初二数学上册经典试题
八年级数学上册练习题【五篇】

八年级数学上册练习题【五篇】【导语:】这篇关于八年级数学上册练习题【五篇】的文章,是特地为大家整理的,希望对大家有所帮助!第二章实数一、选择题1.在下列实数中,是无理数的为()(A)0(B)-3.5(C)(D)2.A为数轴上表示-1的点,将点A沿数轴移动3个单位到点B,则点B所表示的实数为().(A)3(B)2(C)-4(D)2或-43.一个数的平方是4,这个数的立方是()(A)8(B)-8(C)8或-8(D)4或-44.实数m、n在数轴上的位置如图1所示,则下列不等关系正确的是()(A)n<m(B)n2<m2(C)n0<m0(D)|n|<|m|5.下列各数中没有平方根的数是()(A)-(-2)(B)3(C)(D)-(2+1)6.下列语句错误的是()(A)的平方根是±(B)-的平方根是-(C)的算术平方根是(D)有两个平方根,它们互为相反数7.下列计算正确的是().(A)(B)(C)(D)—18.估计56的大小应在().(A)5~6之间(B)6~7之间(C)8~9之间(D)7~8之间9.已知,那么()(A)0(B)0或1(C)0或-1(D)0,-1或110.已知为实数,且,则的值为()(A)3(B)(C)1(D)二、填空题11.的平方根是____________,()2的算术平方根是____________。
12.下列实数:,,,︱-1︱,,,0.1010010001……中无理数的个数有个。
13.写出一个3到4之间的无理数。
14.计算:。
15.的相反数是______,绝对值是______。
三、解答题16.计算:17.某位同学的卧室有25平方米,共用了64块正方形的地板砖,问每块砖的边长是多少?18.如图2,一只蚂蚁沿棱长为的正方体表面从顶点A爬到顶点B,则它走过的最短路程为多少?19.如图3,一架长2.5米的梯子,斜靠在一竖直的墙上,这时,梯底距离墙底端0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯子的低端将滑出多少米?20.学校要在一块长方形的土地上进行绿化,已知这块长方形土地的长=5,宽=4(1)求该长方形土地的面积.(精确到0.01)(2)若绿化该长方形土地每平方米的造价为180元,那么绿化该长方形土地所需资金为多少元?第三章位置与坐标一、选择题1.如图1,小手盖住的点的坐标可能是()(A)(5,2)(B)(-6,3)(C)(―4,―6)(D)(3,-4)2.在平面直角坐标系中,下列各点在第二象限的是()(A)(2,1)(B)(2,-1)(C)(-2,1)(D)(-2,-1)3.点P(—2,3)关于y轴对称的点的坐标是()(A)(—2,—3)(B)(3,—2)(C)(2,3)(D)(2,—3)4.平面直角坐标系内,点A(,)一定不在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限5.如果点P(在轴上,则点P的坐标为()(A)(0,2)(B)(2,0)(C)(4,0)(D)(0,6.已知点P的坐标为(,且点P到两坐标轴的距离相等,则点P的坐标为()(A)(3,3)(B)(3,(C)(6,(D)(3,3)或(6,7.已知点A(2,0)、点B(-,0)、点C(0,1),以A、B、C三点为顶点画平行四边形,则第四个顶点不可能在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限8.若P()在第二象限,则Q()在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限9.如图2是某战役中缴获敌人防御工程的坐标地图碎片,依稀可见:一号暗堡的坐标为(1,2),四号暗堡的坐标为(-3,2).另有情报得知:指挥部坐标为(0,0),你认为敌军指挥部的位置大约是()(A)A处(B)B处(C)C处(D)D处10.以边长为4的正方形的对角线建立平面直角坐标系,其中一个顶点位于轴的负半轴上,则该点坐标为()(A)(2,0)(B)(0,-2)(C)(0,)(D)(0,)二、填空题11.点A在轴上,且与原点的距离为5,则点A的坐标是________.12.如图3,每个小方格都是边长为1个单位长度的正方形,如果用(0,0)表示A点的位置,用(3,4)表示B点的位置,那么用表示C点的位置.13.已知点M,将点M向右平移个单位长度得到N点,则N点的坐标为________.14.第三象限内的点,满足,,则点的坐标是.15.如图4,将AOB绕点O逆时针旋转900,得到。
