma DI#pragma access#pragma interrupt INTTM000 Time#pragma interrupt INTKR OnKeyPress#pragma interrupt INTP5 OnKeyOver void Init_Led();void InitKey_INTKR();void Init_Lcd();void Init_Inter();void LightOneLed(unsigned char ucNum);void LightOff();int Count_Day(int month);〃定义变量i,是切换时间的标志//定义 key=0 〃用于存放当前月的天数 〃默认的秒second=0 〃默认的分minute=0 〃默认的时hour=12 〃默认的天day=1 〃默认的月month=5 〃默认的年year=2014 〃默认的闹钟时=1 〃默认的闹钟分=1 〃秒的数码显示缓存区 〃分的数码显示缓存区 〃时的数码显示缓存区 〃天的数码显示缓存区 〃月的数码显示缓存区 〃年的数码显示缓存区 〃月,天的数码显示缓存区 〃时,分的数码显示缓存区 〃分,秒的数码显示缓存区 〃闹钟时的数码显示缓存区 〃闹钟分的数码显示缓存区 //INT 中断中间变量LCD_num[10]={0X070d,0x0600,0x030e,0x070a,0x0603,0x050b,0x050f,0x0700,0x070f,0x070b);//数字0〜〜9的显示码unsigned char Scond;// ......................................................... 延时函数1 .............................................. //void Delay(int k){int i,j;for(i=0;i<k;i++){for(j=0;j<k;j++){〃使用特殊功能寄存器 〃开中断 〃关中断 〃使用绝对地址指令 〃定义时间中断函数为Time 〃定义按键中断为OnKeyPress //定义INT 中断为OnKeyOverchar i=0;int key=0;int temp=1;int temp1 = 1;int second=0;int minute=0;int hour=12;int day=1;int month=5;int year=2014;int c_hour=1;int c_minute=1;int buffs[2];int buffm[2];int buffh[2];int buffday[2];int buffmonth[2];int buffyear[4];int buffmd[4];int buffhm[4];int buffms[4];int buffch[2];int buffcm[2];unsigned char Que = 0;int// .................................................. 初始化Led函数................ //void Init_Led(){PM13=0XF0; 〃端口13的第四位为输出模式PM14=0XF0; 〃端口14的第四位为输出模式PM15=0XF0; 〃端口15的第四位为输出模式)// ............................................................. 按键中断函数............... •//void InitKey_INTKR(){PM4 = 0x3F; //P4的六个端口设置为输入模式PU4 = 0x3F; 〃接通上拉电阻KRM = 0x3F; 〃允许六个按键中断KRMK = 0;PM3.0 = 1;PU3.0 = 1;EGP.5 = 1;PMK5 = 0;PPR5 = 0;KRPR = 1;)// ............................... 初始化lcd函数............... //void Init_Lcd(){ PFALL=0x0F; 〃所有接lcd引脚指定为lcd引脚LCDC0=0x34; 〃设置原时钟和时钟频率LCDMD=0x30; //设置lcd电压为3/5电压LCDM=0xC0; //4分时1/3偏压模式)// ............................... 初始化定时器Inter函数.............. 〃void Init_Inter(){ CRC00)=0; //CR000为比较寄存器PRM00=0X04; 〃计数时钟为fprs/2A8 CR000=0X7FFF;//时间间隔为1s TMMK010=1;//TMMK010 中断屏蔽TMMK000=0; //TMMK000 中断允许TMC00=0X0C; //TM00和CR000相等时进入清零&启动模式)void Time(){ second++;)// ............................................................. 按键中断函数............... •//void OnKeyPress(){DI();switch(P4&0x3F) 〃判断哪个按键按下{case 0x3e:key=1; //按键keyl按下break;case 0x3d:key=2; //按键key2按下break;case 0x3b:key=3; //按键key3按下break;case 0x37:key=4; //按键key4按下break;case 0x2f:key=5; //按键key5按下break;case 0x1f:key=7; //按键key6按下break;default:break;)EI();)// ............................................................... I NT按键中断函数............... //void OnKeyOver(){DI();Que = 0; //判断Que是否为0BZOE = 0; 〃蜂鸣器关闭EI();)// ................................................... Led小灯函数............... //void LightOneLed(unsigned char ucNum){switch(ucNum){ 〃检测变量ucNumcase 0:case 1:case 2:case 3:P13 |= (unsigned char) 1 << (ucNum);〃如果为0到3中的一个值则让LED1到LED4中的一个亮break;case 4:case 5:case 6:case 7:P14 |= (unsigned char) 1 << (ucNum - 4);〃如果为4到7中的一个值则让LED5到LED8中的一个亮break;case 8:case 9:case 10:case 11:P15 |= (unsigned char) 1 << (ucNum - 8);〃如果为8至U 11中的一个值则让LED9至U LED12中的一个亮break;default:break;))// ................................................... Led小灯熄灭函数............... 〃void LightOff(){P13 = 0;P14 = 0;P15 = 0;)// ............................................. 时间函数.............. 