硬件描述语言
计算机系统设计硬件描述语言与逻辑设计

计算机系统设计硬件描述语言与逻辑设计计算机系统设计是指通过软件和硬件的相互配合来实现计算机系统的构建和功能。
在这个过程中,硬件描述语言(HDL)发挥着重要的作用。
HDL是一种用于描述计算机系统硬件的语言,它可以用来设计、验证和仿真数字电子电路,并转化为可实现的布局,进而实现系统功能。
一、硬件描述语言的定义与作用硬件描述语言是一种特殊的编程语言,用于描述计算机硬件的功能和结构。
它能够对硬件进行逻辑设计,并通过编程来实现不同的功能。
常见的硬件描述语言包括VHDL(Very High Speed Integrated Circuit Hardware Description Language)和Verilog。
硬件描述语言的作用有以下几个方面:1. 设计和验证功能:通过使用硬件描述语言,工程师可以对计算机硬件进行设计和验证。
在设计过程中,硬件描述语言可以描述硬件的功能和结构,有助于工程师在设计阶段快速定位问题并进行修正。
2. 面向抽象级别:硬件描述语言可以在不同的抽象级别上进行描述。
工程师可以在高级抽象级别上描述整个系统,也可以在低级抽象级别上描述硬件电路的细节。
这使得硬件描述语言非常灵活,能够适应不同的设计需求。
3. 支持仿真和验证:硬件描述语言可以与仿真工具结合使用,用于验证设计的正确性。
通过对硬件描述语言编写的代码进行仿真,工程师可以模拟不同输入条件下的系统运行情况,从而验证设计的正确性,发现潜在问题。
二、逻辑设计与硬件描述语言逻辑设计是计算机系统设计的一个重要环节,通过逻辑设计,可以实现计算机系统的各种功能。
硬件描述语言在逻辑设计中扮演着关键的角色。
1. 逻辑门电路的描述:逻辑门电路是计算机系统中最基本的组成部分。
硬件描述语言可以用来描述不同类型的逻辑门电路,并通过逻辑门之间的连接实现复杂的逻辑功能。
2. 状态机的设计:状态机在计算机系统中广泛应用,用于描述系统的状态和状态之间的转换关系。
硬件描述语言可以描述各种类型的状态机,包括Mealy状态机和Moore状态机,并实现其对应的功能。
第九章 硬件描述语言简介

6、关键词 、
关键词是Verilog HDL语言内部的专用词。
三、 模块的两种描述方式 1、行为描述方式 、
行为描述方式通过行为语句来描述电路要实现的功能,表 行为描述方式通过行为语句来描述电路要实现的功能, 示输入与输出间转换的行为,不涉及具体结构。 示输入与输出间转换的行为,不涉及具体结构。
2、结构描述方式 、
本章小结
• 硬件描述语言是用于描述硬件电路的一种专用计 算机编程语言,用它可以对任何复杂的电路进行 完整的功能、动态时间参数甚至功耗参数的描述。 • 作为一种高级语言,Verilog HDL有严格的语法规 定,必须严格按照这些规定编写出的源文件,才 能被应用软件所识度和运行。
第九章*
一、内容提要
硬件描述语言简介
本章简要介绍硬件描述语言。首先简单介绍了 硬件描述语言的基本概念和发展与应用概况,然后 介绍了有关Verilog HDL的基本知识,最后给出了 几个用Verilog HDL描述逻辑电路的实例。
二、本章内容
9.1 概述 概述 9.2 Verilog HDL简介 简介 9.3 用Verilog HDL描述逻辑电路的实例 描述逻辑电路的实例
模块的基本语法结构如下: module <模块名 (<端口列表 模块名> 端口列表 端口列表>) 模块名 <定义 定义> 定义 <模块条目 模块条目> 模块条目 endmodule 根据<定义 模块条目 的描述方法不同,可将模块分成 根据 定义><模块条目 的描述方法不同, 定义 模块条目>的描述方法不同 行为描述模块、结构描述模块,或者是二者的组合。 行为描述模块、结构描述模块,或者是二者的组合。 行为描述模块通过编程语言定义模块的状态和功能 通过编程语言定义模块的状态和功能。 行为描述模块通过编程语言定义模块的状态和功能。 结构描述模块将电路表达为具有层次概念的互相连接的子 结构描述模块将电路表达为具有层次概念的互相连接的子 模块,其最底层的元件必须是Veriolg HDL 支持的基元或已定 模块,其最底层的元件必须是 义过的模块。 义过的模块。
