专题08 平面解析几何(解析版)2021年高考数学复习必备之2015-2020年浙江省高考试题分项解析

合集下载

【高考新坐标】(教师用书)高考数学总复习 第八章 平面解析几何

【高考新坐标】(教师用书)高考数学总复习 第八章 平面解析几何

第八章平面解析几何第一节 直线的倾斜角与斜率、直线方程[考纲传真]1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.2.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.1.直线的倾斜角 (1)定义(2)范围[0,π). 2.直线的斜率(1)定义:若直线的倾斜角α不是90°,则其斜率k =tan _α;(2)斜率公式:若由A(x 1,y 1),B(x 2,y 2)确定的直线不垂直x 轴,则k =y 2-y 1x 2-x 1.3.直线方程的五种形式1.(夯基释疑)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)根据直线的倾斜角的大小不能确定直线的位置.( ) (2)坐标平面内的任何一条直线均有倾斜角与斜率.( )(3)过定点P 0(x 0,y 0)的直线都可用方程y -y 0=k(x -x 0)表示.( )(4)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )[解析] 显然(1)正确,(2)错误.(3)中,若斜率不存在,直线方程为x =x 0;若斜率存在,直线方程才可设为y -y 0=k(x -x 0),(3)不正确.(4)利用两点式方程,可知(4)正确. [答案] (1)√ (2)× (3)× (4)√2.(教材改编)直线x sin α-y +1=0的倾斜角的取值范围是( )A .⎝ ⎛⎭⎪⎫0,π2B .(0,π)C .⎣⎢⎡⎦⎥⎤-π4,π4D .⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π[解析] 由x sin α-y +1=0,得y =x sin α+1, ∴直线的斜率k =sin α∈[-1,1]. 设直线的倾斜角为θ,则-1≤tan θ≤1. 所以0≤θ≤π4或3π4≤θ<π.[答案] D3.(2015·济南质检)若直线3x +y +a =0过圆x 2+y 2+2x -4y =0的圆心,则a 的值为( )A .-1B .1C .3D .-3[解析] 圆的方程(x +1)2+(y -2)2=5, 圆心为(-1,2).∵直线过圆心,∴3×(-1)+2+a =0, ∴a =1. [答案] B4.(2014·福建高考)已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则直线l 的方程是( )A .x +y -2=0B .x -y +2=0C .x +y -3=0D .x -y +3=0[解析] 圆x 2+(y -3)2=4的圆心为点(0,3),又因为直线l 与直线x +y +1=0垂直,所以直线l 的斜率k =1.由点斜式得直线l :y -3=x -0,化简得x -y +3=0.[答案] D5.直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则实数a =________. [解析] 令x =0,则l 在y 轴上的截距为2+a ;令y =0,得直线l 在x 轴上的截距为1+2a. 依题意2+a =1+2a ,解得a =1或a =-2. [答案] 1或-2考向1 直线的倾斜角和斜率【典例1】 (1) 若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A .13B .-13C .-32D .23(2)直线x +(a 2+1)y +1=0(a∈R )的倾斜角的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π4B.⎣⎢⎡⎭⎪⎫3π4,πC.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,πD.⎣⎢⎡⎭⎪⎫π4,π2∪⎣⎢⎡⎭⎪⎫3π4,π[解析] (1)设P (x ,1),Q (7,y ), 则x +72=1,y +12=-1,∴x =-5,y =-3,即P (-5,1),Q (7,-3), 故直线l 的斜率k =-3-17+5=-13.