量子力学题库网用
量子力学基本知识练习题_ppt课件

1.光电效应中逸出光电子数的多少依赖 于: A. 入射光的强度和频率 B. 入射光的强度和相位 C. 入射光的频率和相位 D. 入射光的振动方向和相位
发射的光电子数与入射的光电子数有 关,根据光的强度 可 知 ,所以光电子数与入射光 的强度及频率有关。 正确答案是A
2. 当能量为5.0eV的光子射向某金属表面时, 从金属表面逸出的电子的最大初动能为 1.5eV。为使该金属能产生光电效应,入射 光的最低能量必须是多少?(用eV表示) A. 1.5 B. 2.5 C. 3.5 D. 5.0
4. 氢原子中电子从n=2的轨道上电离所需的 最小能量是 A. 3.4 eV B. 13.6 eV C. 10.2 eV D. 6.8 eV
答案A. 电离意味着电子从 所需最小能量为
跃迁到
的状态, (eV)
5. 根据德布罗意假设 A. 辐射不具有粒子性, 但具有波动性 B. 粒子具有波动性 C. 波长非常短的辐射具有粒子性,但长波辐 射却不然 D. 辐射具有粒子性, 但粒子绝不可能有波 动性
答案C. 可得
由 (nm)
16. 已知中子的质量为1.6× 10-27kg. 假定一 个中子沿x方向以2000m.s-1的速率运动, 速率的误差为0.01%,则中子位置的不确 定量至少为: (用不确定关系Dx﹒ D px ≥h 计算) -17 -13 A. 3.28× 10 m B. 3.28× 10 m -10 -7 C. 3.28× 10 m D. 3.28× 10 m
正确答案:B. 由爱因斯坦光电效应方程可知:
所以光电子动量大小(非相对论)为
量子力学 练习题
二
1. 由氢原子理论可知, 当氢原子处于n=3的激 发态时, 可观察到可见光谱线为 A. 一种波长的光 B. 二种波长的光 C. 三种波长的光 D. 各种波长的光 答案A 可见光是电子从较高能级 向n=2跃迁时发出的。 由图可知,从n=3 能级跃迁, 只能发射一条可见光谱线。
量子力学基础试题及答案

量子力学基础试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中,物质的波粒二象性是由哪位科学家提出的?A. 爱因斯坦B. 普朗克C. 德布罗意D. 海森堡答案:C2. 量子力学的基本原理之一是不确定性原理,该原理是由哪位科学家提出的?A. 玻尔B. 薛定谔C. 海森堡D. 狄拉克答案:C3. 量子力学中,描述粒子状态的数学对象是:A. 波函数B. 概率密度C. 动量D. 能量答案:A4. 量子力学中,哪个方程是描述粒子的波动性质的基本方程?A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 相对论方程答案:A5. 量子力学中,哪个原理说明了粒子的波函数在测量后会坍缩到一个特定的状态?A. 叠加原理B. 波函数坍缩原理C. 不确定性原理D. 泡利不相容原理答案:B二、填空题(每题3分,共15分)1. 在量子力学中,粒子的动量和位置不能同时被精确测量,这一现象被称为______。
答案:不确定性原理2. 量子力学中的波函数必须满足______条件,以确保物理量的概率解释是合理的。
答案:归一化3. 量子力学中的粒子状态可以用______来描述,它是一个复数函数。
答案:波函数4. 量子力学中的______方程是描述非相对论性粒子的波函数随时间演化的基本方程。
答案:薛定谔5. 量子力学中的______原理表明,不可能同时精确地知道粒子的位置和动量。
答案:不确定性三、简答题(每题5分,共20分)1. 简述量子力学与经典力学的主要区别。
答案:量子力学与经典力学的主要区别在于,量子力学描述的是微观粒子的行为,它引入了波粒二象性、不确定性原理和量子叠加等概念,而经典力学主要描述宏观物体的运动,遵循牛顿力学的确定性规律。
