树枝状高分子简介.

合集下载

《树枝状大分子》课件

《树枝状大分子》课件
《树枝状大分子》PPT课件
目录 CONTENTS
• 树枝状大分子的简介 • 树枝状大分子的性质和应用 • 树枝状大分子的发展前景 • 树枝状大分子的研究进展
01
树枝状大分子的简介
树枝状大分子的定义
树枝状大分子是一种具有树形结构的 有机高分子化合物,其分子结构由中 心核、树枝层和外延基团组成。
树枝状大分子的名称来源于其树形结 构,类似于树枝的分支形态。
THANK YOU FOR YOUR WATCHING
树枝状大分子的合成方法
树枝状大分子的合成通常采用“发散法”和“收敛法”两种 策略。发散法是从中心核向外延伸,逐步增加树枝层的数目 和外延基团;收敛法则是从简单的起始物出发,逐步增加分 子的大小和复杂性。
在合成过程中,需要精确控制反应条件、选择合适的反应试 剂和反应条件,以确保合成出目标结构的树枝状大分子,同 时避免副反应的发生。
02
树枝状大分子的性质和应用
树枝状大分子的物理性质
高度对称的结构
树枝状大分子具有高度对称的结构,这使得它们 具有一些独特的物理性质。
良好的溶解性
由于其结构特点,树枝状大分子通常具有良好的 溶解性,能够溶于多种溶剂。
高分子量
树枝状大分子的分子量通常很大,这使得它们具 有较高的力学性能和稳定性。
树枝状大分子的化学性质
树枝状大分子的结构特点
树枝状大分子的树形结构使得分子具有高度的几何对称性和规整性,这使得分子 在溶液中具有很好的自组装能力,容易形成有序的高级结构。
树枝状大分子可以包含多种不同类型的基团,这些基团可以在树枝层和外延基团 中以多种方式进行组合和排列,这使得树枝状大分子具有极高的分子多样性和可 设计性。
详细描述
树枝状大分子的性质受到其结构、组成、环境等多种因素的影响。研究者们通过改变树 枝状大分子的组成、修饰其表面、调节其环境条件等手段,实现对树枝状大分子性质的 调控。这些研究为树枝状大分子的应用提供了更多可能性,如作为药物载体、催化剂、

树枝状高分子简介

树枝状高分子简介

M.E. Piotti, F. Rivera, R. Bond, C.J. Hawker, J. M. J. Frechet. J. Am.Chem. Soc. 1999, 121, 9471
催化剂方面旳应用
树状大分子封装金属粒子 (1)不大于4 nm纳米粒子,比表面积大、催化效率高 (2)表面基团控制——溶解性 (3)能很好旳稳定纳米粒子,并发明纳米微环境 (4)能再生使用
Fig.6 Competitive Hydrogenations of 3-Cyclohexene-1-methanol and CyclohexeneUsing Various Pd Catalysts .Reaction conditions: 3-cyclohexene-1-methano l 0.5 mmol, cyclohexene 0.5 mmol, catalyst 5.0 μmol of Pd, toluene 12.5 mL, H2 1 atm, 30 oC.
Y. Liu, M. Zhao, D.E. Bergbreiter. J. Am. Chem. Soc. 1997, 119, 8720
催化剂方面旳应用
❖ 纳米尺寸,形成纳米微环境 ❖ 分子构造可精确控制 ❖ 催化活性中心有可变性 ❖ 降低金属催化剂流失
催化剂方面旳应用
Fig. 3. Shape-selective olefin epoxidation using dendrimers with a manganese(iii) porphyrin core as catalysts
Fig.4. Epoxidation results for the intermolecular mixture of alkenes.The ratios of the epoxides are normalized with respect to corresponding [Mn(TPP)]+ values. Errors are estimated at (5% relative.