硬件描述语言 Verilog HDL

`include指令
变量声明(wire,reg及其它类型) 数据流语句(assign) 低层模块的实例 过程块always和initial(包含所有的行为语句) 任务(task)和函数(function)
endmodule; 模块结束语句
16
4.3.3 模块和端口
17
4.3.3 模块和端口
3.$stop任务和$finish任务
۞ $stop任务使得仿真被挂起(例:暂停仿真以检查 信号值 )
۞ $finish任务将结束仿真,并退出仿真环境
21
4.3.3 系统任务和系统函数
常用的几个系统任务和系统函数:
4.时间函数:$time ,$stime ,$realtime 5.$random函数
32
4.4.2 数据类型
2.变量(Variable)类型 (reg、integer、time、real、realtime) 数据存储单元的抽象,下一次赋值前,变量的值保持不变 (1)寄存器(reg)变量类型
۞ 对应具有状态保持作用的硬件电路,如触发器、锁存器等
۞ 声明形式:reg [msb:lsb] reg1,reg2,...regN;
3
4.1 HDL简介
4.1.1 关于HDL(硬件描述语言)
使用HDL ۞用一种高级语言来表达大规模集成电路的功能,隐藏
其具体实现的细节,对数字电路和数字逻辑系统能够 进行形式化的描述。 ۞提高逻辑设计效率,降低设计成本,缩短设计周期。 ۞多方位的仿真可以在设计完成之前检测到其错误,减 少设计重复的次数,使第一次投片便能成功实现芯片 成为可能。 ۞使检测各种设计方案变得容易和方便,对方案的修改 只需要修改HDL程序,比修改原理图容易得多。
硬件描述语言

上一页 下一页 返回
architecture
inhabit_arch of inhibit is 一结构体定义 begin z<='1' when x='1' and y='0' else '0'; end;
下面请看演示
上一页 下一页 返回
5.1 VHDL概述
(2)VHDL的并发性 计算机软件程序一般按书写的顺序依次执行, 而VHDL却具有并发性。VHDL的并发性体现在 两个方面,首先在使用VHDL进行数字电路设计 时存在并发性,即VHDL支持设计分解,可使被 分解的各个子部分的设计并行完成。一个模型 的设计主要由3部分组成:元件库部分—USE说 明区:实体部分—确立模型与环境的接口;结 构体部分—描述元件的行为或功能,为模型生 成测试向量,并捕获模型输出信号状态以供分 上一页 下一页 返回 析。
5.2 VHDL的程序结构
【例5-2】一个与门电路的VHDL程序 library ieee; use ieee.std_logic_1164.all; 一 打开需要用到的库 entity inhibit is 一实体(端口)说明 port( x,y:in std_logic; z:out std_logic); end inhibit;
上一页 下一页 返回
5.1 VHDL概述
VHDL是为数字电路的建模和模拟
(simulation)而制定的,是一种面向模拟、 针对硬件的语言。它的语法中有许多方面 均考虑到模拟与硬件的因素,包括VHDL的 硬件相关结构、并发特征和混合级描述以 及混合级模拟。
5.1 VHDL概述
(1)VHDL中的硬件相关结构 VHDL具有许多与数字电路结构直接相关的 概念,其中最主要的是元件(component), 它是数字硬件结构—"黑盒"或"模块"的抽 象。VHDL中的元件由实体和结构体两部分 共同描述完成。
硬件描述语言

硬件描述语言硬件描述语言(HardwareDescriptionLanguage,HDL),是一种特殊的编程语言,旨在帮助设计人员(称作HDL程序员)创建电子系统的软硬件。
它支持现在最先进的电子系统,并能够提供开发方案,以更快地实现目标,更有效地使用更少的资源,并且更稳定地完成任务。
HDL是一种高级程序设计语言,由若干种编程语言构成,其中包括Verilog,VHDL, SystemVerilog等。
HDL语言描述技术主要用于描述单片机或模拟集成电路(IC)中的复杂电路结构和功能。