2. 描述量子力学中的波函数坍缩现象。
答案:波函数坍缩是指在量子力学中,当对一个量子系统进行测量时,系统的波函数会从一个叠加态突然转变到一个特定的本征态,这个过程是不可逆的,并且与测量过程有关。
量子力学导论考试题及答案

量子力学导论考试题及答案一、选择题(每题2分,共20分)1. 量子力学中,波函数的模平方代表什么?A. 粒子的动量B. 粒子的位置C. 粒子的概率密度D. 粒子的能量2. 海森堡不确定性原理中,哪两个物理量不能同时准确测量?A. 位置和动量B. 能量和时间C. 电荷和质量D. 速度和加速度3. 薛定谔方程是量子力学的哪个基本方程?A. 描述粒子运动的方程B. 描述粒子能量的方程C. 描述粒子自旋的方程D. 描述粒子相互作用的方程4. 以下哪个不是量子力学中的守恒定律?A. 能量守恒B. 动量守恒C. 角动量守恒D. 电荷守恒5. 量子力学中的“量子”一词意味着什么?A. 一个基本粒子B. 一个基本的物理量C. 一个离散的量D. 一个连续的量6. 波粒二象性是量子力学中的一个基本概念,它指的是什么?A. 粒子同时具有波和粒子的特性B. 粒子只能表现为波或粒子C. 粒子在宏观尺度下表现为波,在微观尺度下表现为粒子D. 粒子在宏观尺度下表现为粒子,在微观尺度下表现为波7. 量子纠缠是什么现象?A. 两个或多个粒子之间存在一种特殊的相互作用B. 两个或多个粒子的波函数是相互独立的C. 两个或多个粒子的波函数是相互关联的D. 两个或多个粒子的动量是相互关联的8. 量子隧道效应是指什么?A. 粒子在没有足够能量的情况下也能通过势垒B. 粒子在有足够能量的情况下不能通过势垒C. 粒子在有足够能量的情况下更容易通过势垒D. 粒子在没有足够能量的情况下不能通过势垒9. 以下哪个实验验证了量子力学的波粒二象性?A. 光电效应实验B. 双缝实验C. 康普顿散射实验D. 光电效应实验和康普顿散射实验10. 量子力学中的“叠加态”指的是什么?A. 粒子同时处于多个状态B. 粒子只处于一个状态C. 粒子的状态是随机的D. 粒子的状态是确定的二、简答题(每题10分,共30分)1. 简述量子力学中的波函数坍缩概念。
2. 解释什么是量子力学的测量问题。
量子力学题库

目录第二章波函数和薛定谔方程 (2)一、简答题 (2)二、证明题 (6)三、计算题 (7)第二章 波函数和薛定谔方程一、简答题1.何谓微观粒子的波粒二象性?2.粒子的德布罗意波长是否可以比其本身限度长或短?二者之间是否有必然联系?3.粒子按轨道运动这个概念的实质是什么?试直接从德布罗意假设出发,论证对微观粒子不存在轨道的概念。
4.波动性与粒子性是如何统一于统一客体之中的?物质在运动过程中是如何表现波粒二象性的?5.“电子是粒子,又是波”,“电子不是粒子,又不是波”,“电子是粒子,不是波”,“电子是波,不是粒子”,以上哪一种说法是正确的?6.试述牛顿力学与量子力学中的自由粒子运动状态。
7.在量子力学中,能不能同时用粒子坐标和动量的确定值来描述粒子的量子状态?8.判别一个物理体系是经典体系还是量子体系的基本标准是什么? 9.是比较粒子和波这两个概念在经典物理和量子力学中的含义。
10.微观粒子体系的状态完全由波函数),(t r描述,波函数应满足什么样的标准条件? 波函数的物理意义是什么?11.叙述波函数的统计解释(物理意义),并写出薛定谔方程的一般数学形式。
12.什么是波函数的统计解释?量子力学的波函数与声波和光波的主要区别是什么?13.写出波函数的物理意义和标准条件,并说明如何理解波函数可以完全表述微 观粒子的状态及波函数的标准条件。
14.简述玻恩关于波函数的统计解释,按这种解释,描写粒子的波是什么波? 15.根据量子力学中波函数的几率解释,说明量子力学中的波函数与描述声波、光波等其它波动过程的波函数的区别。
16.简要说明波函数和它所描写的粒子之间的关系。