聚酰胺-胺型树枝状高分子

聚酰胺-胺型树枝状高分子

聚酰胺-胺型树枝状高分子聚酰胺-胺型树枝状高分子是一种特殊的高分子化合物,它由聚酰胺核心和多个连接在核心上的胺型支链组成。

这种高分子结构类似于树枝的形状,因此被称为树枝状高分子。

聚酰胺-胺型树枝状高分子具有许多独特的性质和应用特点:
1. 分支结构:树枝状高分子具有多个支链,增加了分子的空间体积和分子量。

这使得树枝状高分子具有较大的表面积和可调控的分子结构。

2. 高度分支化:聚酰胺-胺型树枝状高分子通常具有非常高的分子分支度,可以形成大量的活性末端基团。

这些末端基团可以用于进一步的化学修饰和功能化,使其具备更多的化学和物理特性。

3. 多功能性:树枝状高分子可以通过调整核心和支链之间的结构和组成,实现多种不同的物理、化学和生物功能。

例如,可以通过引入不同的侧链或改变支链长度来调节溶解性、疏水性、荷电性等特性。

4. 应用领域:聚酰胺-胺型树枝状高分子在材料科学、生物医学、纳米技术等领域具有广泛的应用。

例如,它们可以用作药物递送系统、表面涂层材料、聚合物增强剂等。

聚酰胺-胺型树枝状高分子是一类具有分支结构和多功能性的高分子化合物。

其独特的结构和性质使其在许多不同领域的应用中具有潜力,并为材料科学和应用提供了新的可能性。

树状大分子

树状大分子

树状大分子树状大分子聚合物就是指有树枝形状结构的物质,结构上,它一般具有规整的分子结构,高度支化的分子内有许多空腔,末端含丰富的官能团,分子量容易在合成时控制;性能上,高度支化的分子使它不容易结晶,丰富的表面官能团决定了它的高表面活性,而它溶液和恪体的低粘度性能使它易于成型加工,容易成膜,良好的生物相容性使它能很好的应用于生物体内。

目前合成树形大分子聚合物的方法主要有发散法和收敛法两种。

发散法是由核心开始,逐步引入单体,发散法能合成高代产物,但是随着代数变大,产品易产生结构缺陷。

收敛法则是先构造外围分支,由核心将分支链接,虽然产物缺陷少,但是收敛法合成速度慢,空间位阻影响大。

PAMAM表面拥有多个活性中心和丰富的端基官能团,可以进行很多修饰或与各种药物共价形成共辄物,而许多重复单元形成的大量内体结构,可以有效地包埋药物,形成载药复合物,且PAMAM同时具有良好的生物相容性和无免疫原性,这使得PAMAM在药物载体方面广泛应用。

用发散法合成树状大分子的过程如下:0. 5G PAMAM的合成在冰水浴中,向250 m L三口瓶中缓慢加入9. 0 g ( 0. 15 mol) EDA(乙二胺)和30mL甲醇,通N2气除氧,磁力搅拌下用恒压滴液漏斗滴加( 1 滴/s) 103.2g( 1. 2 mol) MA(丙烯酸甲酯)。

滴毕在25 ℃搅拌反应24 h,反应混合物经50 ℃减压下旋转蒸发除去溶剂和过量MA,得淡黄色透明液体0. 5GPAMAM 产品。

按比例逐渐增大丙烯酸甲酯的用量,同法可合成 1. 5G、2. 5G 和 3. 5G PAMAM。

1. 0G PAMAM的合成在冰水浴中,向250 m L 三口瓶中加入20. 2 g( 0. 05 mol) 0. 5G PAMAM的甲醇( 50 m L) 溶液,通N2气除氧后磁力搅拌下缓慢滴加( 1滴/s) 72 g( 1. 2 mol) EDA,滴毕,在25 ℃搅拌反应24 h,再经60 ℃减压旋转蒸发,并利用浓硫酸作辅助吸收剂除去溶剂及过量EDA,得淡黄色粘稠状液体1. 0G 粗品。