初二数学上册试卷及答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √16B. √-9C. πD. 2/32. 下列各数中,无理数是()A. √25B. 3.14C. √-16D. 1/23. 下列等式中,正确的是()A. (-2)^3 = -8B. (-2)^3 = 8C. (-2)^2 = -4D. (-2)^2 = 44. 若a=3,b=-2,则a+b的值是()A. 1B. 5C. -5D. -15. 已知一元二次方程x^2 - 5x + 6 = 0,则x的值为()A. 2B. 3C. 2或3D. 无法确定6. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标是()A. (2,-3)B. (-2,3)C. (2,-3)D. (-2,-3)7. 若a、b、c成等差数列,且a+b+c=18,则b的值为()A. 6B. 9C. 12D. 158. 已知函数f(x) = 2x - 3,若f(x) > 1,则x的取值范围是()A. x > 2B. x < 2C. x ≥ 2D. x ≤ 29. 在等腰三角形ABC中,若底边BC=8,腰AB=AC=10,则高AD的长度是()A. 6B. 8C. 10D. 1210. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 长方形D. 梯形二、填空题(每题3分,共30分)11. 3^2 × (-2)^3 = _______12. (-1/2)^4 = _______13. 若a=5,b=-3,则a^2 + b^2的值是 _______14. 在直角坐标系中,点P(-3,4)关于原点的对称点坐标是 _______15. 已知一元二次方程x^2 - 4x + 3 = 0,则x的值为 _______16. 若a、b、c成等差数列,且a+b+c=12,则b的值为 _______17. 已知函数f(x) = x^2 - 2x + 1,则f(2)的值为 _______18. 在等腰三角形ABC中,若底边BC=6,腰AB=AC=8,则高AD的长度是 _______19. 若a、b、c成等比数列,且a+b+c=27,则b的值为 _______20. 在直角坐标系中,点P(2,3)关于y轴的对称点坐标是 _______三、解答题(每题10分,共40分)21. 解下列方程:(1)2x - 5 = 3x + 1(2)5(x - 2) - 3(x + 1) = 222. 已知函数f(x) = 3x - 4,求f(2)和f(-1)的值。
初二上册数学试卷加解析

一、选择题(每题3分,共30分)1. 下列各数中,是正数的是()A. -1.5B. 0C. -3D. 0.5答案:D解析:正数是指大于0的数,选项D中的0.5是大于0的数,因此选D。
2. 下列各数中,是整数的是()A. 1.5B. -3C. 0.5D. 2.3答案:B解析:整数是指不带小数部分的数,选项B中的-3是不带小数部分的数,因此选B。
3. 已知a=2,b=-3,则a+b的值为()A. -1B. 1C. 5D. -5答案:A解析:a+b表示a与b的和,将a和b的值代入得到2+(-3)=-1,因此选A。
4. 如果一个数x满足x+3=5,那么x的值为()B. 3C. 4D. 5答案:A解析:x+3=5表示x与3的和等于5,将5减去3得到x=2,因此选A。
5. 下列各数中,是偶数的是()A. 3B. 4C. 5D. 6答案:B解析:偶数是指能被2整除的数,选项B中的4能被2整除,因此选B。
6. 如果一个数x满足2x=8,那么x的值为()A. 3B. 4C. 5D. 6答案:B解析:2x=8表示2与x的乘积等于8,将8除以2得到x=4,因此选B。
7. 下列各数中,是奇数的是()A. 2B. 3D. 5答案:B解析:奇数是指不能被2整除的数,选项B中的3不能被2整除,因此选B。
8. 已知a=5,b=2,则a-b的值为()A. 3B. 7C. 1D. -3答案:B解析:a-b表示a与b的差,将a和b的值代入得到5-2=3,因此选B。
9. 如果一个数x满足3x=9,那么x的值为()A. 2B. 3C. 4D. 5答案:B解析:3x=9表示3与x的乘积等于9,将9除以3得到x=3,因此选B。
10. 下列各数中,是质数的是()A. 4B. 5C. 6D. 7答案:B解析:质数是指只能被1和自身整除的数,选项B中的5只能被1和5整除,因此选B。