17. 波函数的物理意义-微观粒子的状态完全由其波函数描述,这里“完全”的含义是什么?18.波函数归一化的含义是什么?什么样的波函数可以归一化?归一化随时间变化吗?19. Bron 对波函数的统计解释什么?()()2,,,t r t r ψψ和()dxdydz t r 2, ψ分别表示什么含义?20.将描写体系量子状态的波函数乘上一个常数后,所描写体系的量子状态是否改变?21.若)(1x ψ是归一化的波函数,问: )(1x ψ, 1)()(12≠=c x c x ψψ ,)()(13x e x i ψψδ= δ为任意实数是否描述同一态?分别写出它们的位置几率密度公式。
量子力学简答题题库 (1)

处的几率密度;
d 3r (r, ) 2
2
表示电子自旋向下(s z
) 的几率。 2
19、何谓正常塞曼效应?正常塞曼效应的本质是什么?何谓斯塔克效应? 在强磁场中,原子发出的每条光谱线都分裂为三条的现象称为正常塞曼效应。原 子置于外电场中,它发出的光谱线会发生分裂的现象称为斯塔克效应。 20、何谓反常塞曼效应,有外磁场时的一条谱线在外磁场中分裂为几条? 答:在弱磁场中,原子发出的每条光谱线都分裂为(2j+1)条(偶数)的现象称 为反常塞曼效应。对简单的塞曼效应,没有外磁场时的一条谱线在外磁场中分裂 为三条。 21、简述定态微扰论的基本思想,对哈密顿量 H 有什么样的要求? 答:微扰方法的基本物理思想:在简化系统的解的基础上,把真实系统的哈密顿 算符中没有考虑的因素加进来,得到真实系统的近似解。
3
因此用算符表示力学量是适当的。 力学量必须用线性厄米算符表示,这是由量子态叠加原理所要求的;任何
力学量的实际测量值必须是实数,因此它的本征值也必为实数,这就决定了力学 量必须由厄米算符来表示。 10、简述量子力学的五个基本假设。 (1)微观体系的运动状态由相应的归一化波函数描述; (2)微观体系的运动状态波函数随时间变化的规律遵从薛定谔方程; (3)力学量由相应的线性算符表示; (4)力学量算符之间有想确定的対易关系,称为量子条件;坐标算符的三个直 角坐标系分量之间的対易关系称为基本量子条件;力学量算符由其相应的量子条 件决定。 (5)全同的多粒子体系的波函数对于任意一对粒子交换而言具有对称性:波色 子系的波函数是对称的,费米子系的波函数是反对称的。 11、简并、简并度。 答:量子力学中,把处于不同状态、具有相同能量、对应同一能级的现象称为简 并。把对应于同一能级的不同状态数称为简并度。 12、简述测不准关系的主要内容,并写出时间 t 和能量 E 的测不准关系。 答:某一个微观粒子的某些成对的物理量不可能同时具有确定的数值,例如位置 与动量、力;位角与角动量,其中一个量越确定,另一个量就越不确定。它来源 于物质的波粒二象性,测不准关系是从粒子的波动性中引出来的。测不准关系有 两种形式,一种是动量-坐标的关系,另一种是能量-时间的关系。
量子力学试题及答案

量子力学试题及答案一、选择题1. 下列哪个不是量子力学的基本假设?A. 薛定谔方程描述了微观粒子的运动B. 波粒二象性存在C. 粒子的能量只能取离散值D. 电子具有自旋答案:A2. 量子力学中,波函数ψ的物理意义是什么?A. 粒子的位置分布概率幅B. 粒子的动量C. 粒子的自旋D. 粒子的能量答案:A3. 下列哪个是测量厄米算符A的本征值所对应的本征态?A. |A⟩= A|ψ⟩B. A|ψ⟩= λ|ψ⟩C. A|ψ⟩= |ψ⟩D. A|ψ⟩ = 0答案:B4. 对于厄米算符A和B,若它们对易(即[A, B] = 0),则可以同时拥有共同的一组本征态。
A. 正确B. 错误答案:A5. 量子力学中,双缝干涉实验的实验结果说明了下列哪个基本原理?A. 波粒二象性B. 运动不确定性原理C. 量子纠缠D. 全同粒子统计答案:A二、填空题1. 薛定谔方程的一般形式为___________。
