药用高分子材料

合集下载

药用高分子材料学

药用高分子材料学

药用高分子材料学药用高分子材料学是研究药物与高分子材料相互作用的学科,它将高分子材料的独特性能与药物的治疗效果相结合,有力地推动了药物传递和药物治疗领域的发展。

药用高分子材料是指那些在药物传递和控释系统中应用的材料,它们具有良好的生物相容性和生物可降解性,能够与药物稳定结合并通过体内的代谢和排出途径进行自行降解。

这些材料具有多种形态,包括颗粒、纳米粒、微球、纤维、薄膜等,可以通过不同的制备方法进行制备。

药用高分子材料的研究主要集中在以下几个方面:1.控释系统:药物的快速释放容易导致药物的代谢和排泄,降低治疗效果。

因此,研究人员开发了一些控释系统,例如微球、纳米粒等,通过调节材料的构型和孔隙结构来控制药物的释放速度和时间,从而确保药物可以持续稳定地释放。

2.靶向传递:药物的靶向传递是指将药物直接送达到疾病部位,减少对正常细胞的损害。

药用高分子材料可以作为药物载体,经过改性后具有靶向识别特性,可以通过配体-受体相互作用、磁性导引等方式将药物精确地传递到病变组织。

3.仿生组织工程:随着组织工程学的发展,药用高分子材料也被广泛应用于修复和再生组织。

例如,通过制备生物可降解的支架材料,可以在体内形成新的组织,加速伤口愈合和损伤修复。

4.药物检测:药用高分子材料也可以用于药物的检测,例如利用其光学、电化学、磁性等特性,开发出一系列荧光探针、电化学传感器和磁共振成像探针,用于检测药物的浓度和分布。