二、填空题(每题3分,共30分)1. -2的相反数是_________。
八年级上册数学试卷加答案

一、选择题(每题3分,共30分)1. 下列各数中,正数是()A. -3.5B. -2.1C. 1.5D. -1.82. 如果一个数a等于它的倒数,那么这个数是()A. 0B. 1C. -1D. 任何实数3. 下列各式中,绝对值最大的是()A. |2|B. |-3|C. |-2.5|D. |-4|4. 下列各式中,同类项是()A. 2x^2B. 3x^2yC. 4xy^2D. 5x^25. 下列各式中,分式有意义的是()A. 2/(x-3)B. 3/(x^2+1)C. 4/(x^2-1)D. 5/(x-2)6. 下列各式中,下列图形是正方形的是()A. AB=BC,AD=CDB. AB=AC,BC=CDC. AB=AD,BC=CDD. AB=AC,AD=BC7. 下列各式中,下列图形是矩形的是()A. AB=AC,BC=CDB. AB=AD,BC=CDC. AB=AC,AD=BCD. AB=AC,BC=CD8. 下列各式中,下列图形是平行四边形的是()A. AB=AC,BC=CDB. AB=AD,BC=CDC. AB=AC,AD=BCD. AB=AC,BC=CD9. 下列各式中,下列图形是梯形的是()A. AB=AC,BC=CDB. AB=AD,BC=CDC. AB=AC,AD=BCD. AB=AC,BC=CD10. 下列各式中,下列图形是菱形的是()A. AB=AC,BC=CDB. AB=AD,BC=CDC. AB=AC,AD=BCD. AB=AC,BC=CD二、填空题(每题3分,共30分)11. -3的倒数是______。
12. |5|的值是______。
13. 下列各式中,同类项是______。
14. 下列各式中,分式有意义的是______。
15. 下列各式中,下列图形是正方形的是______。
16. 下列各式中,下列图形是矩形的是______。
17. 下列各式中,下列图形是平行四边形的是______。
八年级上册数学全套试卷

一、选择题(每题4分,共40分)1. 下列各数中,无理数是()A. √2B. 3C. -πD. 0.252. 若a,b是方程x² - 5x + 6 = 0的两根,则a+b的值是()A. 5B. -6C. 6D. -53. 在平面直角坐标系中,点A(2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(2,3)4. 下列各式中,正确的是()A. (a+b)² = a² + 2ab + b²B. (a-b)² = a² - 2ab + b²C. (a+b)³ = a³ + 3a²b + 3ab² + b³D. (a-b)³ = a³ - 3a²b + 3ab² - b³5. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是()A. 20cmB. 22cmC. 24cmD. 26cm6. 若m,n是方程2x² - 5x + 2 = 0的两根,则m×n的值是()A. 1B. 2C. 3D. 47. 在平面直角坐标系中,点P(-3,2)到x轴的距离是()A. 2B. 3C. 5D. 68. 下列函数中,y是x的一次函数是()A. y = x² + 2B. y = 3x + 5C. y = √xD. y = 2/x9. 一个长方形的长是12cm,宽是8cm,那么这个长方形的周长是()A. 40cmB. 48cmC. 56cmD. 64cm10. 下列各数中,有理数是()A. √9B. √16C. √25D. √-1二、填空题(每题4分,共40分)11. 若a² = 9,则a的值是______。
12. 一个圆的半径是5cm,那么这个圆的直径是______cm。
60道八年级上册数学题

60道八年级上册数学题一、选择题(每题3分,共30分)1. 下列长度的三条线段能组成三角形的是()- A. 1,2,3.- B. 1,√(2),3.- C. 3,4,8.- D. 4,5,6.- 解析:根据三角形三边关系“任意两边之和大于第三边,任意两边之差小于第三边”。
- 选项A:1 + 2=3,不满足两边之和大于第三边,不能组成三角形。
- 选项B:1+√(2)<3,不满足条件,不能组成三角形。
- 选项C:3 + 4<8,不满足条件,不能组成三角形。