答案:iℏ∂ψ/∂t = Hψ2. 微观粒子的自旋可取的两个可能取值是_________。
答案:±1/23. 薛定谔方程描述的是粒子的_________。
答案:波函数4. 在量子力学中,观测算符A的平均值表示为_________。
答案:⟨A⟩ = ⟨ψ|A|ψ⟩5. 测量量子系统时,波函数会坍缩到观测算符A的_________上。
答案:本征态三、简答题1. 请简要解释波粒二象性的概念及其在量子力学中的意义。
答:波粒二象性是指微观粒子既具有粒子性质又具有波动性质。
在量子力学中,波函数描述了粒子的波动性质,可以通过波函数的模的平方得到粒子在不同位置出现的概率分布。
波粒二象性的意义在于解释了微观世界中一些奇特的现象,例如双缝干涉实验和量子隧穿现象。
2. 请简要说明量子力学中的不确定性原理。
答:量子力学中的不确定性原理由海森堡提出,它表明在同时测量一粒子的位置和动量时,粒子的位置和动量不能同时具有确定的值,其精度存在一定的限制。
量子考试题及答案

量子考试题及答案一、选择题(每题2分,共20分)1. 量子力学的创始人是:A. 牛顿B. 爱因斯坦C. 普朗克D. 薛定谔答案:C2. 量子力学中,粒子的状态由什么描述?A. 位置B. 动量C. 波函数D. 能量答案:C3. 海森堡不确定性原理表明:A. 粒子的位置和动量可以同时准确测量B. 粒子的位置和动量不能同时准确测量C. 粒子的位置和能量可以同时准确测量D. 粒子的动量和能量可以同时准确测量答案:B4. 量子力学中的泡利不相容原理适用于:A. 电子B. 质子C. 中子D. 所有基本粒子答案:A5. 量子纠缠是指:A. 两个粒子之间的经典相互作用B. 两个粒子之间的量子相互作用C. 两个粒子之间的引力相互作用D. 两个粒子之间的电磁相互作用答案:B6. 量子力学中的薛定谔方程是一个:A. 线性方程B. 非线性方程C. 微分方程D. 代数方程答案:C7. 量子力学中的隧道效应是:A. 粒子通过势垒的概率不为零B. 粒子通过势垒的概率为零C. 粒子通过势垒的概率为一D. 粒子通过势垒的概率为负答案:A8. 量子力学中的叠加态是指:A. 粒子同时处于多个状态B. 粒子只处于一个状态C. 粒子处于确定的状态D. 粒子处于随机的状态答案:A9. 量子力学中的测量问题涉及:A. 粒子的测量结果B. 粒子的测量过程C. 粒子的测量设备D. 粒子的测量结果和过程答案:D10. 量子力学中的退相干是指:A. 量子态的相干性消失B. 量子态的相干性增强C. 量子态的相干性不变D. 量子态的相干性随机变化答案:A二、填空题(每题2分,共20分)1. 量子力学中的波粒二象性表明,粒子既表现出______的性质,也表现出______的性质。
答案:波动;粒子2. 量子力学中的德布罗意波长公式为:λ = ______ / p,其中λ表示波长,p表示动量。
答案:h / p3. 量子力学中的能级是______的,这是由量子力学的______决定的。
量子力学试题集

量子力学试题集判断题1、量子力学中力学量不可以同时有确立值。
(×)2、量子力学中能量都是量子化的。
(√)3、在本征态中能量必定有确立值。
(√)4、波函数必定章全部力学量的取值完整确立。
(×)5、量子力学只合用于微观客体。
(×)6.对于定态而言,几率密度不随时间变化。
( √ )7.若,则在其共同本征态上,力学量F和G必同时拥有确立值。
( √ )8.全部的波函数都能够按以下式子进行归一化:。
( × )9.在辏力场中运动的粒子,其角动量必守恒。
( √ )10.在由全同粒子构成的系统中,两全同粒子不可以处于同一状态。
( × )选择题(每题 3 分共 36 分)1.黑体辐射中的紫外灾害表示:CA.黑体在紫外线部分辐射无穷大的能量;B.黑体在紫外线部分不辐射能量;C.经典电磁场理论不合用于黑体辐射公式;D.黑体辐射在紫外线部分才合用于经典电磁场理论。