〃void Time1(){if((second % 5) == 0){ 〃秒大于 5 变为0Scond = second / 5 + 1;LightOff(); 〃调用小灯亮函数LightOneLed(Scond % 12);)if(second>=60){minute++; //秒大于60时分加1second=0;if(minute>=60){minute=0;hour++; //分大于60时时加1if(hour>=24){hour=0;day++; 〃时大于24时天加1temp=Count_Day(month);if(day>=temp){day=1;month++; 〃天大于当前月份的天数时月加1if(month>=13){month=1;year++; //月大于12时年加1))))))// ...................................... 计算当前月的天数.............. •//int Count_Day(int month){int day;if((month==4)||(month==6)||(month==9)||(month==11))//4,6,9,11 月为30 天day=30;else if(month==2){if((year%4==0&&year%100==0)||(year%400==0))day=29; 〃闰年2月29天elseday=28; //平年2月28天)elseday=31; //1,3,5,7,8,10,12 月为31 天return (day);)// ................................ 倒计时函数 ...... //void Show_Time(){ pokew(0xFA40,0x00); pokew(0xFA42,0x00); pokew(0XFA48,buffs[1]); pokew(0XFA4A,buffs[0]); pokew(0XFA44,buffm[1]); pokew(0XFA46,buffm[0]); pokew(0xFA4C,0x00); pokew(0xFA4E,0x00); Delay(100);) // ..................................................................... 日期显示函数 ................. •// void Display_Date(){buffm[0]|=0x0800;pokew(0xFA40,buffyear[3]);〃显示年 pokew(0xFA42,buffyear[2]);pokew(0xFA44,buffyear[1]);pokew(0xFA46,buffyear[0]);pokew(0xFA48,buffmonth[1]);〃显示月 pokew(0xFA4A,buffmonth[0]);pokew(0xFA4C,buffday[1]);〃显示日pokew(0xFA4E,buffday[0]);temp1=0;) // .................................................................... 时间显示函数 .............. •//void Display_Time(){ pokew(0xFA40,0x00);pokew(0xFA42,0x00);pokew(0xFA44,buffh[1]);〃显示时 pokew(0xFA46,buffh[0]);pokew(0xFA48,buffm[1]);〃显示分 pokew(0xFA4A,buffm[0]);pokew(0xFA4C,buffs[1]);〃显示秒 pokew(0xFA4E,buffs[0]);)// ..................................................................... 设定时间函数 .............. •//void Set_D_T(){int lcd_addr;lcd_addr = 0xFA40;switch(i){case 1:pokew(lcd_addr,buffyear[3]);〃时间年 pokew(lcd_addr+2,buffyear[2]);pokew(lcd_addr+4,buffyear[1]);pokew(lcd_addr+6,buffyear[0]);pokew(lcd_addr+8,0x00);pokew(lcd_addr+10,0x00);pokew(lcd_addr+12,0x00);pokew(lcd_addr+14,0x00);break;case 2:pokew(lcd_addr,0x00);pokew(lcd_addr+2,0x00);pokew(lcd_addr+4,0x00);pokew(lcd_addr+6,0x00);pokew(lcd_addr+8,buffmonth[1]);〃时间月 pokew(lcd_addr+10,buffmonth[0]);pokew(lcd_addr+12,0x00);pokew(lcd_addr+14,0x00);break;case 3:pokew(lcd_addr,0x00); //在lcd 右边显示1〃在lcd 右边显示0 〃在lcd 右边显示1 〃在lcd 右边显示0pokew(lcd_addr+2,0x00);pokew(lcd_addr+4,0x00);pokew(lcd_addr+6,0x00);pokew(lcd_addr+8,0x00);pokew(lcd_addr+10,0x00);pokew(lcd_addr+12,buffday[1]); 〃时间日pokew(lcd_addr+14,buffday[0]);break;case 4:pokew(lcd_addr,0x00);pokew(lcd_addr+2,0x00);pokew(lcd_addr+4,buffh[1]); 〃时间时pokew(lcd_addr+6,buffh[0]);pokew(lcd_addr+8,0x00);pokew(lcd_addr+10,0x00);pokew(lcd_addr+12,0x00);pokew(lcd_addr+14,0x00);break;case 5:pokew(0xFA40,0x00);pokew(0xFA42,0x00);pokew(0xFA44,0x00);pokew(0xFA46,0x00);pokew(0xFA48,buffm[1]); 〃时间分pokew(0xFA4A,buffm[0]);pokew(0xFA4C,0x00);pokew(0xFA4E,0x00);break;case 6:pokew(0xFA40,0xd1);pokew(0xFA42,0xd0);pokew(0xFA44,0xd7);pokew(0xFA46,0xd1);pokew(0xFA48,0x50);pokew(0xFA4A,0x56);pokew(0xFA4C,buffch[1]); 〃闹钟时pokew(0xFA4E,buffch[0]);break;case 7:pokew(0xFA40,0xd1);pokew(0xFA42,0xd0);pokew(0xFA44,0xd7);pokew(0xFA46,0xd1);pokew(0xFA48,0x50);pokew(0xFA4A,0x00);pokew(0xFA4C,buffcm[1]); 〃闹钟分pokew(0xFA4E,buffcm[0]);break;default:break;))// ........................................................ 切换时间函数 .............. …// void d_c_inter(){DI(); 〃关中断i++;if(i>7) 〃切换标志>7, i=1,否则i++i=1;EI(); 〃开中断)// ........................................................ 