它以硬件参数、原语和结构描述为基础,能够描述逻辑系统的底层电路,比如门逻辑、触发器、多路选择器、比较器等。
HDL具有许多优点,能够极大地降低电路设计的困难程度,同时简化设计的复杂性和过程,可以提高设计效率和提升最终产品的性能。
HDL提供方便的调试和测试功能,可以支持电路设计过程管理,减少产品设计和开发的工作量。
此外,HDL能够提供标准、可重用的描述,以及可读性好的语法,可以显著简化设计过程。
HDL的另一个重要优点是,它可以帮助HDL程序员创建更复杂、更现代化的电路设计,而不需要编译器和其它复杂的程序设计开发工具。
HDL可以提供电路设计过程中所需的所有功能,包括定义电路功能,输入输出管理,系统级构建,网络结构,状态机控制,信号处理,数据传输等。
它还利用可视化技术以及带有标准和完善的接口,能够更快地识别和定位问题,大大降低了调试产品的时间。
HDL的另一个优点在于,它具有许多可扩展性,无需为每个项目开发新的硬件。
HDL能够有效地管理工厂现有的系统设计,例如将新的硬件模块添加到已有的电路框架中,并且能够有效地利用已有的硬件,尽可能减少更改硬件布局的时间。
当今,HDL已经成为电子行业中最专业化的编程语言,并被广泛应用于微处理器、嵌入式系统、数字信号处理(DSP)、模拟信号处理(ASP)、网络交换、存储器系统,以及其它领域。
HDL在加速设计过程、改善产品质量、减少产品成本方面十分有用,是现今许多企业进行电子产品设计的重要工具。
VHDL与Verilog语言

VHDL与Verilog语言VHDL(VHSIC hardware description language)和Verilog是用于电子系统设计的硬件描述语言(HDL)。
这两种语言被广泛应用于数字逻辑设计和仿真,以及硬件描述、验证和综合。
1. VHDL(VHSIC hardware description language)VHDL是一种结构化的硬件描述语言,最初由美国国防部高速集成电路计划办公室(VHSIC,Very High Speed Integrated Circuits)开发。
VHDL以其强大的功能和灵活性而闻名,并被广泛用于数字系统的设计和验证。
VHDL的编写包括实体(Entity)和体(Architecture)两个主要部分。
实体部分描述了数字系统的输入输出接口、信号和组件的声明,而体部分描述了实体的内部结构、信号处理和逻辑功能。
VHDL具有丰富的数据类型、运算符和控制结构,可以方便地描述数字电路的行为和结构。
它还提供了强大的仿真和验证功能,使设计人员能够在开发和测试阶段快速迭代和调试设计。
2. VerilogVerilog是一种硬件描述语言,最初由Gateway Design Automation公司(现在是Cadence Design Systems的一部分)开发。
Verilog以其简洁的语法和易学易用的特性而受到广泛欢迎,并成为工业界标准。
Verilog的设计由模块(Module)组成,每个模块描述了一个黑盒子,包含输入和输出端口以及内部的逻辑功能。
模块可以进行层次化组合,从而实现较复杂的系统级设计。
Verilog的语法类似于C语言,具有类似的数据类型、运算符和控制结构。
它还提供了时序建模的能力,使设计人员能够描述数字电路的时序行为。
3. VHDL与Verilog的比较VHDL和Verilog在语法和功能上有一些区别,但它们都可以用于数字电路的设计和仿真。
以下是它们之间的一些比较:3.1 语法风格VHDL采用结构化的编程风格,需要明确的体、过程和信号声明,可以更好地控制和描述系统的结构和行为。
硬件描述语言

系统级描述语言(SLDL)
18
9
1.3
(1) System C
System C (IEEE1666)由一组描述类库和一个包含仿真核的库组成。 在用户的描述程序中,必须包括相应的类库,可以通过通常的ANSI C++编 译器编译该程序。System C提供了软件、硬件和系统模块。用户可以在不 同的层次上自由选择,建立自己的系统模型,进行仿真、优化、验证、综 合等等。
2. 行为设计
用HDL语言描述系统数学模型
3. 功能仿真
仿真的目的是验证;行为级仿真以验证给定的行为描述是否能够实现所 需的功能