2.对于波函数Ψ的含义,正确的选项是:BA.Ψ 代表微观粒子的几率密度;B.Ψ归一化后,代表微观粒子出现的几率密度;C.Ψ必定是实数;D.Ψ必定不连续。
3.对于偏振光经过偏振片,量子论的解说是:DA.偏振光子的一部分经过偏振片;B.偏振光子先改变偏振方向,再经过偏振片;C.偏振光子经过偏振片的几率是不行知的;D.每个光子以必定的几率经过偏振片。
4.对于一维的薛定谔方程,假如Ψ是该方程的一个解,则:AA.必定也是该方程的一个解;B.必定不是该方程的解;C.Ψ 与必定等价;D.无任何结论。
5.对于一维方势垒的穿透问题,对于粒子的运动,正确的选项是:CA.粒子在势垒中有确立的轨迹;B.粒子在势垒中有负的动能;C.粒子以必定的几率穿过势垒;D粒子不可以穿过势垒。
6.假如以 l 表示角动量算符,则对易运算[l x, l y]为:BA.ihB.ih l z l zl xl x7.假如算符A、B对易,且A=A,则:B A.必定不是 B 的本征态;B.必定是B的本征态;C.必定是 B 的本征态;D.∣Ψ∣必定是 B 的本征态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量子力学题库 一简述题:1. (1)试述Wien 公式、Rayleigh-Jeans 公式和Planck 公式在解释黑体辐射能量密度随频率分布的问题上的差别2. (1)试给出原子的特征长度的数量级(以m 为单位)及可见光的波长范围(以Å为单位)3. (1)试用Einstein 光量子假说解释光电效应4. (1)试简述Bohr 的量子理论5. (1)简述波尔-索末菲的量子化条件6. (1)试述de Broglie 物质波假设7. (2)写出态的叠加原理8. (2)一个体系的状态可以用不同的几率分布函数来表示吗?试举例说明。
9. (2)按照波函数的统计解释,试给出波函数应满足的条件10.(2)已知粒子波函数在球坐标中为),,(ϕθψr ,写出粒子在球壳),(dr r r +中被测到的几率以及在),(ϕθ方向的立体角元ϕθθΩd d d sin =中找到粒子的几率。
11.(2)什么是定态?它有哪些特征?12.(2))()(x x δψ=是否定态?为什么?13.(2)设ikr e r1=ψ,试写成其几率密度和几率流密度 14.(2)试解释为何微观粒子的状态可以用归一化的波函数完全描述。
15.(3)简述和解释隧道效应16.(3)说明一维方势阱体系中束缚态与共振态之间的联系与区别。
17.(4)试述量子力学中力学量与力学量算符之间的关系18.(4)简述力学量算符的性质19.(4)试述力学量完全集的概念20.(4)试讨论:若两个厄米算符对易,是否在所有态下它们都同时具有确定值?21.(4)若算符Aˆ、B ˆ均与算符C ˆ对易,即0]ˆ,ˆ[]ˆ,ˆ[==C B C A ,A ˆ、B ˆ、C ˆ是否可同时取得确定值?为什么?并举例说明。
22.(4)对于力学量A 与B ,写出二者在任何量子态下的涨落所满足的关系,并说明物理意义。
23.(4)微观粒子x 方向的动量x p ˆ和x 方向的角动量xL ˆ是否为可同时有确定值的力学量?为什么? 24.(4)试写出态和力学量的表象变换的表达式25.(4)简述幺正变换的性质26.(4)在坐标表象中,给出坐标算符和动量算符的矩阵表示27.(4)粒子处在2221)(x x V μω=的一维谐振子势场中,试写出其坐标表象和动量表象的定态Schr ödinger 方程。
28.(4)使用狄拉克符号导出不含时间的薛定谔方程在动量表象中的形式。
29.(4)如果C B Aˆ,ˆ,ˆ均为厄米算符,下列算符是否也为厄米算符?a) 3ˆ21A b) )ˆˆˆˆ(21A B B A - b) )ˆˆˆˆ(21A B i B A - 30.(5)试述守恒量完全集的概念31.(5)全同粒子有何特点?对波函数有什么要求?32.(5)试述守恒量的概念及其性质33.(5)自由粒子的动量和能量是否为守恒量?为什么?34.(5)电子在均匀电场),0,0(ε=E ρ中运动,哈密顿量为z e mp H ε-=2ˆˆ2。