调整时间加函数 .............. •// void UpNum(){ switch(i){ case 1:year++;case 2:month++;if(month > 12){month = 1;)break;case 3:temp = Count_Day(month);day++;if(temp < day)day = 1;break;case 4:hour++;if(hour > 23)hour = 1;break;case 5:minute++;if(minute > 59)minute = 0;break;case 6:c_hour++;if(c_hour > 23)c_hour = 1;break;case 7:c_minute++;if(c_minute > 59)c_minute = 0;break;default:break;))// ........................................................ 调整时间减函数.............. …// void DownNum(){switch(i){case 1:year--;case 2:month--;if(month < 1){month = 12;)break;case 3:temp = Count_Day(month);day--;if(day < 1)day = temp;break;case 4:hour--;if(hour < 1)hour = 23;break;case 5:minute--;if(minute < 0)minute = 59;break;case 6:c_hour--;if(c_hour < 1)c_hour = 23;break;case 7:c_minute--;if(c_minute < 0)c_minute = 59;break;default: break;))// .................................................. 闹铃以及小灯函数.............. •//void noise(){if(c_hour == hour && c_minute == minute && Que == 1){ 〃闹铃的时,分与系统时,分相等,并且闹钟标志开启CKS=0XE0; 〃开启蜂鸣器输出,输出频率为0.98khz的音频Time1(); 〃调用时间函数))// ........................................................ 显示缓存区刷新时间函数.............. •//void Freshddisplaybuffer(){buffs[1]=LCD_num[second/10];/期的显示码放入秒的数码显示缓存区buffs[0]=LCD_num[second%10];buffm[1]=LCD_num[minute/10];//分的显示码放入分的数码显示缓存区buffm[0]=LCD_num[minute%10];buffm[0]|=0x0800; 〃分的后面显示一个"."buffh[1]=LCD_num[hour/10]; 〃时的显示码放入时的数码显示缓存区buffh[0]=LCD_num[hour%10];buffh[0]|=0x0800; 〃时的后面显示一个"."buffday[1]=LCD_num[day/10];//天的显示码放入天的数码显示缓存区buffday[0]=LCD_num[day%10];buffmonth[1]=LCD_num[month/10];//月的显示码放入月的数码显示缓存区buffmonth[0]=LCD_num[month%10];buffmonth[0]|=0x0800; 〃月的后面显示一个"."buffyear[3]=LCD_num[year/100/10];/^的显示码放入年的数码显示缓存区buffyear[2]=LCD_num[(year/100)%10];buffyear[1]=LCD_num[(year%100)/10];buffyear[0]=LCD_num[(year%100)%10];buffyear[0]|=0x0800; 〃年的后面显示一个"."buffmd[3]=LCD_num[month/10];//月,天的显示码放入月,天的数码显示缓存区buffmd[2]=LCD_num[month%10];buffmd[2]|=0x0800; 〃月,天后显示一个"."buffmd[1]=LCD_num[day/10];buffmd[0]=LCD_num[day%10];buffhm[3]=LCD_num[hour/10];//时,分的显示码放入时,分的数码显示缓存区buffhm[2]=LCD_num[hour%10];buffhm[2]|=0x0800; 〃时,分的后显示一个"."buffhm[1]=LCD_num[minute/10];buffhm[0]=LCD_num[minute%10];buffms[3]=LCD_num[minute/10];/^,秒的显示码放入分,秒的数码显示缓存区buffms[2]=LCD_num[minute%10];buffms[2]|=0x0800; 〃分,秒的后显示一个"."buffms[1]=LCD_num[second/10];buffms[0]=LCD_num[second%10];buffch[1]=LCD_num[c_hour/10];//闹钟时的显示码放入闹钟时的数码显示缓存区buffch[0]=LCD_num[c_hour%10];buffcm[1]=LCD_num[c_minute/10];//闹钟分的显示码放入闹钟分的数码显示缓存区buffcm[0]=LCD_num[c_minute%10];)// ................................. 主函数............... 〃void main(){DI(); 〃关中断PM3.4 = 0; //P3.3,P3.4端口设置为输出模式P3.4 = 1; //led灯初始化为点亮状态PM3.3 = 0;P3.3 = 0;BZOE = 0; 〃蜂鸣器初始化为熄灭Init_Lcd(); 〃初始化lcdInit_Led(); 〃初始化ledInitKey_INTKR(); 〃初始化按键EI(); 〃开中断Init_Inter(); //初始化中断while(1){ Time1(); noise(); switch(key){ case 0: Freshddisplaybuffer(); Time1(); Show_Time();Show_Time(); break; case 1:Time1();Freshddisplaybuffer(); Display_Date(); noise();break;case 2:Time1();Freshddisplaybuffer(); Display_Time(); noise();break;case 3:d_c_inter();Freshddisplaybuffer(); Set_D_T();noise();key=7; break;case 4:UpNum();Freshddisplaybuffer(); Set_D_T();noise();key=7; break;case 5:DownNum();Freshddisplaybuffer(); Set_D_T();noise();key=7; break;case 6:key = 0;if(i > 5)Que = 1;1 = 0;noise();case 7:Time1();Freshddisplaybuffer(); Set_D_T(); 〃调用计算时间函数 〃调用闹钟函数 〃没有按键执行 〃调用刷新函数 〃计算时间 〃调用显示时间函数 //按键1执行 〃计算时间 〃调用刷新函数 〃调用显示日期函数 〃调用闹钟函数 //按键2执行 //计算时间 //调用刷新函数 //调用时间显示函数 //调用闹钟函数 //按键3执行 〃调用时间切换函数 //调用刷新函数 〃调用时间设置函数 //调用闹钟函数 //按键4执行 〃调用时间加函数 //调用刷新函数 //调用时间设置函数 //调用闹钟函数 //按键5执行〃调用时间减函数 //调用刷新函数 //调用时间设置函数//调用闹钟函数//按键6执行〃判断是否确认 //调用闹钟函数〃虚拟按键7 //调用刷新函数//调用时间设置函数〃调用闹钟函数noise();break;。