药用高分子材料的应用已经取得了一系列的研究进展。

例如,通过调控高分子材料的结构和性质,可以改善药物的溶解度和稳定性,提高药物的生物利用度。

同时,还可以优化药物的代谢途径和药效学特性,加强药效的持续性和生物活性。

总之,药用高分子材料学在药物传递和药物治疗领域具有重要的应用前景,有望进一步推动药物研发和临床治疗的发展。

药用高分子材料

药用高分子材料

药用高分子材料药用高分子材料是指用于医药领域的高分子材料,其具有良好的生物相容性、可降解性和药物载体功能。

药用高分子材料在医学领域中有着广泛的应用,包括药物输送、组织工程、医疗器械等方面。

本文将重点介绍药用高分子材料在医学领域中的应用及其相关研究进展。

首先,药用高分子材料在药物输送方面具有重要的应用价值。

传统的药物输送方式往往存在药物的不稳定性、生物利用度低、毒副作用大等问题。

而药用高分子材料作为药物的载体,可以提高药物的稳定性、延长药物在体内的停留时间、减少毒副作用,从而提高药物的疗效。

例如,聚乳酸-羟基乙酸共聚物(PLGA)是一种常用的药用高分子材料,可以作为微球或纳米粒子的载体,用于输送抗癌药物、抗生素等。

另外,聚乙烯吡咯烷酮(PVP)和明胶等药用高分子材料也被广泛应用于药物输送领域。

其次,药用高分子材料在组织工程方面也有着重要的应用。

组织工程是一种利用生物材料、细胞和生物活性分子构建人工组织和器官的技术,旨在修复和再生受损组织。

药用高分子材料具有良好的生物相容性和可降解性,可以作为组织工程材料用于修复骨折、软骨损伤、皮肤缺损等。

例如,聚乳酸(PLA)和聚乳酸-羟基乙酸共聚物(PLGA)可以用于制备骨修复材料和软骨修复材料,可促进骨细胞和软骨细胞的生长和再生。

另外,明胶和壳聚糖等药用高分子材料也被广泛应用于组织工程领域。

此外,药用高分子材料在医疗器械方面也有着重要的应用。

医疗器械是用于诊断、治疗、缓解疾病的器械,如缝合线、人工心脏瓣膜、支架等。

药用高分子材料具有良好的生物相容性和可加工性,可以用于制备医疗器械。

例如,聚乙烯吡咯烷酮(PVP)和聚二甲基硅氧烷(PDMS)可以用于制备医用缝合线和人工心脏瓣膜,具有良好的生物相容性和机械性能。

另外,聚乳酸(PLA)和聚己内酯(PCL)等药用高分子材料也被广泛应用于医疗器械领域。

总之,药用高分子材料在医学领域中具有着广泛的应用前景,其在药物输送、组织工程、医疗器械等方面都有着重要的应用价值。

药用高分子材料学之

药用高分子材料学之
药用高分子材料学
目录
• 药用高分子材料的概述 • 药用高分子材料的制备与加工 • 药用高分子材料的生物相容性与
安全性 • 药用高分子材料在药物制剂中的
应用 • 药用高分子材料的未来展望
01
药用高分子材料的概述
定义与分类
定义
药用高分子材料是指在药物制剂中用作辅料或载体的高分子化合物。这些高分子化合物具有特定的化学结构和理 化性质,能够影响药物的释放、稳定性和生物利用度。
循环利用与资源化
建立药用高分子材料的循环利用体系,实现资源的有效利用和减少对自然资源 的依赖。
感谢您的观看
THANKS
1 2 3
新材料和新技术的应用
随着科技的不断进步,新型药用高分子材料的研 发和应用将不断涌现,如智能型药用高分子材料、 纳米药用高分子材料等。
生物相容性和生物降解性
提高药用高分子材料的生物相容性和生物降解性 是未来的重要发展方向,有助于降低药物制剂对 人体的副作用和环境污染。
个性化和精准医疗的需求
随着个性化医疗和精准医疗的发展,对具有特定 功能和性能的药用高分子材料的需求将不断增加。
总结词
提高药物稳定性、控制药物释放、改善药物口感
高分子材料作为药物载体
利用高分子材料作为药物载体,能够提高药物的稳定性,降低药物在 储存和运输过程中的降解。
高分子材料对药物释放的控制
通过控制高分子材料的性质和结构,可以实现对药物释放速度的调节, 提高药物的疗效和减少副作用。
高分子材料改善药物口感
利用高分子材料对药物进行包覆或改性,可以掩盖药物的不良口感, 提高患者的用药依从性。
分类
根据其来源和用途,药用高分子材料可分为天然高分子和合成高分子两大类。天然高分子包括淀粉、纤维素、壳 聚糖等,合成高分子则包括聚乙烯醇、聚丙烯酸树脂、聚乳酸等。

药剂学药用辅料高分子材料

药剂学药用辅料高分子材料
超高分子量聚合物 分子量高达106 以上
药剂学药用辅料高分子材料
第9页
1.2 高分子基本特点
2、多分散性
❖ 什么是分子量多分散性(Polydispersity) ? 高分子不是由单一分子量化合物所组成
即使是一个“纯粹”高分子,也是由化学组成相同、 分子量不等、结构不一样同系聚合物混合物所组成
这种高分子分子量不均一(即分子量大小不一、参差不 齐)特征,就称为分子量多分散性
6.
从而使溶质分子分离,并溶于溶剂中。
药剂学药用辅料高分子材料
第20页
四、高分子溶液性质
特点
(1)稀溶液 大多稳定,溶质以分子形式分散在溶剂中 溶质与溶剂形成单相体系,含有热力学稳定性。 (1%以下认为是稀aq) (2)浓aq 粘度大,稳定性较低,有时长久放置可能有 高分子析出。(浓aq﹥20%)
第3页
1.1 高分子材料基本概念
单体单元( Monomer unit ) 聚合物中含有与单体相同化学组成而不一样电子结构单元。
重复单元 (Repeating unit),又称链节
聚合物中化学组成和结构均可重复出现最小基本单元;有 重复单元连接成是线性大分子,有时重复单元又称为链节
药剂学药用辅料高分子材料
1、这种高分子aq失去流动性时,所展现半固体 状态称为凝胶。 2、此过程称为胶凝。
影响胶凝作用原因:浓度、温度、电解质。
药剂学药用辅料高分子材料
第26页
2、凝胶性质
(1)触变性:物理凝胶受外力作用,网状结构被破坏而 变成流体,外部作用停顿后,又恢复成半固体凝胶结构, 这种凝胶与溶胶相互转化过程,称为触变性。
药剂学药用辅料高分子材料
第14页
❖ 一是溶胀
首先是溶剂小分子渗透进入高分子内部,撑开分 子链,增加其体积,形成溶胀聚合物。