试判断z y x p p p ˆ,ˆ,ˆ各量中哪些是守恒量,并给出理由。
35.(5)自由粒子的动量和能量是否为守恒量?为什么?36.(6)中心力场中粒子处于定态,试讨论轨道角动量是否有确定值37.(6)写出中心力场中的粒子的所有守恒量38.(6)试给出氢原子的能级简并度并与一般中心力场中运动粒子的能级简并度进行比较39.(6)二维、三维各向同性谐振子及一维谐振子的能级结构有何异同,并给出二维、三维各向同性谐振子能级简并度。
40.(6) 氢原子体系处于状态 ),()(23),()(21),,(1,22,31,11,3ϕθϕθϕθψ-+=Y r R Y r R r ,给出2L 和z L 可能取值及取值几率,并说明该状态是否是定态?为什么?41(6)已知中心力场中运动的粒子哈密顿表示为)(2ˆ)(2ˆ22222r V r L r r r r H ++∂∂∂∂-=μμη,试列举出几种该量子体系力学量完全集的选取方案。
42.(7)什么是正常Zeeman 效应?写成与其相应的哈密顿量,并指出系统的守恒量有哪些。
43.(8)试给出电子具有自旋的实验依据44.(8)写出z σ表象中x σ、y σ和z σ的本征值与本征态矢45.(8)试述旋量波函数的概念及物理意义46.(8)以α和β分别表示自旋向上和自旋向下的归一化波函数,写出两电子体系的自旋单态和自旋三重态波函数(只写自旋部分波函数)。
47.(8)若|α>和|β>是氢原子的定态矢(电子和质子的相互作用为库仑作用,并计及电子的自旋—轨道耦合项),试给出|α>和|β>态的守恒量完全集48.(10)若在0ˆH 表象中,H H H '+=ˆˆˆ0,0ˆH 与H 'ˆ的矩阵分别为 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛='⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=--25015100002.01.0101.01.0ˆ,10000010000010000010ˆ64130H H , 是否可以将H'ˆ看作微扰,从而利用微扰理论求解H ˆ的本征值与本征态?为什么? 49.(11)利用Einstein 自发辐射理论说明自发辐射存在的必然性。
50.(11)是否能用可见光产生 1阿秒(1810-s) 的激光短脉冲,利用能量—时间测不准关系说明原因。
51.(11)试给出跃迁的Fermi 黄金规则(golden rule )公式,并说明式中各个因子的含义。
52. (8)在质心坐标系中,设入射粒子的散射振幅为)(θf ,写出靶粒子的散射振幅,并分别写出全同玻色子碰撞和无极化全同费米子碰撞的微分散射截面表达式。
二、判断正误题(请说明理由)1. (2)由波函数可以确定微观粒子的轨道2. (2)波函数本身是连续的,由它推求的体系力学量也是连续的3. (2)平面波表示具有确定能量的自由粒子,故可用来描述真实粒子4. (2)因为波包随着时间的推移要在空间扩散,故真实粒子不能用波包描述5. (2)正是由于微观粒子的波粒二象性才导致了测不准关系6. (2)测不准关系式是判别经典力学是否适用的标准7. (2)设一体系的哈密顿Hˆ与时间t 无关,则体系一定处于定态 8. (2)不同定态的线性叠加还是定态9. (3)对阶梯型方位势,定态波函数连续,则其导数必然连续10.(3)Hˆ显含时间t ,则体系不可能处于定态,H ˆ不显含时间t ,则体系一定处于定态 11.(3)一维束缚态能级必定数非简并的12.(3)一维粒子处于势阱中,则至少有一条束缚态13.(3)粒子在一维无限深势阱中运动,其动量一定是守恒量14.(3)量子力学中,静止的波是不存在的15.