- 选项D:4+5>6,6 - 4<5,6 - 5<4,5+6>4等满足三边关系,可以组成三角形。
所以答案是D。
2. 一个多边形的内角和是外角和的2倍,则这个多边形是()- A. 四边形。
- B. 五边形。
- C. 六边形。
- D. 八边形。
- 解析:设这个多边形有n条边。
多边形的外角和是360^∘,内角和公式为(n - 2)×180^∘。
- 已知内角和是外角和的2倍,则(n - 2)×180^∘=2×360^∘。
- 解方程(n - 2)×180 = 720,n-2 = 4,n = 6。
所以这个多边形是六边形,答案是C。
3. 在ABC中,∠ A = 50^∘,∠ B = 60^∘,则∠ C的外角等于()- A. 110^∘- B. 70^∘- C. 120^∘- D. 130^∘- 解析:三角形的一个外角等于与它不相邻的两个内角之和。
- 在ABC中,∠ C的外角=∠ A+∠ B。
- 因为∠ A = 50^∘,∠ B = 60^∘,所以∠ C的外角=50^∘+60^∘=110^∘。
答案是A。
4. 点M(3,-2)关于y轴对称的点的坐标为()- A. (-3,2)- B. (-3,-2)- C. (3,2)- D. (2,-3)- 解析:关于y轴对称的点纵坐标不变,横坐标互为相反数。
初二上册数学题100道

初二上册数学题100道1.25 + 47 = 。
2.83 - 29 = 。
3.56 × 4 = 。
4.144 ÷ 12 = 。
5.5^3 = 。
6.2^5 + 6 = 。
7.15 + 3 × 4= 。
8.(18 - 6) ÷ 2 = 。
9.7 × (3 + 5) = 。
10.90 - (4 × 8) = 。
11.3/4 + 1/2 = 。
12.5/6 - 1/3 = 。
13.2/5 × 3/4 = 。
14.7/8 ÷ 3/4 = 。
15.0.75 + 0.25 = 。
16.1.5 - 0.75 = 。
17.2.4 × 3 = 。
18.5.6 ÷ 2 = 。
19.0.2 + 0.7 = 。
20.1.2 - 0.4 = 。
21.如果一个数是80,增加25%后是多少。
22.一个数的70%是14,那么这个数是多少。
23.一件商品原价100元,打8折后售价是多少。
24.小明的数学成绩是85分,数学成绩的80%是多少分。
25.如果一个班有40名学生,其中25%是女生,那么女生有多少名。
26.数列:2,4,6,8,__,__(填空)。
27.数列:3,6,9,12,__,__(填空)。
28.数列:5,10,20,__,__(填空)。
29.数列:1,4,9,16,__,__(填空)。
30.数列:2,5,10,17,__,__(填空)。
31.解方程:x + 5 = 12 。
32.解方程:3x = 15 。
33.解方程:2x + 4 = 10 。
34.解方程:5x - 3 = 12 。
35.解方程:4x + 1 = 17 。
36.一组数据:2,3,4,5,6,计算平均数。
37.数据:1,3,5,7,求中位数。
38.数据集:5,7,7,8,9,找出众数。
39.如果一个数据集的最大值是10,最小值是2,那么范围是多少。
40.数据集:2,4,6,8,计算总和。
八年级上册数学题大全

八年级上册数学题大全一、三角形相关(6题)1. 已知三角形的两边长分别为3和5,第三边的长为偶数,则第三边的长可以是多少?- 解析:设第三边的长为x,根据三角形三边关系“两边之和大于第三边,两边之差小于第三边”,可得5 - 3< x<5+3,即2< x<8。
因为x为偶数,所以x = 4或x = 6。
2. 在ABC中,∠ A=∠ B + 10^∘,∠ C=∠ A+10^∘,求ABC各内角的度数。
- 解析:设∠ B = x^∘,因为∠ A=∠ B + 10^∘,所以∠ A=(x + 10)^∘,又因为∠ C=∠ A+10^∘,所以∠ C=(x+10 + 10)=(x + 20)^∘。
根据三角形内角和为180^∘,可得x+(x + 10)+(x + 20)=180,3x+30 = 180,3x=150,x = 50。
所以∠ B=50^∘,∠ A = 60^∘,∠ C=70^∘。
3. 如图,在ABC中,AD是BC边上的中线,ADC的周长比ABD的周长多5cm,AB与AC的和为11cm,求AC的长。
- 解析:因为AD是BC边上的中线,所以BD = DC。
ADC的周长为AC + AD+DC,ABD的周长为AB + AD+BD。