6
3
1.1
4. 逻辑综合
目的是转化与优化,将RTL级HDL代码映像到具体的综合库上加以实现。 实现逻辑综合的前提是有逻辑综合库(已含有门级延时、单元面积、 扇入扇出系数等工艺参数)。逻辑综合与优化的约束条件:速度,面 积,工艺,功耗,负载,电路的编程资源。
3
1.1
二.电子系统设计方法的发展
随着电路规模的增大,计算机辅助设计手段在集成电路设计中起着越 来越重要的作用
手工设计
CAD(Computer Aided Design) CAE(Computer Aided Engineering) 设计后端工具,如提供PCB、 布局布线、芯片版图绘制等 设计前端工具,如仿真工具, 综合工具等 包括上述的CAD、CAE工具 系统级的抽象描述,混 合仿真工具
13
1.2
4. 其它HDL
ABEL-HDL --早期的硬件描述语言。 从早期可编程逻辑器件(PLD)的设计中发展而来。 AHDL--(Altera HDL) 是ALTERA公司发明。特点是非常易学易用。 它的缺点是移植性不好,通常只用于ALTERA自己的开发系统。
hdl硬件描述语言

hdl硬件描述语言
HDL是Hardware Description Language的缩写,即硬件描述语言。
它是一种用于描述数字电路的语言,包括了数字电路的功能、结构和行为等方面。
HDL 通常用于设计和模拟数字电路,以帮助工程师更好地理解数字电路的功能和性能,并在设计电路时提供一种有效的工具。
在HDL中,通常使用的是高级语言来描述电路的功能和行为,比如Verilog和VHDL。
这些语言提供了一些强大的特性,如模块化设计、层次结构、波形仿真等,使得电路的设计和测试变得更加高效、方便和准确。
HDL的设计流程通常包括以下几个步骤:首先,需要将所需的电路功能转化为模块化的设计,比如将复杂的电路分解为多个子模块;其次,需要使用HDL语言编写每个模块的描述,包括模块端口定义、内部逻辑和功能描述等;接下来,需要进行波形仿真以验证电路的功能和性能;最后,需要将HDL代码转化为实际的硬件电路,比如使用FPGA或ASIC等技术将代码烧入硬件芯片中。
总之,HDL是一种用于描述数字电路的语言,它可以帮助工程师更好地理解和设计数字电路,提高电路设计和测试的效率和准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
sin
sout
tmp <= not tmp; clock tmp
reset
end ifOCESS;
异步复位
PROCESS (clock, reset)
BEGIN
if reset = ‘1’ then
sout <= ‘0’;
tmp <= ‘0’;
elsif clock =‘1’ AND clock’EVENT then
PROCESS (clr,clk)
调整周期
BEGIN
IF(clr=1) THEN
Count_B<=“00000000”;
q <= ‘0’;
ELSIF (clk'EVENT AND clk = ‘1’ ) THEN
IF (Count_B = “00001111”) THEN
Count_B<=“00000000”;
Count_B<=“00000000”;
ELSIF (clk’EVENT AND clk = ‘1’ ) THEN
IF (updn=‘1’) THEN
Count_B<=count_B + 1;
ELSE
Count_B<=count_B – 1;
END IF;
END IF;
END PROCESS;
END example;
晶振频率。
分频器
signal count : std_logic_vector(7 DOWNTO 0);
process ( fosc,rst)
begin
if rst = ‘1’ then
END count;
ARCHITECTURE example OF count IS
SIGNAL count_B:STD_LOGIC_VECTOR (7 DOWNTO 0);
BEGIN
Q <= count_B; PROCESS (clr,clk)
BEGIN
IF(clr=‘1’) THEN