高分子材料分类

高分子材料分类

高分子材料分类高分子材料是由大量重复单元组成的大分子化合物,也称为聚合物。

根据高分子材料的结构和性质的不同,可以将其分为不同的分类,包括线性高分子材料、枝状高分子材料、网络高分子材料和共聚高分子材料等。

下面将对这些分类进行详细介绍。

1. 线性高分子材料: 线性高分子材料是由线性排列的重复单元组成的聚合物,具有线性分子链的特点。

典型的线性高分子材料包括聚乙烯、聚丙烯和聚苯乙烯等。

线性高分子材料通常具有良好的流动性和可塑性,适用于热塑性加工方式。

2. 枝状高分子材料: 枝状高分子材料是由一个线性聚合物链上分支出多个较短的侧链组成的聚合物。

这些侧链可以增加材料的分子量和分子量分布,提高材料的流变性能和热稳定性。

典型的枝状高分子材料包括树枝状聚合物和星形聚合物等。

3. 网络高分子材料: 网络高分子材料是由交联的聚合物链形成的三维网状结构的聚合物。

这些交联点可以通过化学交联或物理交联的方式形成。

网络高分子材料通常具有较高的强度和刚性,适用于制作弹性体和耐磨材料等。

典型的网络高分子材料包括聚酰胺、环氧树脂和硅橡胶等。

4. 共聚高分子材料: 共聚高分子材料是由两种或多种不同单体按一定比例共同聚合得到的聚合物。

共聚高分子材料通常具有比纯聚合物更好的性能和更广泛的应用领域。

根据共聚单体的特性和相互作用方式的不同,共聚高分子材料可以分为均聚物、块聚物和组聚物等。

典型的共聚高分子材料包括丙烯酸酯共聚物、聚酯共聚物和丙烯腈-丙烯酸酯共聚物等。

总结起来,高分子材料根据其结构和性质可以分为线性高分子材料、枝状高分子材料、网络高分子材料和共聚高分子材料等。

每种类型的高分子材料都有其独特的性能和应用领域,在工业生产和日常生活中有广泛的应用前景。

树枝状大分子PAMAM-FBs合成及其在造纸中的应用

树枝状大分子PAMAM-FBs合成及其在造纸中的应用
加入 P A MA M 水溶 液 1 . 0 3 2 g , 蒸 出丙 酮 , 将p H控 制 为
7~8 , 升 温至 8 0~9 5 ℃, 反应 至 p H不再 变 化 , 产 品 为
般对称性高 、 单分散性好 , 树枝状大分 子在医学领
域、 液晶、 膜材料 、 纳 米 复 合 材 料 有 着 广 阔 的 应 用 前 景 ] 。笔 者 用树 枝状 大 分 子 聚酰 胺 一胺 ( P AMA M) 代 替 一 种 氨 基 化 合 物 合 成 一 种 改 性 荧 光 增 白剂 P A — MA M— F B s。 用P A MA M 改性 此类 荧 光增 白剂 , 使荧 光 增 白剂 的荧 光 活 性 同 P A MA M 高 分 子 链 以共 价 键 相 连, 能够 明显改 善其 稳定 性 和耐光 性阎 。
造纸 化学 品与应 Y R
2 0 1 3年 第 4期
1 . 5荧 光光谱测 定
此 它们 会有 顺式 和反 式 两种构 型 , 顺式 结 构吸 收峰 出 现在 2 8 0 n m左右 , 顺式 异构体 在 吸收光 能后不 会有 荧 光 射 出 。 由图 2可 知 , 合 成产 物 反式 吸收 峰则 出现 在 3 5 8 n m处 , 与F B s 相 比有 5 n m 的蓝 移 , 另外 F B s 单 体 中顺 式结 构 与反式 结构 含量 相差 不多 , 而 合成 的荧 光 增 白剂 中反式 结构 吸 收峰强 度 大于顺 式结 构 吸收 峰 , 这说 明 P A MA M— F B s 中反式 结构 占主要 优势 。
过M i c h a e l 加成反应生成一个 四元酯 , 称为 O . 5 G ; 第二 步 反应 四元 酯 与 过 量 的 乙二 胺 发 生 酰 胺 化 反 应 生成