lcd显示实验报告

lcd显示实验报告

lcd显示实验报告LCD显示实验报告概述:本次实验旨在研究和探究液晶显示技术的原理和应用。

液晶显示器(LCD)是一种广泛应用于电子设备中的平面显示技术,其优点包括低功耗、高对比度、视角广等特点。

通过实验,我们将深入了解LCD的工作原理以及其在各种设备中的应用。

实验步骤:1. 实验前准备在实验开始前,我们需要准备一块LCD显示屏、适配器、电源线以及连接所需的电缆。

2. 实验搭建将LCD显示屏与适配器通过电缆连接,并将电源线插入适配器和电源插座之间。

确保所有连接牢固可靠。

3. 实验操作打开电源开关,观察LCD显示屏是否正常亮起。

如果显示屏亮起,说明连接成功。

4. 实验观察观察LCD显示屏上的图像、文字或图标是否清晰可见。

注意观察显示屏的对比度、颜色鲜艳度以及视角范围等特点。

5. 实验分析通过对比实验观察到的LCD显示效果,我们可以得出以下结论:- LCD显示屏的图像清晰度和对比度较高,能够呈现出细节丰富的图像。

- LCD显示屏的颜色鲜艳度较高,能够准确还原图像的真实色彩。

- LCD显示屏的视角范围较广,观察者可以从不同角度观察屏幕上的内容而不会出现明显的颜色变化或失真。

实验原理:液晶显示器的工作原理是利用液晶分子的光学性质来调节光的透过程度。

液晶分子在电场的作用下会发生旋转或排列,从而改变光的透过程度,进而形成图像。

液晶显示器主要由两层玻璃基板构成,中间夹层有液晶分子。

在两层玻璃基板上分别涂有透明电极,并通过透明电极与外部电源相连。

当外部电源施加电压时,电场作用下液晶分子发生旋转或排列,从而改变光的透过程度。

液晶显示器通常由红、绿、蓝三种基本颜色的像素组成,通过控制每个像素的电压来调节颜色的深浅和亮度。

通过对不同像素的电压控制,液晶显示器能够呈现出丰富多彩的图像。

应用领域:液晶显示器已广泛应用于各种电子设备中,包括但不限于以下领域:1. 个人电脑和笔记本电脑:作为主要的显示设备,液晶显示器提供了清晰、高对比度的图像,使用户能够更好地操作和浏览信息。

6、用DS1302与LCD1602可调数字万年历实验设计报告

6、用DS1302与LCD1602可调数字万年历实验设计报告

利用时钟芯片DS1302实现万年历系别电子通信工程系组别第十组专业名称电子信息工程指导教师组内成员2013年8月19日用DS1302与LCD1602设计的可调式电子日历时钟一、总体设计1.1、设计目的为巩固所学的单片机知识,把所学理论运用到实践中,用LCD1602与DS1302 设计可调式电子日历时钟。

1.2、设计要求(1)显示:年、月、日、时、分、秒和星期;(2)设置年、月、日、时、分、秒和星期的初始状态;(3)能够用4个按键调整日历时钟的年、月、日、时、分、秒和星期;完成可调式电子日历时钟的硬件和软件的设计,包括单片机的相关内容;日历时钟模块的设计,液晶显示模块的设计,按键模块的设计。

控制程序的编写等。

备注:本程序另外添加了每到上午8:10和下午2:10的闹钟提醒功能。

1.3、系统基本方案选择和论证1.3.1、单片机芯片的选择方案方案一:采用89C51芯片作为硬件核心,采用Flash ROM,内部具有4KB ROM 存储空间,能于3V的超低压工作,而且与MCS-51系列单片机完全兼容。

方案二:采用STC12C5A60S2系列单片机是宏晶科技生产的单时钟/机器周期(1T)的单片机,是高速/低功耗/超强抗干扰的新一代8051单片机,指令代码完全兼容传统8051,但速度快8-12倍。

内部集成MAX810专用复位电路,2路PWM,8路高速10位A/D转换(250K/S),针对电机控制,强干扰场合。

但造价较高。

1.3.2 、显示模块选择方案和论证:方案一:采用点阵式数码管显示,点阵式数码管是由八行八列的发光二极管组成,对于显示文字比较适合,如采用显示数字显得太浪费,且价格也相对较高。

所以不用此种作为显示。

方案二:采用LED数码管动态扫描,虽然LED数码管价格适中,但要显示多个数字所需要的个数偏多,功耗较大,显示出来的只是拼音,而不是汉字。

所以也不用此种作为显示。

方案三:采用LCD液晶显示屏,液晶显示屏的显示功能强大,可显示大量字符,且视觉效果较好,外形美观。

液晶数字电子钟实验报告

液晶数字电子钟实验报告
对照题目所给的原理图,题目本身没有提供相应的时钟芯片,因此,我们
5
小组选择方式二。 1.3.2 键盘选择: 方案一:阵列式键盘(如图)
阵列式键盘: 行列式键盘的原理就是每一行线与每一列线的交叉地方不相通,而 是接上一个按键,通过按键来接通 . 特点: 以省出不少的 I/O 口资源,程序编写相对复杂点,适用于键数比较多的情况. 方案二: 独立式键盘: (如图)
8
2.1 AT89C52 模块
2 主要硬件描述
Mcs51 单片机的硬件结构(如图)
1)一个 8 位的微处理器(CPU) 2)片内数据存储器 RAM(128B/256B) 3)片内程序存储器 ROM/EPROM(4kB/8kB) 4)4 个 8 位并行 I/O 拉口 P0-P3,每个口既可以作输入,也可以作输出 5)2 个 16 位定时器/计数器 6)5 个中断源的中断控制系统
4
2.根据题目要求,选择元器件,通过理论分析和计算选择电路参数; 3.根据操作功能要求,确定键盘控制功能; 4.按设计要求确定显示合理安排格式及内容; 5.采用 C 语言编写应用程序并调试通过; 6.对系统进行测试和结果分析; 7.撰写设计报告和答辩 PPT。 1.3 方案选择与液晶数字电子钟的研究情况 1.3.1 时钟芯片选择: 方案一:采用外围时钟芯片,如并行接口时钟芯片 DS12887、串行接口时钟芯片 DS1302。 这种方法可产生较为精准的时间,且使用简单,接口容易,与微型计算机连 线较少等特点,在目前得到广泛应用。 方案二:不使用芯片,采用单片机的定时计数器 这种方法原理是利用单片机芯片的定时器来产生固定的时间,模拟时钟的 时, 分,秒.如:利用 AT80C52 芯片,定时器用工作方式 1,每 50ms 产生一个中 断,循环 20 次,即 1s 周期.每一个周期加 1,那么 1min 为 60 个周期,1h 就是 60*60=3600 个周期,一天就是 3600*24=86400 个周期.此方法优点是 可以省去一些外围的芯片。但这种方法只能适用于一些要求不是十分精确, 不做长期保留的场合。

单片机电子时钟(LCD显示)综合实验报告

单片机电子时钟(LCD显示)综合实验报告

单片机综合实验报告题目:电子时钟(LCD)显示一、实验内容:以AT89C51单片机为核心的时钟,在LCD显示器上显示当前的时间:●使用字符型LCD显示器显示当前时间。