又因为ADC的周长比ABD的周长多5cm,所以(AC + AD+DC)-(AB + AD+BD)=5,即AC - AB=5。
设AC=x cm,因为AB与AC 的和为11cm,所以AB=(11 - x)cm。
则x-(11 - x)=5,x - 11+x=5,2x=16,x = 8,所以AC = 8cm。
4. 一个等腰三角形的周长为18cm,一边长为4cm,求其他两边的长。
- 解析:分两种情况讨论。
- 当4cm为腰长时,底边长为18 - 4×2=18 - 8 = 10cm。
因为4 + 4=8<10,不满足三角形三边关系,所以这种情况舍去。
- 当4cm为底边长时,腰长为(18 - 4)÷2=7cm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学上册经典试题
导语:一段旅程,遇见什么,或不遇见什么,都是一种情怀,流水空山有落霞。
以下为大家介绍初二数学上册经典试题文章,欢迎大家阅读参考!
初二数学上册经典试题一、选择题
1.如图1,AD=AC,BD=BC,则△ABC≌△ABD的根据是()
(A)SSS (B)ASA (C)AAS (D)SAS
2.下列各组线段中,能组成三角形的是()
(A)a=2, b=3,c=8 (B)a=7,b=6,c=13 (C)a=4,b=5,c=6 (D)a=,b=,c=
3.如图2,∠POA=∠POB,PD⊥OA于点D,PE⊥OB于点E,OP=13,OD=12,PD=5,则PE=()
(A)13 (B)12 (C)5 (D)1
4.下面所示的几何图形中,一定是轴对称图形的有()
(A)1个(B)2个(C)3个(D)4个
5.如果点A在第一象限,那么和它关于x轴对称的点B
在()
(A)第一象限(B)第二象限(C)第三象限(D)第四象限
6.在△ABC中,∠A=42°,∠B=96°,则它是()
(A)直角三角形(B)等腰三角形(C)等腰直角三角形(D)等边三角形
7.计算(ab2)3(-a2)的结果是()
(A)-a3b5 (B)a5b5 (C)a5b6 (D)-a5b6
8.下列各式中是完全平方式的是()
(A)a2+ab+b2 (B)a2+2a+2
(C)a2-2b+b2 (D)a2+2a+1
9.计算(x-4) 的结果是()
(A)x+1 (B)-x-4 (C)x-4 (D)4-x
10.若x为任意实数,二次三项式x2-6x+c的值都不小于0,则常数c满足的条件是()
(A)c≥0 (B)c≥9 (C)
c>0 (D)c>9
二、填空题
11.五边形的内角和为。
12.多项式3a3b3-3a2b2-9a2b各项的公因式
是。
13.一个正多边形的每个外角都是40°,则它是正边形。
14.计算(12a3b3c2-6a2bc3)÷(-3a2bc2)= 。
15.分式方程-1=的解是。
16.如图3,△ABC中,AC的垂直平分线交AC于点D,交BC于点E,AD=5cm,△ABE的周长为18cm,则△ABC的周长为 cm。
三、解答题
17.(本小题满分12分,分别为5、7分)
(1)因式分解:x2y2-x2 (2)计算:(2a+3b)(2a-b)-4a(b-a)
18.(本小题满分8分)
如图4,C为AB上的一点,CD∥BE,AD∥CE,AD=CE。
求证:C是AB的中点。
19.(本小题满分8分)
计算:+
20.(本小题满分8分)
如图5,已知AD是△ABC的中线,∠B=33°,∠BAD=21°,△ABD的周长比△ADC的周长大2,且AB=5。
(1)求∠ADC的度数;
(2)求AC的长。
21.(本小题满分10分)如图6,△ABC中,AB=AC,∠A=34°,点D、E、F分别在BC、AB、AC上,BD=CF,BE=CD,G为EF的中点。
(1)求∠B的度数;
(2)求证:DG⊥EF。
22.(本小题满分8分)
学校图书馆新购买了一批图书,管理员计划用若干个工作日完成这批图书的登记、归类与放置工作。
管理员做了两个工作日,从第三日起,二(1)班陈浩同学作为志愿者加盟此项工作,且陈浩与管理员工效相同,结果提前3天完成任务。
求管理员计划完成此项工作的天数。
23. (本小题满分8分)
如图7,已知在△ABC中,AB=AC,∠A=100°,CD是∠ACB的平分线。
(1)∠ADC= 。
(2)求证:BC=CD+AD。
参考答案与试题解析
一、选择题
1.A 2.C
3.C 4.B
5.D 6.B
7.D 8.D
9.BB 10.B
二、填空题
11. 1080°.