有机化学第十七章药用高分子材料

有机化学第十七章药用高分子材料

(二)聚乙烯吡咯烷酮
聚乙烯吡咯烷酮(PVP)又称聚维酮,是N-乙烯吡咯烷酮的聚合物,溶于水,安全 无毒,对热和酸都较稳定。 在液体药剂中,10%以上的PVP有助悬、增稠和胶体保护作用;更高浓度可延缓可的松、
青蒿素等的吸收; 在药物片剂中,PVP是优良的黏合剂,可作片剂薄膜包衣材料、着色包衣材料色素的
材料; 水溶性泊洛沙姆作为增溶剂及乳化剂; 在液体药剂中用作增黏剂、分散剂和助悬剂; 泊洛沙姆水凝胶制备药物控释制剂,如埋植剂、长效滴眼液等。
第二节 多糖类天然药用高分子化合物
一、淀粉及其衍生物
淀粉是人类的主要食物,也是制药工业中合成葡萄糖等药物的重要原料。淀粉常用 作药物制剂的赋形剂。此外,淀粉还用于制备羧甲基淀粉钠(CMS-Na)。羧甲基淀粉钠 为白色粉末,无臭,具有较强的吸湿性,吸水后最多可使其体积溶胀300倍,但不溶于 水,只吸水形成凝胶,不会使沉淀的黏度明显增加,可作药片及胶囊的崩解剂。
二、纤维素衍生物
(一)微晶纤维素
黏合力很强,可用作片剂的黏合剂、填充剂、崩解剂或润滑剂; 良好的赋形剂,可直接与药物混合后压片而不必制成颗粒
(二)乙基纤维素
乙基纤维素为白色颗粒,可溶于乙醇、丙酮、乙酸乙酯和二氯乙烷等有机溶剂, 它不易吸湿,浸于水中吸水量极少,且极易蒸发
用作缓释制剂、固体分散载体; 可作黏合剂、薄膜包衣材料; 用作骨架材料制备多种类型的骨架缓释片; 用作混合膜材料制备包衣缓释制剂; 用作包囊辅助材料制备缓释微胶囊
(三)羟丙基纤维素
羟丙基纤维素是纤维素的羟丙基醚类,是用纤维素与环氧丙烷在碱催化下反应制 得的。目前应用最广的是低取代羟丙基纤维素,它不溶于水,也不溶于有机溶剂,但 可在水中溶胀,用作崩解剂。在制剂中广泛用作黏合剂、薄膜包衣材料等

药用高分子材料-高分子材料在药物制剂中的应用

药用高分子材料-高分子材料在药物制剂中的应用

缩聚反应
缩聚反应是合成高分子材 料的重要方法,通过缩合 反应形成高分子链。
共聚反应
共聚反应是将两种或多种 单体进行聚合,生成具有 不同结构和性能的高分子 材料。
药用高分子材料的加工技术
溶解与混合
将高分子材料溶解在适当的溶剂中,与其他药物成分混合均匀。
干燥与除湿
去除高分子材料中的水分和溶剂,保证其质量和稳定性。
04
药用高分子材料的安全性与 评价
药用高分子材料的安全性评价
安全性评价原则
确保药用高分子材料在使用过程中对患者的安全性,避免因材料本 身引发的不良反应或潜在风险。
安全性测试
对药用高分子材料进行全面的安全性测试,包括急性毒性、慢性毒 性、致突变性、致敏性等方面的评估。
临床数据支持
收集并分析药用高分子材料在临床应用中的数据,以评估其长期安全 性。
水溶性
根据药物制剂的需求,药用高分子材料应具有适当的水溶性,以便于 药物的溶解和分散。
粘附性
对于某些药物制剂,如口腔贴片、鼻腔喷雾等,药用高分子材料应具 有较好的粘附性,以保证药物能够较长时间地停留在作用部位。
药用高分子材料的应用领域
口服给药制剂
注射给药制剂
药用高分子材料可用于制造片剂、胶囊剂 、颗粒剂等口服给药制剂,以提高药物的 稳定性和生物利用度。
分类
根据其来源和性质,药用高分子材料可分为天然高分子材料和合成高分子材料两大类。天然高分子材料如淀粉、 纤维素、壳聚糖等,合成高分子材料如聚乙烯吡咯烷酮(PVP)、聚丙烯酸树脂等。
药用高分子材料的基本性质
生物相容性
药用高分子材料应具有良好的生物相容性,不引起免疫排斥反应和毒 性反应。
稳定性
药用高分子材料应具有良好的化学稳定性和热稳定性,以确保药物制 剂在储存和使用过程中的有效性。