●显示格式为“时时:分分:秒秒”。

●用4个功能键操作来设置当前时间,4个功能键接在P1.0~P1.3引脚上。

功能键K1~K4功能如下。

●K1—进入设置现在的时间。

●K2—设置小时。

●K3—设置分钟。

●K4—确认完成设置。

程序执行后工作指示灯LED闪动,表示程序开始执行,LCD显示“00:00:00”,然后开始计时。

二、实验电路及功能说明1)单片机主控制模块以AT89C51单片机为核心进行一系列控制。

2)时钟显示模块用1602为LCD显示模块,把对应的引脚和最小系统上的引脚相连,连接后用初始化程序对其进行简单的功能测试。

测试成功后即可为实验所用,如图:3)时间调整电路用4个功能键操作来设置当前时间,4个功能键接在P1.0~P1.3引脚上。

功能键K1~K4功能如下。

K1—进入设置现在的时间。

K2—设置小时。

K3—设置分钟。

K4—确认完成设置。

如图:三、实验程序流程图:主程序:时钟主程序流程子程序:四、实验结果分析实验结果及分析:单片机的晶振可以根据要求设定。

6MHZ为和现实时间显示相同。

实验采用12MHZ晶振采用方式1定时,选取50ms采用20次中断达到一秒,采用查表方式控制LCD显示。

当烧入程序后开始运行,根据初始值设定可以观察到显示的时间,这里为了更明显观察显示数据变化把起始值设为23:59:50 运行后显示,K1为进入现在设置时间,当按下K1后显示,和实验要求相比较,实现了按下K1进入现在时间设置,按下K4确认完成时间设置的功能;不同之处: 当进入时间设置时在按下K1设置小时,再次按下K1是设置分钟。

增加功能:进入时间设置并选择设置位置后K2键位数字增加功能,K3键为数字减小功能。

根据仿真结果能够确定编程正确,基本实现了所有功能,而且有所改进。

LCD显示电子时钟设计

LCD显示电子时钟设计

LCD显示电子时钟设计LCD显示电子时钟是一种以液晶显示技术为基础的电子时钟设计。

液晶显示器(Liquid Crystal Display,简称LCD)是指通过操控液晶分子的取向和透光性来显示图像的显示器,具有薄、轻、便携、低功耗、对环境光适应性强等特点,因此被广泛应用于各种电子设备中。

设计一个LCD显示电子时钟的目的是为了制作一个精确显示时间的时钟装置,并且通过液晶显示器来实时显示时间。

具体的设计思路如下:1.显示屏设计:选择一款适用的液晶显示屏,通过与微控制器连接来实时显示时间。

可以选择有背光功能的液晶显示屏,以便在光线较暗的环境中也可以清晰显示。

2.微控制器选择:选择一款适用的微控制器,来控制液晶显示器的驱动和时间的计算。

常用的微控制器有PIC、AVR等,可以根据需求选择性能和功能适配的型号。

3.时钟电路设计:通过时钟电路提供准确的时间信号,并连接到微控制器中,用于计时和更新时间。

时钟电路可以通过晶振或者RTC(实时时钟芯片)实现。

4.按键输入设计:设计一组按键接口,用于调整和设置时间。

通过按键,可以实现时间的调整、闹钟设置、12/24小时制切换等功能。

5.动态电源设计:由于时钟是一个长时间运行的装置,因此需要设计一个适合的动态电源电路,以保证电源的稳定和可靠性。

可以选择使用电池供电,以应对停电等特殊情况。

6.温度补偿设计:由于液晶显示器的性能受环境温度的影响较大,可以采用温度传感器来感知环境温度,并通过微控制器对温度进行补偿,以提高LCD显示器的准确性。

7.其他功能设计:根据实际需求,可以增加其他功能模块,如闹钟、报时、温湿度检测、闪烁灯效果等。

总结起来,设计一个LCD显示电子时钟需要考虑液晶显示屏、微控制器、时钟电路、按键输入、动态电源、温度补偿等方面的因素。

通过合理的设计和电路连接,可以实现一个功能齐全、精确显示时间的电子时钟。

lcd数显温度万年历电波钟

lcd数显温度万年历电波钟

外观尺寸:29cm(宽)*18.5cm(高)可挂可摆,背面有挂孔,可挂在墙上,也可以安装随机配送的支架摆放在台面上。

电子说明书地址:/item.htm?spm=a1z09.5.0.4 0&id=16362908718功能特点:1、时间显示:时:分:秒,12/24小时制可选2、日历显示:日/月3、星期显示:英文简写4、温度显示:摄氏或华摄,范围:0℃-50℃(32℉-122℉),分辨率:0.1℃。

5、闹铃功能:可设置1个闹铃时间。

6、特殊日期提醒功能:可设置三个特殊日期提醒。

使用电源:两节AA电池(不配送电池),超省电,两节电池可使用一年以上。

使用说明:一、信号自动同步:当时钟正确装上电池后,稍等几秒,自动开始接收日本发射的无线电校时信号,接收过程中屏幕右上角显示一个闪动的信号接收塔标识。

当接收到正确的时间信号后,接收塔标识停止闪动并自动同步时间和日历信息,时钟每天会定时进行接收,无须人工干预。

如果接收不成功,时钟仍可以作为一个高精度石英钟使用。

时钟在接收信号的过程(接收塔标识闪动)中无法进行其他功能的操作,如果需要进行其它设置或取消接收,须按下‘+’键退出接收状态。

为了达到最好的接收效果,应将时钟远离其它用电器至少在1-2米以上,并可以适当转动时钟位置以获取最佳接收效果。

二、信号手动同步:在正常的时钟显示模式,长按‘+’键,强制进入信号接收状态,此时收塔标识闪动,接收过程与自动同步一样。

三、手动设定时钟、日历:在正常的时钟显示模式,长按‘CLK/CAL’键,进入时间日历设置界面,当前设置项目闪动,通过短按‘+,-’键调整数值,再短按‘CLK/CAL’确认并进入下一设置项目。