树枝状与超支化聚合物

树枝状与超支化聚合物
团结 信赖 创造 挑战
2.收敛法 Convergence Method
从所需合成的树枝状聚合物分子的边缘部分开始,逐步向内进行。首 先合成树枝状聚合物的一部分,形成一个楔形物,然后将这些楔形物 与中心分子连接,最后形成树枝状聚合物。 特点:在合成单分散性树枝状聚合物、提纯和标征等方面优越于发散 法,每步增长过程涉及的反应官能团数目较少。 缺点:随着增长级数的增加,在中心点的反应基团所受的空间位阻增 大,对反应进一步进行有阻碍,聚合物的代数较少。
新员工培训课程
价值体系内容:
我们的价值来源于我们的被认可 我们的收入取决于自己的创造 我们要以同等时间创造更多的财富 我们只有比别人更多的付出才能活得更好 与时代一同进步,一天一小步,一年一大步 我今天的事情是否已计划好,并切实在做 我现在做的事情是否应该做 我做事有激情吗?是否专心、高效 我是否有危机感?想过今后咋办?
团结 信赖 创造 挑战
2.超支化聚合物 早在1952年,Flory就提出了可以由多官能团单体制备高度支化的聚合 物, ABx(X≥2) 型的单体的缩聚反应生成可溶性的高度支化的聚合物 。这种聚合物不是完美的树枝状大分子,而是结构有缺陷的聚合物, 这种聚合物称为超支化聚合物。
特点: • 结构高度支化 • 分子内带有大量官能团 • 分子内存在三种类型的结构单元 • 较低的粘度 • 良好的溶解性
团结 信赖 创造 挑战
3.树枝状聚合物在医疗诊断方面的应用
树枝状聚合物运用到医学成像领域如磁共振成像(MRI)上,主要是因 为其末端偶联的功能基团具有多价分子吸附效应,可用一种预先控制的 方式将大量对照剂结合在单个分子上,用于部位或组织特异性反应和增 强反应,同时增加成像的敏感性。树枝状聚合物作为载体为MRI试剂提 供整合基团。

树枝状大分子

树枝状大分子

树枝状大分子树枝状大分子是近几年来出现的一类新型大分子,它是通过支化基元逐步重复的反应得到的一类具有高度支化结构的大分子。

树枝状大分子与传统的线性大分子相比有以下几个显著特点:(1)树枝状大分子有明确的分子量及分子尺寸,结构规整,分子体积、形状和功能基都可在分子水平上精确控制;(2)树枝状大分子一般由核心出发,不断向外分支,代数较低时一般为开放的分子构型,随代数的增加和支化的继续,从第四代开始,分子由敞开的松散状态转变为外紧内松的球形三维结构(如图1),分子内部具有广阔的空腔,分子表面具有极高的官能团密度;(3)树枝状大分子有很好的反应活性及包容能力,在分子中心和分子末端可导入大量的反应性或功能性基团,用作具有特殊功能的高分子材料。

树枝状大分子特殊的结构赋予其与线型分子不同的物理和化学性能。

树枝状大分子具有广阔的应用前景,可用于生物制药、催化剂、物质分离技术、自组装及“光天线”等各个领域。

一、树枝化聚合物的合成树枝化聚合物的合成方法通常有下列两种:大单体路线(Macromonomer route)和聚合物表面接枝路线(Divergent route)。

前者是先合成带有相应树枝化基元的可聚合单体,而后进行相应的聚合反应,直接得到目标树枝化聚合物。

这一路线的关键在于选择合适的树枝化基元(包括树枝化基元的结构和代数)及聚合基元、简便有效的合成路线以及适当的聚合方法。

其最大的优点是所合成的树枝化聚合物的结构(化学和物理结构的)高度完美。

而问题一是由于通常认为的树枝化基元空间位阻效应,二是由于大单体中较低的聚合基元浓度,因而不易制备高代数、高分子量的目标聚合物。

因此,尤其对于合成表面具有反应性官能团的聚合物体系,选择合适可行的聚合方法至关重要。

而聚合物表面接枝法则是先合成线性聚合物主链,而后通过聚合物主链上的反应性官能团联接上相应代数的树枝化基元。

这一路线的优点是可以采用常规的聚合方法合成相应的聚合物主链,而后采用逐步接枝反应将树枝化基元引入聚合物链,合成方法相对简单。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