药用高分子材料

药用高分子材料

药用高分子材料药用高分子材料是一类应用于医药领域的特殊高分子材料。

它们具有良好的生物相容性、可控释放性和生物可降解性等特点,在医疗器械、药物传递系统和组织工程等方面有着广泛的应用。

以下将介绍一些常见的药用高分子材料及其应用。

1. 聚乳酸(PLA)和聚乳酸-羟基乙酸共聚物(PLGA):聚乳酸和PLGA是最常用的药用高分子材料之一。

它们具有良好的生物相容性和生物降解性,可用于制备缝合线、药物载体和组织工程支架等。

此外,由于它们的可良好可控释放性,它们也被广泛应用于药物缓释系统,如微球、纳米颗粒和纳米纤维等。

2.玻尿酸(HA)和聚乙二醇(PEG):玻尿酸是一种天然多糖,具有良好的生物相容性和生物活性。

它可用于制备软骨修复材料、皮肤填充剂和药物传递系统等。

聚乙二醇是一种具有良好生物相容性的合成高分子材料,可用于改善药物的稳定性、增加其溶解度,并延长药物的半衰期。

3.聚酯和聚酰胺:聚酯和聚酰胺是常用的生物降解高分子材料。

它们可用于制备缝线、填充剂和组织工程支架等,在骨科、牙科和整形外科等领域得到广泛应用。

此外,它们还可以通过改变化学结构和物理性质来调控材料的生物可降解性和机械性能,以适应不同的医疗需求。

4.明胶和胶原蛋白:明胶和胶原蛋白是一种具有良好生物相容性和生物活性的天然高分子材料。

它们可用于制备组织工程支架、药物载体和伤口愈合材料等。

此外,由于其结构与人体组织相似,它们在医学成像和细胞培养等方面也有着重要的应用。

除了以上几种常见的药用高分子材料外,还有许多其他类型的药用高分子材料被用于特定的医疗应用,如聚己内酯(PCL)、聚碳酸酯(PC)和聚乳酸-联谷氨酸共聚物(PLLA-Glu)等。

随着科技的不断发展,药用高分子材料还将有更广阔的应用前景,并为医学领域的进步做出贡献。

药用高分子材料简答题(每题5分,共50分

药用高分子材料简答题(每题5分,共50分

四、简答题(每题5分,共50分)1.简述高分子材料在药物制剂中的应用答:①用于片剂和一般固体制剂:作为粘合剂,稀释剂,崩解剂,润滑剂,包衣材料等。

作为缓、控释材料:如用作扩散控释材料,溶解、溶蚀或生物降解基水凝胶材料,高分子渗透膜,离子交换树脂等。

②用于液体或半固体制剂作为增稠剂,助悬剂,胶凝剂,乳化剂,分散剂等③用作生物粘附性材料④用作新型给药装置的组件百度文库更多下载收藏分享搜索⑤用作药品包装材料2.自由基聚合的基元反应有哪些?自由基聚合反应的特征?答:自由基聚合的基元反应:链引发,链增长,链终止,链转移。

自由基聚合反应的特征①慢引发、快增长、速终止;②只有链增长反应才使聚合度增加;③在聚合过程中,单体浓度逐步降低,聚合物浓度相应提高,延长聚合时间主要提高转化率,对分子量影响不大;④少量(0.01% ~ 0.1%)阻聚剂足以使自由基聚合反应终止。

3.生物降解中的化学降解的主要形式有哪些?答:第一种形式中,聚合物主链上不稳定键断裂,生成了小分子的水溶性产物第二种形式中,因侧基水解,使整个聚合物溶解第三种形式中,聚合物是一个交联网络,不稳定的交联链断裂,释放出可溶解的聚合物碎片;第四种形式是以上三种形式的综合表现。

4.聚合物的化学反应的特征答:虽然聚合物的化学反应与小分子的化学反应没有本质区别,但事实上由于聚合物分子量大,链结构复杂等特性,使得它和小分子的化学反应相比又具有许多特点:(1)在很多情况下,聚合物的官能团反应活性明显低于小分子,两者在反应程度上有很大的不同。

大分子的反应速度较慢,并且聚合物的化学反应往往不完全,具有局部反应的特点。

(2)产物不纯,副反应多,如聚丙烯晴水解制备聚丙烯酸的反应过程中,大分子链上总同时含有未反应的情基和其他处于不同反应阶段的基团,如酚基、羧基、环亚胺基,因而不存在纯的聚丙烯酸。

(3)大分子化学反应只需加入少量试剂即可引起性质上巨大变化,而低分子化合物,一般需要等摩尔试剂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、名词解释(每题5分,共50分)
1. 有机高分子
答:高分子是由一种或几种结构单元多次(103~105)重复连接起来的化合物。

它们的组成元素不多,主要是碳、氢、氧、氮等,但是相对分子质量很大,一般在10 000以上,可高达几百万。

因此才叫做高分子化合物。

2.加聚反应
答:加聚反应(AdditionPolymerization):即加成聚合反应,一些含有不饱和键(双键、叁键、共轭双键)的化合物或环状低分子化合物,在催化剂、引发剂或辐射等外加条件作用下,同种单体间相互加成形成新的共价键相连大分子的反应就是加聚反应。