q <= ‘1’;
ELSIF (Count_B = “00000001”) THEN
q <= ‘0’;
ELSIF (Count_B = “00000011”) THEN
q <= ‘1’;
ELSIF (Count_B = “00000100”) THEN
q <= ‘0’;
END IF;
END IF;
END PROCESS;
else
Count_B<=count_B + 1;
IF (Count_B = “00000000”) THEN
q <= ‘1’;
ELSIF (Count_B = “00000001”) THEN
q <= ‘0’;
ELSIF (Count_B = “00000011”) THEN
q <= ‘1’;
ELSIF (Count_B = “00000100”) THEN
updn
CLR
Q
CLK
LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL;
ENTITY count IS
PORT (clk,clr,updn: IN STD_LOGIC;
Q: OUT STD_LOGIC_VECTOR(7 downto 0));
q <= ‘0’;
END IF;
END IF;
END IF;
END PROCESS;
用计数值控制产生精确时序
只要知道晶振频率f,即可知道周期T=1/f; 使用一个计数器,可以通过计数值n,精确知道当计数值
为n时消耗的时间t=nT; 上例中以n为控制条件,可以控制其它信号在某时刻变高,
某时刻变低,从而产生精确时序; 但要注意:时间分辨率(或叫最小控制时间间隔)取决于
第9讲:不同风格的状态机设计
1 上节内容回顾 2 计数值与状态的关系 3 递变型状态变更控制 4 状态机使用 5 两种不同类型的状态机
1 上节内容回顾
时序逻辑 复位的概念与功用、同步复位和异步复位 计数器设计、利用计数值控制状态变更
时序逻辑电路又称为同步电路,基础电路包括触发器、寄 存器、计数器。
08/09学年第1学期
硬件描述语言及器件
主讲教师:刘文怡
教材:任勇峰等编著《VHDL与硬件实现速成》
教学安排
第1讲:VHDL概述及其开发环境 第2讲:VHDL的基本元素 第3讲:VHDL的进程 第4讲:其它并行语句 第5讲:VHDL实例剖析 第6讲:VHDL的顺序描述语句 第7讲:结构体的描述风格 第8讲:计数器状态控制 第9讲:不同风格的状态机设计 第10讲:VHDL综合举例
sout <= sin; tmp <= not tmp; end if; END PROCESS;
sin
sout
clock tmp reset
可逆计数器
可逆计数器根据计数脉冲的不同,控制计数器在同步信号 脉冲的作用,进行加1操作,或者减1操作。
CLR=‘1’时,计数器清零; 可逆计数器的计数方向,由特殊的控制端updn控制。 当updn = ‘1’时,计数器加1操作; 当updn = ‘0’时,计数器减1操作;
用计数器值做条件来控制时序
PROCESS (clr,clk)
BEGIN
IF(clr=1) THEN
Count_B<=“00000000”;
q <= ‘0’;
ELSIF (clk'EVENT AND clk = ‘1’ ) THEN
Count_B<=count_B + 1;
IF (Count_B = “00000000”) THEN
由数字电路知道,任何时序电路都以时钟为驱动信号,时 序电路只是在时钟信号的边沿到来时,其状态才发生改变。 因此,时钟信号是时序电路程序的执行条件,时钟信号是 时序电路的同步信号。
什么是时钟?其作用是什么?
复位,设定初始状态
时序电路的初始状态应由复位信号来设置。根据复位信号 对时序电路复位的操作不同,使其可以分为同步复位和异 步复位。
所谓异步复位,就是当复位信号有效时,时序电路立即复 位,与时钟信号无关。
同步复位
PROCESS (clock)
BEGIN
if clock =‘1’ and clock’EVENT then
if reset = ‘1’ then
sout <= ‘0’;
tmp <= ‘0’;
else
sout <= sin;