设置项目顺序:12/24时制—小时—分钟—年—月—日—时区。

四、每日闹钟设置:在正常的时钟显示模式,长按‘ALARM’键,进入闹铃设置界面,通过短按按‘+,-’键输入每天的闹铃时间,最后按‘ALARM’键确认。

在正常的时钟显示模式,短按‘-’键可以开启和关闭闹铃功能,当闹铃响时,按任意键都可以关闭闹铃。

LCD12864显示实时时钟例程可运行

LCD12864显示实时时钟例程可运行

DS1302是美国DALLAS公司推出的一种高性能、低功耗的实时时钟芯片,附加31字节静态RAM,采用SPI三线接口与CPU进行同步通信,并可采用突发方式一次传送多个字节的时钟信号和RAM数据。

实时时钟可提供秒、分、时、日、星期、月和年,一个月小与31天时可以自动调整,且具有闰年补偿功能。

下面是一段12864液晶显示实时时钟的程序:/****************************************************************************** *********时间:2012.11.30晶振:11.0592MHz芯片:STC89C52RC功能描述:在12864上显示年、月、日、星期、时、分和秒等时间信息******************************************************************************* ********/#include<reg52.h>#define uchar unsigned charsbit CLK=P1^4; //DS1302引脚定义sbit IO=P1^5;sbit CE=P1^6;sbit ACC0=ACC^0;sbit ACC7=ACC^7;sbit RS=P2^4; //12864引脚定义数据口为P0sbit RW=P2^5;sbit EN=P2^6;sbit PSB=P2^1;sbit RET=P2^3;void Input_1byte(uchar TD) //DS1302输入一字节数据{uchar i;ACC=TD;for(i=8;i>0;i--){IO=ACC0;CLK=1;CLK=0;ACC=ACC>>1;}}uchar Output_1byte(void) //DS1302输出一字节数据{uchar i;for(i=8;i>0;i--){ACC=ACC>>1;ACC7=IO;CLK=1;CLK=0;}return(ACC);}void Write_DS1302(uchar add,uchar dat)//向DS1302写{CE=0;CLK=0;CE=1;Input_1byte(add);Input_1byte(dat);CE=0;}uchar Read_DS1302(uchar add) //从DS1302读{uchar inf; //信息临时存储变量CE=0;CLK=0;CE=1;Input_1byte(add);inf=Output_1byte();CE=0;return(inf);}/**********************DS1302初始化*****************************/void init_1302(){if(Read_DS1302(0xd1)==0x55) //判断内存单元的内容,是否进行初始化 {return;}else{Write_DS1302(0x8e,0x00); //关闭写保护Write_DS1302(0x90,0x00); //电池充电设置Write_DS1302(0x80,0x00); //秒Write_DS1302(0x82,0x54); //分Write_DS1302(0x84,0x20); //时Write_DS1302(0x86,0x30); //日Write_DS1302(0x88,0x11); //月Write_DS1302(0x8a,0x05); //星期Write_DS1302(0x8c,0x12); //年Write_DS1302(0xd0,0x55); //写RAMWrite_DS1302(0x8e,0x80); //打开写保护}}/**********************延时函数*****************************/ void DelayUs2x(unsigned char t){while(--t);}void DelayMs(unsigned char t){while(t--){//大致延时1mSDelayUs2x(245);DelayUs2x(245);}}/**********************12864判忙*****************************/ void check_busy(){RS=0;RW=1;EN=1;while((P0&0x80)==0x80);EN=0;}/**********************12864写指令*****************************/ void write_com(uchar com){check_busy();RS=0;RW=0;EN=1;P0=com;DelayUs2x(250);EN=0;DelayUs2x(250);}/**********************12864写数据*****************************/void write_data(uchar dat){check_busy();RS=1;RW=0;EN=1;P0=dat;DelayUs2x(250);EN=0;DelayUs2x(250);}/**********************12864初始化函数*****************************/void init(){DelayMs(40); //大于40MS的延时程序PSB=1; //设置为8BIT并口工作模式DelayMs(1); //延时RET=0; //复位DelayMs(1); //延时RET=1; //复位置高DelayMs(200);write_com(0x30); //选择基本指令集DelayUs2x(250); //延时大于100uswrite_com(0x30); //选择8bit数据流DelayUs2x(200); //延时大于37uswrite_com(0x0c); //开显示(无游标、不反白)DelayUs2x(250); //延时大于100uswrite_com(0x01); //清除显示,并且设定地址指针为00HDelayMs(200); //延时大于10mswrite_com(0x06); //指定在资料的读取及写入时,设定游标的移动方向及指定显示的移位,光标从右向左加1位移动DelayUs2x(250); //延时大于100us}/**********************清屏*****************************/void clrscreen(){write_com(0x01);DelayMs(15);}/*********************************************************主函数********************************************************/void main(){uchar sec,sec1,sec2;uchar min,min1,min2;uchar hour,hour1,hour2;uchar date,date1,date2;uchar mon,mon1,mon2;uchar day;uchar year,year1,year2;uchar table1[]="年月日时分秒星期温度摄氏"; //长度24uchar table2[]={0XD2,0XBB, 0XB6,0XFE, 0XC8,0XFD, 0XCB,0XC4, 0XCE,0XE5, 0XCE,0XF9, 0XC8,0XD5}; //长度14 uchar table3[]="0123456789"; //长度10init(); //液晶初始化clrscreen();DelayMs(200);init_1302(); //1302初始化只初始化一下就可以需要下载两次DelayMs(50);write_com(0x80); //显示20write_data('2');write_data('0');write_com(0x82); //显示年write_data(table1[0]);write_data(table1[1]);write_com(0x84); //显示月write_data(table1[2]);write_data(table1[3]);write_com(0x86); //显示日write_data(table1[4]);write_data(table1[5]);write_com(0x91); //显示时write_data(table1[6]);write_data(table1[7]);write_com(0x93); //显示分write_data(table1[8]);write_data(table1[9]);write_com(0x95); //显示秒write_data(table1[10]);write_data(table1[11]);write_com(0x88); //显示星期write_data(table1[12]);write_data(table1[13]);write_data(table1[14]);write_data(table1[15]);while(1){sec=Read_DS1302(0x81); ////读秒sec1=sec&0x0f; //个位sec2=sec>>4; //十位min=Read_DS1302(0x83); ////读分min1=min&0x0f; //个位min2=min>>4; //十位hour=Read_DS1302(0x85); ////读时hour1=hour&0x0f; //个位hour2=hour>>4; //十位date=Read_DS1302(0x87); ////读日date1=date&0x0f; //个位date2=date>>4; //十位mon=Read_DS1302(0x89); ////读月mon1=mon&0x0f; //个位mon2=mon>>4; //十位year=Read_DS1302(0x8d); ////读年year1=year&0x0f; //个位year2=year>>4; //十位day=Read_DS1302(0x8b); ////读星期write_com(0x94); //送显示内容write_data(table3[sec2]); //秒write_data(table3[sec1]);write_com(0x92);write_data(table3[min2]); //分write_data(table3[min1]);write_com(0x90);write_data(table3[hour2]); //时write_data(table3[hour1]);write_com(0x85);write_data(table3[date2]); //日write_data(table3[date1]);write_com(0x83);write_data(table3[mon2]); //月write_data(table3[mon1]);write_com(0x81);write_data(table3[year2]); //年write_data(table3[year1]);write_com(0x8a);write_data(table2[2*day-2]); //星期write_data(table2[2*day-1]);}}(注:范文素材和资料部分来自网络,供参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