12. 3a2b .
13.九边形.
14.﹣4ab2+2c .
15. x= .
16. 28 cm.
三、解答题
17.解:(1)x2y2﹣x2,
=x2(y2﹣1),
=x2(y+1)(y﹣1);
(2)(2a+3b)(2a﹣b)﹣4a(b﹣a), =4a2﹣2ab+6ab﹣3b2﹣4ab+4a2,
=8a2﹣3b2.
18.证明:∵CD∥BE,
∴∠ACD=∠B,
同理,∠BCE=∠A,
在△ACD和△CBD中,,
∴AC=CB,即C是AB的中点.
19.解:原式=+===.
20.解:(1)∵∠B=33°,∠BAD=21°,∠ADC是△ABD 的外角,
∴∠ADC=∠B+∠BAD=33°+21°=54°;
(2)∵AD是BC边上中线,
∴BD=CD,
∴△ABD的周长﹣△ADC的周长=AB﹣AC,
∵△ABD的周长比△ADC的周长大2,且AB=5.
∴5﹣AC=2,即AC=3.
21.(1)解:如图,∵△ABC中,AB=AC,
∴∠B=∠C.
又∵∠A=34°,∠A+∠B+∠C=180°,
∴∠B=73°;
(2)证明:∵在△EBD与△DCF中,
,
∴△EBD≌△DCF(SAS),
∴ED=DF,
又∵G为EF的中点,
∴DG⊥EF.
22.解:设管理员计划完成此项工作需x天,管理员前两个工作日完成了,剩余的工作日完成了,乙完成了,
则+=1,
解得x=8,
经检验,x=8是原方程的解.
答:管理员计划完成此项工作的天数为8天.
23.(1)解:∵AB=AC,∠A=100°,
∴∠ABC=∠ACB=(180°﹣∠A)=40°,
∵CD平分∠ACB,
∴∠ACD=∠BCD=∠ACB=20°,
∴∠ADC=180°﹣∠A﹣∠ACD=180°﹣100°﹣20°=60°,
故答案为60°;
(2)证明:延长CD使CE=BC,连接BE,
∴∠CEB=∠CBE=(180°﹣∠BCD)=80°,
∴∠EBD=∠CBE﹣∠ABC=80°﹣40°=40°,
∴∠EBD=∠ABC,
在CB上截取CF=AC,连接DF,
在△ACD和△FCD中,
,
∴△ACD≌△FCD(SAS),
∴AD=DF,
∠DFC=∠A=100°,
∴∠BDF=∠DFC﹣∠ABC=100°﹣40°=60°,
∵∠EDB=∠ADC=60°,
∴∠EDB=∠BDF,
∵∠EBD=∠FBD=40°,在△BDE和△BDF中,
,
∴△BDE≌△BDF(ASA),∴DE=DF=AD,
∵BC=CE=DE+CD,
∴BC=AD+CD.。