(2)由直线x +(a 2+1)y +1=0, 得直线的斜率k =-1a 2+1∈[-1,0), 设直线的倾斜角为θ,则-1≤tan θ<0. 因此3π4≤θ<π.[答案] (1)B (2)B 【规律方法】1.求解本例(2)时,易错求tan θ=k ≤1,导致错选C.2.直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎢⎡⎭⎪⎫0,π2与⎝ ⎛⎭⎪⎫π2,π两种情况讨论.由正切函数图象可以看出当α∈⎣⎢⎡⎭⎪⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率k ∈(-∞,0).【变式训练1】 (1)(2015·德州质检)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率k 的取值范围是( )A .-1<k <15B .k >1或k <12C .k >15或k <1D .k >12或k <-1(2)直线l 经过A (2,1),B (1,-m 2)(m ∈R )两点,则直线l 的倾斜角α的取值范围是________.[解析] (1)设直线的斜率为k ,则直线方程为y -2=k (x -1),直线在x 轴上的截距为1-2k.令-3<1-2k <3,解不等式得k <-1或k >12.(2)直线l 的斜率k =1+m 22-1=1+m 2≥1,∴k =tan α≥1,又y =tan α在⎝⎛⎭⎪⎫0,π2上是增函数,因此π4≤α<π2.[答案] (1)D (2)⎣⎢⎡⎭⎪⎫π4,π2 考向2 求直线的方程(高频考点)命题视角 求直线的方程是命题的热点,常以客观题的形式呈现.主要命题的角度:(1)根据条件求直线方程;(2)求方程中相关参数的取值或范围;(3)借助直线与直线、直线与圆的位置关系考查直线方程的求法.【典例2】 (1)(2012·湖北高考)过点P(1,1)的直线,将圆形区域{(x ,y)|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( )A .x +y -2=0B .y -1=0C .x -y =0D .x +3y -4=0(2)经过点A(3,4),且在两坐标轴上截距相等的直线方程是________.[思路点拨] (1)由题意知,要使两部分的面积之差最大,只需所求直线与直线OP 垂直,利用这一条件求出斜率,进而求得直线的方程.(2)分截距是否为0两种情形求解.[解析] (1)设过P 点的直线为l ,当OP⊥l 时,过P 点的弦最短,所对的劣弧最短,此时,得到的两部分的面积之差最大.由点P(1,1)知k OP =1,∴所求直线的斜率k =-1. 所求直线方程为y -1=-(x -1),即x +y -2=0. (2)设直线在x ,y 轴上的截距均为a. ①若a =0,即直线过点(0,0)及(3,4), ∴直线的方程为y =43x ,即4x -3y =0.②若a≠0,则设所求直线的方程为x a +ya=1,又点(3,4)在直线上, ∴3a +4a =1,∴a =7, ∴直线的方程为x +y -7=0.[答案] (1)A (2)4x -3y =0或x +y -7=0 【通关锦囊】1.(1)第(1)小题求解的关键是通过图形(略)直观发现当面积之差最大时,所求直线与直线OP 垂直.(2)截距可正、可负、可为0,因此在解与截距有关的问题时,一定要注意“截距为0”的情况,以防漏解.2.求直线方程的方法主要有两种:直接法与待定系数法.运用待定系数法要先设出直线方程,再根据条件求出待定系数.利用此方法,注意各种形式的适用条件,选择适当的直线方程的形式至关重要.【变式训练2】 (1)求过点A(1,3),斜率是直线y =-4x 的斜率的13的直线方程.(2)求经过点A(-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程. [解] (1)设所求直线的斜率为k ,依题意 k =-4×13=-43.又直线经过点A(1,3),因此所求直线方程为y -3=-43(x -1),即4x +3y -13=0.(2)当直线不过原点时,设所求直线方程为x 2a +ya =1,将(-5,2)代入所设方程,解得a =-12,此时,直线方程为x +2y +1=0. 