树形大分子的应用
超分子化学的应用 催化剂方面的应用
生物医学方面的应用
光学方面的应用 其他方面的应用
超分子的应用
主-客体体系
Fig. 1. Schematic representation of (a) a conventional fluorescent sensor and (b) a fluorescent sensor with signal amplification. Open rhombi indicate coordination sites and black rhombi indicate metal ions. The curved arrows represent quenching processes. In the case of a dendrimer, the absorbed photon excites a single fluorophore component, i.e. quenched by the metal ion, regardless of its position.
substrate/dendrimera
树形大分子的结构特点和性质
低黏度、高溶解性
能量和电子转移 分子识别 催化剂、 传感器 氧化还原特性 外部受体 内部受体 封装 胶团
纳米层、聚合液晶、超分子
A.M. Caminade. Laboratoire de Chimie de Coordination du CNRS 205, route de Narbonne, 31077 Toulouse cedex 4, FRANCE, 2005
P. Bhyrappa, J. K. Young, J. S. Moore, K.S. Suslick. J. Mol Catal A. 1996, 113. 109
催化剂方面的应用
Table 1. Effect of Changing the Dendrimer Structure and Concentration on the Yield and Turnover Number for the E1 Elimination Reaction (Reaction performed for 43 h at 70 oC
Fig.4. Epoxidation results for the intermolecular mixture of alkenes.The ratios of the epoxides are normalized with respect to corresponding [Mn(TPP)]+ values. Errors are estimated at (5% relative.
目前,二十多类,200多种树形大分子被合成出来
树形大分子的合成方法
核心出发逐步引入单体。代数高,分子量大;易有缺陷,产物与反应物不易分离。
分散法
收敛法
构造外围分支,由核心连接。空间位阻,速率慢; 缺陷少,产物与反应物易分离。
I. Tomalia. J. Polymer. 1985, 17, 117. C. Hawker, J. Frechet. J. Am. Chem. Soc. 1990, 112, 7638.
V. Balzani, F. Vö gtle .C. R. Chimie. 2003, 6, 867
超分子的应用
分子自组装
Fig.2. Schematic illustration of the pH-switchable “On/Off” function of the composite film. The polyamine dendrimer units are covபைடு நூலகம்lently attached to the Gantrez polymer network. At high pH the film has a net negative charge that excludes anions but passes cations; at low pH it is positively charged and excludes cations but passes anions; and at intermediate pH, it passes both cations and anions.
树枝状高分子简介
2008年9月
树形大分子的介绍
从多官能团内核出发,通过支化基元逐步重复生长, 形成具有高度支化结构的树枝状三维大分子。
树形大分子的发展和研究现状
Tomalia 在1985 年利用发散法首次合成树形聚(酰胺—胺) 型大分子 Hawker等人在1989年利用收敛法合成树形冠醚大分子 Balzani 等人在1992 年首次报道了有机过渡金属树形大分子 Percec 等人在1995年首次报道了液晶型的树形大分子化合物
PAMAM(聚酰胺- 胺)合成过程
C.Dufes, I.F. Uchegbu, A.G. Schatzlein. Adv Drug Deli Rev. 2005, 57, 2177
树形大分子的结构特点和性质
中心有核 内部有空腔,大量支化单元 表面均匀分布可修饰的官能基团
体积、形状、功能基以及分子量都 可以在分子水平精确控制-单分散性 高度支化,具有规整,精致的完美结构, 高代数呈球形。 纳米级尺寸。 良好的溶解性,低的黏度。
Y. Liu, M. Zhao, D.E. Bergbreiter. J. Am. Chem. Soc. 1997, 119, 8720
催化剂方面的应用
纳米尺寸,形成纳米微环境
分子结构可精确控制
催化活性中心有可变性 减少金属催化剂流失
催化剂方面的应用
Fig. 3. Shape-selective olefin epoxidation using dendrimers with a manganese(iii) porphyrin core as catalysts
相关文档
最新文档