(3)δ势阱不存在束缚态16.(4)自由粒子的能量本征态可取为kx sin ,它也是xi px ∂∂-=ηˆ的本征态 17.(4)若两个算符有共同本征态,则它们彼此对易18.(4)在量子力学中,一切可观测量都是厄米算符 19.(4)如果B Aˆ,ˆ是厄米算符,其积B A ˆˆ不一定是厄米算符 20.(4)能量的本征态的叠加态仍然是能量的本征态21.(4)若B Aˆ,ˆ对易,则B A ˆ,ˆ在任意态中可同时确定 22.(4)若B Aˆ,ˆ不对易,则B A ˆ,ˆ在任何情况下不可同时确定 23.(4)x p ˆ和xL ˆ不可同时确定 24.(4)若B Aˆ,ˆ对易,则A ˆ的本征函数必是B ˆ的本征函数 25.(4)对应一个本征值有几个本征函数就是几重简并26.(4)若两个三个,则它们不可能同时有确定值27.(4)测不准关系只适用于不对易的物理量28.(4)根据测不准原理,任一微观粒子的动量都不能精确测定,只能求其平均值29.(4)力学量的平均值一定是实数30.(5)体系具有空间反演不变性,则能量本征态一定具有确定的宇称31.(5)在非定态下力学量的平均值随时间变化32.(5)体系能级简并必然是某种对称性造成的33.(5)量子体系的守恒量无论在什么态下,平均值和几率分布都不随时间改变34.(5)全同粒子系统的波函数必然是反对称的35.(5)全同粒子体系波函数的对称性将随时间发生改变36.(5)描述全体粒子体系的波函数,对内部粒子的随意交换有确定的对称性37.(6)粒子在中心力场中运动,若角动量z L ˆ是守恒量,那么xL ˆ就不是守恒量 38.(6)在中心力场)(r V 中运动的粒子,轨道角动量各分量都守恒39.(6)中心力场中粒子的能量一定是简并的40.(6)中心力场中粒子能级的简并度至少为Λ,2,1,0,12=+l l41.(8)电子的自旋沿任何方向的投影只能取2/η42.(8)两电子的自旋反平行态为三重态三、证明题:1. (2)试由Schrödinger 方程出发,证明0ˆ=⋅∇+ρ∂∂j t ,其中⎪⎩⎪⎨⎧-ψ∇ψ-=ψψ=ρ.).(2),(ˆ),(),(),(**c c m i t r j t r t r t r η 2. (3)一维粒子波函)(x ψ数满足定态Schrödinger 方程,若)(1x ψ、)(2x ψ都是方程的解,则有无关)(与常数x =ψψ-ψψ''12213. (3)设)(x ψ是定态薛定谔方程对应于能量E 的非简并解,则此解可取为实解4. (2)设)(1x ψ和)(2x ψ是定态薛定谔方程对应于能量E 的简并解,试证明二者的线性组合也是该定态方程对应于能量E 的解。
5. (3)对于δ势垒,)()(x x V γδ=,试证δ势中)('x ψ的跃变条件6. (3)设)(x ψ是定态薛定谔方程)()()(2222x E x x V dx d m ψψ=⎥⎦⎤⎢⎣⎡+-η的一个解,对应的能量为E ,试证明)(*x ψ也是方程的一个解,对应的能量也为E7. (3)一维谐振子势场2/22x m ω中的粒子处于任意的非定态。
试证明该粒子的位置概率分布经历一个周期ωπ/2后复原。
8. (3)对于阶梯形方势场 ⎩⎨⎧><=a x V a x V x V 21,)( ,若)(12V V -有限,则定态波函数)(x ψ及其导数)(x ψ'必定连续。
9. (3)证明一维规则势场中运动的粒子,其束缚态能级必定是非简并的10.(4)证明定理:体系的任何状态下,其厄米算符的平均值必为实数11.(4)证明定理:厄米算符的属于不同本征值的本征函数彼此正交12.(4)证明:在定态中几率流密度矢量与时间无关13.(4)令2222ˆx p x ∂∂-=η,试证2ˆx p 为厄密算符 14.(4)试证m p T2/ˆˆ2=为厄密算符 15.(4)设)(ˆt U 是一个幺正算符且对t 可导,证明U dtU d i t H ˆˆ)(ˆη=†是厄米算符。