当直线过原点时,斜率k =-25,直线方程为y =-25x ,即2x +5y =0.故所求直线方程为x +2y +1=0或2x +5y =0.考向3 直线方程的应用【典例3】 已知直线l 过点M(1,1),且与x 轴,y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点.求:(1)当|OA|+|OB|取得最小值时,直线l 的方程; (2)当|MA|2+|MB|2取得最小值时,直线l 的方程. [解] (1)设A(a ,0),B(0,b)(a>0,b>0). 设直线l 的方程为x a +y b =1,则1a +1b=1,所以|OA|+|OB|=a +b =(a +b)⎝ ⎛⎭⎪⎫1a +1b=2+b a +ab≥2+2b a ·ab=4, 当且仅当a =b =2时取等号,此时直线l 的方程为x +y -2=0. (2)设直线l 的斜率为k ,则k<0,直线l 的方程为y -1=k(x -1),则A ⎝ ⎛⎭⎪⎫1-1k ,0,B(0,1-k), 所以|MA|2+|MB|2=⎝⎛⎭⎪⎫1-1+1k 2+12+12+(1-1+k)2=2+k 2+1k 2≥2+2k 2·1k2=4,当且仅当k 2=1k2,即k =-1时,上式等号成立.∴当|MA|2+|MB|2取得最小值时,直线l 的方程为x +y -2=0. 【规律方法】1.求解本题的关键是找出|OA|+|OB|与|MA|2+|MB|2取得最小值的求法,两小题中恰当设出方程的形式,利用基本不等式求解,但一定要注意等号成立的条件.2.利用直线方程解决问题,为简化运算可灵活选用直线方程的形式.一般地,已知一点通常选择点斜式;已知斜率选择斜截式或点斜式;已知截距选择截距式.【变式训练3】已知直线l 过点P(3,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,如图8­1­1所示,求△ABO 的面积的最小值及此时直线l 的方程.图8­1­1[解] 法一:设直线l 的方程为x a +yb =1(a >0,b >0),则A(a ,0),B(0,b),△ABO的面积S =12ab ,∵直线l 过点P(3,2),∴3a +2b=1≥26ab,即ab≥24. 当且仅当3a =2b,即a =6,b =4时取等号.∴S =12ab ≥12,当且仅当a =6,b =4时有最小值12.此时直线l 的方程为x 6+y4=1,即2x +3y -12=0.法二:设直线l 的方程为y -2=k(x -3)(k <0). 令x =0,得y =2-3k ;令y =0,得x =3-2k,∴A ⎝ ⎛⎭⎪⎫3-2k ,0,B(0,2-3k). ∴S △ABO =12(2-3k)⎝ ⎛⎭⎪⎫3-2k =12⎣⎢⎡⎦⎥⎤12+(-9k )+4(-k ) ≥12⎣⎢⎡⎦⎥⎤12+2 (-9k )·4(-k )=12×(12+12)=12.当且仅当-9k =4-k 即k =-23时,S △ABO 的最小值为12. 故所求直线的方程为2x +3y -12=0.掌握1条规律 斜率k 是一个实数,当倾斜角α≠90°时,k =tan α.直线都有倾斜角,但并不是每条直线都存在斜率.由此可见倾斜角与斜率相互联系不可分割,牢记:“斜率变化分两段,90°是分界线,遇到斜率要谨记,存在与否需讨论”.熟记2种方法 求直线方程的方法1.直接法:根据已知条件选择恰当的直线方程形式,直接求出直线方程. 2.待定系数法:先根据已知条件设出直线方程,再根据已知条件构造关于待定系数的方程(组).求出待定系数,从而求出直线方程.勿忘3点注意 1.应用“点斜式”和“斜截式”方程时,要注意讨论斜率是否存在. 2.应用截距式方程时要注意讨论直线是否过原点,截距是否为0. 3.由一般式Ax +By +C =0确定斜率k 时,易忽视判定B 是否为0.当B =0时,k 不存在;当B≠0时,k =-AB.思想方法之13巧用直线斜率的意义解题(2013·安徽高考)函数y =f(x)的图象如图8­1­2所示,在区间[a ,b]上可找到n(n≥2)个不同的数x 1,x 2,…,x n ,使得f (x 1)x 1=f (x 2)x 2=…=f (x n )x n ,则n 的取值范围是( )A .{3,4}B .{2,3,4}C .{3,4,5}D .{2,3}图8­1­2[解析] 设曲线y =f(x)上任意一点的坐标为(x ,f(x)). 则f (x )x表示曲线上任意一点与坐标原点连线的斜率.