lcd实时日历时钟评测报告部门: xxx时间: xxx制作人:xxx整理范文,仅供参考,可下载自行修改课程设计说明书课程名称:单片机原理及应用设计题目: LCD日历院系:学生姓名:学号:专业班级:2018年3月 1日目录摘要4一.设计任务和要求4二.方案论证4三.核心元件的性能41.AT89C5141.1 功能特性概括:51.2 管脚说明:52.DS130272.1DS1302引脚功能72.2DS1302的控制字82.3 DS1302的寄存器92.4 DS1302的数据输入输出10四.理论分析与计算11五.电路与程序设计111.系统硬件设计111.1系统总原理图111.2主控部分(单片机MCS-51>111.3 计时部分<实时时钟芯片DS1302)121.4Proteus仿真图122.系统软件设计132.1程序流程图122.2程序源代码12六.结果分析23七.设计体会总结24参考文献25摘要此次课程设计的要求是通过LCD与单片机的连接模块能够显示数字<如时间)、字符<如英文)和图形等,这就需要专门的时钟芯片-----DS1302。

DS1302是一种高性能、低功耗、带RAM的实时时钟芯片,它能够对时,分,秒进行精确计时,它与单片机的接口使用同步串行通信,仅用3条线与之相连接,就可以实现MCS-51单片机对其进行读写操作,把读出的时间数据送到LM044L上显示。

程序运行时,必须先对LM044L进行初始设置,然后,通过单片机从DS1302中获取时间并通过LM044L显示。

同时,进行循环赋值,使LCD 动态显示当前的时间。

b5E2RGbCAP关键字:AT89C51、DS1302,LM044L显示器朗读显示对应的拉丁字符的拼音字典 - 查看字典详细内容一.设计任务和要求1. 利用DS1302实现年月日时分秒,并用LCD显示。

2.通过LCD模块与单片机的接口,能显示数字<如时间)、字符<如英文)。

3. 硬件设计部分,根据设计的任务选定合适的单片机,根据控制对象设计接口电路。

设计的单元电路必须有工作原理,器件的作用,分析和计算过程;p1EanqFDPw4. 软件设计部分,根据电路工作过程,画出软件流程图,根据流程图编写相应的程序,进行调试并打印程序清单;DXDiTa9E3d5.原理图设计部分,根据所确定的设计电路,利用Protel工具软件绘制电路原理图,提供元器件清单。

6计算说明书部分包括方案论证报告打印版或手写版,程序流程图具体程序等7. 图纸部分包括具体电路原理图打印版8. 设计要求还包括利用一天时间进行资料查阅与学习讨论,利用5天时间在实验室进行分散设计,最后三天编写报告。

最后一天进行成果验收。

RTCrpUDGiT二.方案论证实现数字电子钟的设计有以下两种基本方案,现就两种基本方案的优劣进行具体论证,从而说明选择方案二的理由。

5PCzVD7HxA方案一:直接用单片机的内部定时器来实现时间。

该方案以MCS-51单片机为主控芯片,以MCS-51的内部定时器产生的1s中断作为时钟的驱动,然后再通LCD液晶显示器来组成数字钟电路。

但是此方案最大的缺点在于单片机89C51产生的1s中断存在误差,如果工作时间长的话,数字时钟显示的时间将会出现严重的偏差,不够精确。

jLBHrnAILg方案二:使用串行接口时钟芯片DS1302设计时钟电路。

该设计方案以MCS-51单片机为主控芯片,以串行时钟芯片DS1302为核心计时芯片,然后再通过一个LCD液晶显示器组成数字时钟电路。

更重要的是,DS1302时钟芯片的加入大大提高了数字钟时间的准确性,而且该电路在断电后不丢失时间和数据信息时也使得该方案的研究与提升更具有开发的意义。

xHAQX74J0X三.核心芯片功能介绍1.AT89C52AT89S52[3]美国ATMEL公司生产的低功耗,高性能CMOS 8位单片机,片内含4K BytesISP(In-system programmable>的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及AT89C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元。