烯类单体经加成而聚合起来的反应。

加聚反应无副产物。

一般我们说的加聚反应指的就是链增长聚合反应。

3.引发剂的引发效率
答:引发单体的初级游离基占引发剂分解的初级游离基的百分数。

通常小于1。

这是由笼蔽效应和诱导分解造成的。

同一引发剂在引发不同活性单体时的效率通常不同。

引发较低活性单体时的引发效率较高。

4.溶剂化作用
答:溶剂效应对反应的影响的关注历史悠久。

不同的溶剂可以影响反应速率,甚至改变反应进程和机理,得到不同的产物。

溶剂对反应速率的影响十分复杂,包括反应介质中的离解作用、传能和传质、介电效应等物理作用和化学作用,溶剂参与催化、或者直接参与反应(有人不赞成将溶剂参与反应称作溶剂效应)。

溶剂化作用是溶剂分子通过它们与离子的相互作用,而累积在离子周围的过程。

该过程形成离子与溶剂分子的络合物,并放出大量的热。

溶剂化作用改变了溶剂和离子的结构。

溶剂化作用也是高分子和溶剂分子上的基团能够相互吸引,从而促进聚合物的溶解。

5.结构单元:
答:构成高分子链并决定高分子结构以一定方式连接起来的原子组合称为结构单元。

6.远程结构:
答:远程结构是化学用语,指由若干个重复单元组成的大分子的长度和形状。

7.高分子材料:
答:高分子材料也称为聚合物材料,是以高分子化合物为基体,再配有其他添加剂(助剂)所构成的材料。

8.体形高分子:
答:许多重复单元以共价键连接而成的网状结构高分子化合物。

这种网状结构,一般都是立体的,所以这种高分子既称为体型高分子,又称网状高分子。

9.溶胀:
答:溶胀是高分子聚合物在溶剂中体积发生膨胀的现象。

10.聚合度:
答:聚合度(DP、X n)(Degree of Polymerization) :衡量聚合物分子大小的指标。

以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值,以n表示;以结构单元数为基准,即聚合物大分子链上所含单个结构单元数目。

二、简答题(每题10分,共50分)
1. 简述高分子的溶解。

答:高分子溶液(macromolecular solution)是胶体的一种,在合适的介质中高分子化合物能以分子状态自动分散成均匀的溶液,分子的直径达胶粒大小。

2.水分散体的制备方法。

答:水分散体的制备方法,该方法包括将下列组分(ⅰ)疏水热塑性聚合物; (ⅱ)水不溶性热塑性聚合物,它含有连接在其聚合物链上的羧酸或羧酸盐基团,浓度为每克聚合物含有0.1-5毫克当量(以-COO-的形式计),或含有能通过碱处理产生所说浓度下的所说基团的羧酸衍生基团;和(若必要的话)(ⅲ)选自由阴离子型表面活性剂、通过碱处理能转化成阴离子型表面活性剂的有机化合物、非离子型表面活性剂、有机溶剂和油所组成的此组中的至少一个成员,所形成的混合熔化物与(ⅳ)水,和(ⅴ)碱性物质(若存在需要进行碱处理的热塑性聚合物(ⅱ)或有机化合物时),在挤压机中混合,并持续地向熔化物施加反压力,接着熔化-捏和上述混合物,以引起相转化,从而形成一种聚合物固体的水分散体。

3.简述水分散体包衣成膜的机理
答:水分散体粘着固体表面后水分不断蒸发使聚合物粒子越来越靠近,包围在乳胶粒子表面的水膜不断缩小产生很高的表面张力,促使粒子进一步靠近,并且发生因高分子链残留能量导致的高分子链自由扩散,在最低成膜温度以上,最终产生粘流现象而发生粒子间的相互融合。

4.高分子材料的主要应用性能有哪些?(至少写出6种)。

答:高分子材料在加工之前,要先进行合成,把单体合成为聚合物进行造粒,然后才进行熔融加工。

高分子材料的合成方法有本体聚合、悬浮聚合、乳液聚合、溶液聚合和气相聚合等。

这其中引发剂起了很重要的作用,偶氮引发剂和过氧类引发剂都是常用的引发剂,高分子材料助剂往往对高分子材料性能的改进和成本的降低也有很明显的作用。

5. 常用的肠溶性材料有哪些?(至少写出4种)。

答:.肠溶型是指在胃酸条件下不溶、到肠液环境下才开始溶解的高分子薄膜衣材料。

常见的肠溶衣材料包括CAP、HPMCP、PVAP、丙烯酸树脂类、虫胶等。

相关文档
最新文档