若f (x 1)x 1=f (x 2)x 2=…=f (x n )x n(n≥2), 则曲线y =f(x)上存在n 个点与原点连线的斜率相等. ∴过原点的直线与曲线y =f(x)有n 个交点.如图所示,由图形直观,直线与曲线可以有2个交点,3个交点,或4个交点. [答案] B 【智慧心语】易错提示:(1)本题出错主要原因是不能将问题转化为图象上的点与原点连线的斜率问题.(2)题意不清,抽象思维能力差,难以将问题进一步转化为判定过原点的直线与曲线y =f(x)有n 个交点.防范措施:(1)正确理解和掌握斜率公式的结构特征,并灵活应用. (2)提高分析问题、解决问题的能力,注意文字、图形、符号间的相互转化.【类题通关】 已知直线l 过坐标原点,若直线l 与线段2x +y =8(2≤x≤3)有公共点,则直线l 的斜率的取值范围是________.[解析] 设直线l 与线段2x +y =8(2≤x≤3)的公共点为P(x ,y). 则点P(x ,y)在线段AB 上移动,且A(2,4),B(3,2),∴直线l 的斜率k =k OP =y x .又k OA =2,k OB =23.如图所示,可知23≤k ≤2.∴直线l 的斜率的取值范围是⎣⎢⎡⎦⎥⎤23,2. [答案] ⎣⎢⎡⎦⎥⎤23,2课后限时自测[A 级 基础达标练]一、选择题1.直线x sin π7+y cos π7=0的倾斜角α是( )A .-π7 B .π7 C .5π7 D .6π7[解析] ∵tan α=-sinπ7cosπ7=-tan π7=tan 67π,∵α∈[0,π), ∴α=67π.[答案] D2.(2015·济南质检)过点(2,1),且倾斜角比直线y =-x -1的倾斜角小π4的直线方程是( )A .x =2B .y =1C .x =1D .y =2[解析] ∵直线y =-x -1的斜率为-1,则倾斜角为34π.依题意,所求直线的倾斜角为3π4-π4=π2,斜率不存在,∴过点(2,1)的所求直线方程为x =2. [答案] A3.直线mx -y +2m +1=0经过一定点,则该定点的坐标是( )A .(-2,1)B .(2,1)C .(1,-2)D .(1,2)[解析] mx -y +2m +1=0,即m(x +2)-y +1=0.令⎩⎪⎨⎪⎧x +2=0,-y +1=0,得⎩⎪⎨⎪⎧x =-2,y =1,故定点坐标为(-2,1). [答案] A4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( )A .y -1=3(x -3)B .y -1=-3(x-3)C .y -3=3(x -1)D .y -3=-3(x-1)[解析] 设点B 的坐标为(a ,0)(a>0),由OA =AB , 得12+32=(1-a)2+(3-0)2,则a =2. ∴点B(2,0),易得k AB =-3.由两点式,得AB 的方程为y -3=-3(x -1).[答案] D5.(2015·淄博联考)已知两点M(2,-3),N(-3,-2),直线l 过点P(1,1)且与线段MN 相交,则直线l 的斜率k 的取值范围是( )A .k ≥34或k≤-4 B .-4≤k≤34C .34≤k ≤4D .-34≤k ≤4[解析] 如图所示,∵k PN =1-(-2)1-(-3)=34,k PM =1-(-3)1-2=-4.∴要使直线l 与线段MN 相交,当l 的倾斜角小于90°时,k ≥k PN ;当l 的倾斜角大于90°时,k ≤k PM .由已知得k≥34或k≤-4.[答案] A 二、填空题6.直线l 与两直线y =1,x -y -7=0分别交于P 、Q 两点,线段PQ 中点是(1,-1),则l 的斜率是________.[解析] 设P(m ,1),则Q(2-m ,-3), ∴(2-m)+3-7=0, ∴m =-2,∴P(-2,1), ∴k =1+1-2-1=-23.[答案] -237.(2015·济南调研)过点A(2,3),且将圆x 2+y 2-2x -4y +1=0平分的直线方程为________.[解析] 圆x 2+y 2-2x -4y +1=0的圆心C(1,2), 依题意知,点A(2,3),C(1,2)在所求直线上,由两点式得y -23-2=x -12-1,即x -y +1=0.[答案] x -y +1=08.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线的倾斜角的取值范围是________.