单片机AT89S51强大的功能可为许多嵌入式控制应用系统提供高性价比的解决方案。

LDAYtRyKfEAT89C51芯片的引脚结构如图1所示:1.1功能特性概括:AT89S51提供以下标准功能:40个引脚、4K Bytes Flash片内程序存储器、128 Bytes的随机存取数据存储器<RAM)、32个外部双向输入/输出<I/O)口、5个中断优先级2层中断嵌套中断、2个数据指针、2个16位可编程定时/计数器、2个全双工串行通信口、看门狗<WDT)电路、片内振荡器及时钟电路。

此外,AT89S51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。

空闲模式下,图1 AT89C51引脚图 CPU暂停工作,而RAM、定时/计数器、串行通信口、外中断系统可继续工作。

掉电模式冻结振荡器而保存RAM的数据,停止芯片其它功能直至外中断激活或硬件复位。

同时该芯片还具有PDIP、TQFP和PLCC等三种封装形式,以适应不同产品的需求。

Zzz6ZB2Ltk1.2 管脚说明:P0口:P0口为一个8位漏级开路双向I/O口,也即地址/数据总线复用口。

作为输出口用时,能驱动8个TTL逻辑门电路。

对端口写“1”时,被定义为高阻输入。

dvzfvkwMI1在访问外部数据存储器或程序存储器时,这组口线分时转换地址<低8位)和数据总线复用,在访问期间激活内部上拉电阻。

rqyn14ZNXI 在Flash编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。

P1口:P1口是一个带内部上拉电阻的8位双向I/O口,P1口的输出缓冲级可驱动(吸收或输出电流>4个TTL逻辑门电路。

对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。

作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(I>。

EmxvxOtOco 在Flash编程和程序校验期间,P1接收低8位地址。

部分端口还有第二功能,如表1所示P2口:P2口是一个带有内部上拉电阻的8位双向I/O口, P2口的输出缓冲级可驱动(吸收或输出电流>4个TTL逻辑门电路。

对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。

作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(I>。

SixE2yXPq5在访问外部程序存储器或16位地址的外部数据存储器(例如执行MOVX@DPTR指令>时,P2口送出高8位地址数据。

在访问8位地址的外部数据寄存器(例如执行MOVX@Ri指令>时,P2口线上的内容(也即特殊功能寄存器(SFR>区中P2寄存器的内容>,在整个访问期间不改变。

6ewMyirQFL在Flash编程或校验时,P2亦接收高位地址和其它控制信号。

P3口: P3口是一个带有内部上拉电阻的双向8位I/O口, P3口的输出缓冲级可驱动(吸收或输出电流>4个TTL逻辑门电路。

对P3口写“1”时,它们被内部的上拉电阻拉高并可作为输入端口。

作输入口使用时,被外部信号拉低的P3口将用上拉电阻输出电流(I>。

kavU42VRUsP3口除了作为一般的I/O口线外,更重要的用途是它的第二功能,如表2所示:P3口还接收一些用于Flash闪速存储器编程和程序校验的控制信号。

(外中断0>(外中断1>(外部数据存储器写选通>(外部数据存储器读选通>表2 P3口引脚第二功能RST:复位输入。

当振荡器工作时,RST引脚出现两个机器周期以上的高电平时间将使单片机复位。

WDT溢出将使该引脚输出高电平,设置SFR AUXR的DISRTO位(地址8EH>可打开或关闭该功能。

DISRTO位缺省为RESET输出高电平打开状态。

y6v3ALoS89ALE/:当访问外部存储器或数据存储器时,ALE(地址锁存允许>输出脉冲用于锁存地址的低8位字节。

即使不访问外部寄存器,ALE仍以时钟振荡频率的1/6输出固定的正脉冲信号,因此它可对外输出时钟或用于定时目的。

值得注意的是:每当访问外部数据存储器时将跳过一个ALE脉冲。

M2ub6vSTnP 对Flash存储器编程期间,该引脚还用于输入编程脉冲(>。

如有必要,可通过对特殊功能寄存器(SFR>区中的8EH单元的D0位置位,可禁止ALE操作。

该位置位后,只要一条MOVX和MOVC指令才会激活ALE。

此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE无效。

0YujCfmUCw:程序存储允许(>输出是外部程序存储器的读选通信号,当AT89S51由外部程序存储器取指令(或数据>时,每个机器周期两次有效,即输出两个脉冲。

当访问外部数据存储器时,没有两次有效的信号。

eUts8ZQVRdEA/VPP:外部访问允许。

欲使CPU仅访问外部程序存储器<地址为0000H-FFFFH),EA端必须保持低电平(接地>。

需要注意的是:如果加密位LB1被编程,复位时内部会锁存EA端状态。

sQsAEJkW5T如EA端保持高电平(接VCC端>,CPU则执行内部程序存储器中的指令。

Flash存储器编程期间,该引脚用于施加+12V编程电压<VPP)。

XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入端。

XTAL2:反向振荡放大器器的输出端。

2.DS1302DS1302[1]是美国DALLAS公司推出的一种高性能、低功耗、带RAM的实时时钟芯片,它可以对年、月、日、周日、时、分、秒进行计时,且具有闰年补偿功能,工作电压宽达2.5~5.5V。

时钟可工作在24小时格式或12小时<AM/PM)格式。

DS1302与单片机的接口使用同步串行通信,仅用3条线与之相连接。

可采用一次传送一个字节或突发方式一次传送多个字节的时钟信号或RAM数据。

DS1302内部有一个31×8的用于临时性存放数据的RAM寄存器。

DS1302是DS1202的升级产品,与DS1202兼容,但增加了主电源/后背电源双电源引脚,同时提供了对后背电源进行涓细电流充电的能力。

GMsIasNXkA2.1DS1302引脚功能DS1302的引脚功能如表3所示,管脚图如图2所示CR图2 DS1302管脚图通过把输入驱动置高电平来启动所有的数据传送。

输入有两种功能:首先,接通控制逻辑,允许地址/命令序列送入移位寄存器;其次,提供了终止单字节或多字节数据的传送手段。

相关文档
最新文档