[解析] ∵直线l 恒过定点()0,-3. 作出两直线的图象,如图所示,从图中看出,直线l 的倾斜角的取值范围应为⎝ ⎛⎭⎪⎫π6,π2.[答案] ⎝ ⎛⎭⎪⎫π6,π2 三、解答题9.(2015·日照一中月考)设直线l 的方程为(a +1)x +y +2-a =0(a∈R ). (1)若l 在两坐标轴上截距相等,求l 的方程; (2)若l 不经过第二象限,求实数a 的取值范围. [解] (1)当直线过原点时,在x 轴和y 轴上的截距为零. ∴a =2,方程即为3x +y =0.当直线不过原点时,由截距存在且均不为0, ∴a -2a +1=a -2,即a +1=1, ∴a =0,方程即为x +y +2=0.因此直线l 的方程为3x +y =0或x +y +2=0. (2)将l 的方程化为y =-(a +1)x +a -2,∴⎩⎪⎨⎪⎧-(a +1)>0,a -2≤0或⎩⎪⎨⎪⎧-(a +1)=0,a -2≤0. ∴a ≤-1.综上可知a 的取值范围是a ≤-1.10.过点A(1,4)引一条直线l ,它与x 轴,y 轴的正半轴交点分别为(a ,0)和(0,b),当a +b 最小时,求直线l 的方程.[解] 法一 由题意,设直线l :y -4=k(x -1),k <0,则a =1-4k ,b =4-k.∴a+b =5+⎝ ⎛⎭⎪⎫-4k -k ≥5+4=9.当且仅当k =-2时,取“=”. 故得l 的方程为y =-2x +6. 法二 设l :x a +yb =1(a >0,b >0),由于l 经过点A(1,4), ∴1a +4b=1, ∴a +b =(a +b)·⎝ ⎛⎭⎪⎫1a +4b =5+4a b +b a ≥9, 当且仅当4a b =ba 时,即b =2a 时,取“=”即a =3,b =6.∴所求直线l 的方程为x 3+y6=1,即y =-2x +6.[B 级 能力提升练]1.设A ,B 是x 轴上的两点,点P 的横坐标为2且|PA|=|PB|,若直线PA 的方程为x -y +1=0,则直线PB 的方程为( )A .2x +y -7=0B .x +y -5=0C .2y -x -4=0D .2x -y -1=0[解析] 由条件得点A 的坐标为(-1,0),点P 的坐标为(2,3),因为|PA|=|PB|,根据对称性可知,点B 的坐标为(5,0),从而直线PB 的方程为y -3-3=x -25-2,整理得x +y -5=0.[答案] B2.如图8­1­3所示,点A 、B 在函数y =tan (π4x -π2)的图象上,则直线AB 的方程为________.图8­1­3[解析] 由图象知A(2,0),B(3,1),由两点式得直线的方程为y -10-1=x -32-3,整理得x -y -2=0.[答案] x -y -2=03.(2015·青岛调研)设直线l 的方程为(a +1)x +y -2-a =0(a∈R ). (1)若直线l 在两坐标轴上的截距相等,求直线l 的方程;(2)若a >-1,直线l 与x 、y 轴分别交于M 、N 两点,O 为坐标原点,求△OMN 面积取最小值时,直线l 的方程.[解] (1)①当直线l 经过坐标原点时,该直线在坐标轴上的截距均为0,此时a +2=0,∴a =-2.因此直线l 的方程为x -y =0.②当直线l 不经过坐标原点,则a ≠-2且a ≠-1. 依题意,a +2a +1=a +2,解得a =0. 此时直线l 的方程为x +y -2=0.综上,直线l 的方程为x -y =0或x +y -2=0. (2)易求M ⎝⎛⎭⎪⎫a +2a +1,0,N (0,2+a ),∵a >-1,所以S △OMN =12·a +2a +1·(2+a )=12·[(a +1)+1]2a +1=12⎣⎢⎡⎦⎥⎤(a +1)+1a +1+2≥2, 当且仅当a +1=1a +1,即a =0时,等号成立. 故所求直线l 的方程为x +y -2=0.第二节 两条直线的位置关系[考纲传真]1.能根据两条直线的斜率判定这两条直线平行或垂直. 2.能用解方程组的方法求两条相交直线的交点坐标. 3.掌握两点间的距离公式、点到直线的距离公式,会求两平行直线间的距离.1.两条直线平行与垂直 (1)两条直线平行①对于两条不重合的直线l 1、l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1、l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直:①如果两条直线l 1、l 2的斜率存在,设为k 1、k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 2.两条直线的交点直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解. 3.距离1.(夯基释疑)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)当直线l 1和l 2斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( ) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( ) (3)若两直线的方程组成的方程组有唯一解,则两直线相交.( ) (4)点P(x 0,y 0)到直线y =kx +b 的距离为|kx 0+b|1+k2.( ) [解析] (1)中,l 1∥l 2,或l 1与l 2重合,不正确.(2)中,可能一条直线的斜率不存在,另一直线的斜率为0,故错误.显然(3)正确.(4)中的距离为|kx 0-y 0+b|1+k2,不正确. [答案] (1)× (2)× (3)√ (4)×2.(教材改编)过点(1,0)且与直线x -2y -2=0平行的直线方程是( )A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=0[解析] 设所求直线为x -2y +c =0(c≠-2), 由点(1,0)在直线上,则c =-1, ∴所求直线的方程为x -2y -1=0. [答案] A3.若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m =________. [解析] ∵直线x -2y +5=0与2x +my -6=0互相垂直, ∴12×⎝ ⎛⎭⎪⎫-2m =-1, ∴m =1. [答案] 14.(2015·聊城质检)过点A(1,2)且与原点距离最大的直线方程是________. [解析] 由题意,所求直线与OA 垂直, 因k OA =2,则所求直线的斜率k =-12.所以直线的方程是y -2=-12(x -1),即x +2y -5=0.[答案] x +2y -5=05.(2014·江苏高考)在平面直角坐标系xOy 中,若曲线y =ax 2+b x (a ,b 为常数)过点P(2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________.[解析] y =ax 2+b x 的导数为y′=2ax -b x 2,直线7x +2y +3=0的斜率为-72.由题意得⎩⎪⎨⎪⎧4a +b2=-5,4a -b 4=-72,解得⎩⎪⎨⎪⎧a =-1,b =-2,则a +b =-3.[答案] -3考向1 两条直线的平行与垂直【典例1】 (1)设a∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件(2)(2013·辽宁高考)已知点O (0,0),A (0,b ),B (a ,a 3).若△OAB 为直角三角形,则必有( )A .b =a 3B .b =a 3+1aC .(b -a 3)⎝ ⎛⎭⎪⎫b -a 3-1a =0D .|b -a 3|+⎪⎪⎪⎪⎪⎪b -a 3-1a =0[解析] (1)当a =1时,显然l 1∥l 2,若l 1∥l 2,则a (a +1)-2×1=0, ∴a =1或a =-2.所以a =1是直线l 1与直线l 2平行的充分不必要条件. (2)显然O 不是直角顶点,否则a =0,点O 与B 重合. ①若∠A =π2,则b =a 3≠0.②若∠B =π2,根据斜率关系可知a 2·a 3-b a =-1,∴a (a 3-b )=-1,即b -a 3-1a=0,综上①②知(b -a 3)⎝ ⎛⎭⎪⎫b -a 3-1a =0.[答案] (1)A (2)C 【规律方法】1.第(2)题中,△OAB 的直角顶点A 、B 不确定,应注意分情况讨论,误把讨论的结果当作“且”的情况而错选D.2.判定直线间的位置关系,要注意直线方程中字母参数取值的影响,不仅要考虑到斜率存在的一般情况,还要考虑到斜率不存在的特殊情况.同时还要注意x 、y 的系数不能同时为零这一隐含条件.【变式训练1】 (2014·福建高考)已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( )A .x +y -2=0B .x -y +2=0C .x +y -3=0D .x -y +3=0[解析] 圆x 2+(y -3)2=4的圆心为点(0,3),又因为直线l 与直线x +y +1=0垂直,所以直线l 的斜率k =1.由点斜式得直线l :y -3=x -0,化简得x -y +3=0.[答案] D考向2 两直线的交点与距离问题【典例2】 若直线l 过点A(1,-1)与已知直线l 1:2x +y -6=0相交于B 点,且|AB|=5,求直线l 的方程.[解] ①过点A(1,-1)与y 轴平行的直线为x =1.解方程组⎩⎪⎨⎪⎧x =1,2x +y -6=0,求得B 点坐标为(1,4),此时|AB|=5,即直线l 的方程为x =1.②设过点A(1,-1)且与y 轴不平行的直线为y +1=k(x -1),解方程组⎩⎪⎨⎪⎧2x +y -6=0,y +1=k (x -1).得x =k +7k +2,且y =4k -2k +2.(k≠-2,否则与已知直线平行). 则B 点坐标为⎝⎛⎭⎪⎫k +7k +2,4k -2k +2.又A(1,-1),且|AB|=5.∴⎝ ⎛⎭⎪⎫k +7k +2-12+⎝ ⎛⎭⎪⎫4k -2k +2+12=52,解得k =-34. 因此y +1=-34(x -1),即3x +4y +1=0.综上可知,所求直线的方程为x =1或3x +4y +1=0. 【规律方法】1.(1)求直线l 时,注意直线l 斜率不存在的情形x =1.(2)求两直线的交点坐标,转化为求两直线方程组成的方程组的解.2.(1)求点到直线的距离时,首先将方程化为一般方程,再代入公式计算.(2)求两平行线间的距离时,需先把两平行线方程中x ,y 的系数化为相同的形式.【变式训练2】 (1)求经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程.(2)求过点P(2,-1)且与原点距离为2的直线l 的方程.[解] (1)法一:由方程组⎩⎪⎨⎪⎧3x +2y -1=0,5x +2y +1=0,得l 1、l 2的交点坐标为(-1,2),∵l 3的斜率为35,∴l 的斜率为-53,则直线的点斜式方程l :y -2=-53(x +1),即5x +3y -1=0.法二:由于l 过l 1、l 2的交点,故l 是直线系3x +2y -1+λ(5x +2y +1)=0中的一条,将其整理,得(3+5λ)x +(2+2λ)y +(-1+λ)=0, 其斜率-3+5λ2+2λ=-53,解得λ=15,代入直线系方程即得l 的方程为5x +3y -1=0. (2)若l 的斜率不存在,则直线x =2满足条件. 若斜率存在,设l 的方程为y +1=k(x -2), 即kx -y -2k -1=0.由已知,得|-2k -1|k 2+1=2,解得k =34. 此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.考向3 对称问题(高频考点)命题视角 对称问题是高考的热点,常在客观题中考查或在解答题中做为题设条件与相关知识综合考查,主要命题角度:(1)中心对称;(2)点关于直线的对称;(3)直线(或曲线)关于直线的对称,试题难度适中.【典例3】(2013·湖南高考改编)如图8­2­1所示,在平面直角坐标系中,已知点A(0,4),B(4,0),点P 是线段OB 上异于O 、B 的一点,光线从点P 出发,经AB 、OA 反射后又回到点P ,若光线QR 经过△OAB 的重心G.(1)求点P 的坐标;(2)求光线QR 所在的直线方程.图8­2­1[思路点拨] 根据光学性质,点P 关于直线AB 、OA 的对称点P 1,P 2在光线OR 上,构建方程,求点P 的坐标.[解] ∵A(0,4),B(4,0),∴直线AB 的方程为x +y -4=0.设点P(t ,0)(0<t<4),则点P 关于y 轴的对称点P 2(-t ,0),设P 关于直线x +y -4=0的对称点为P 1(a ,b), 则⎩⎪⎨⎪⎧ba -t ×(-1)=-1,a +t 2+b 2-4=0,解得⎩⎪⎨⎪⎧a =4,b =4-t.∴P 1(4,4-t).因此光线QR 所在直线方程为y =4-t 4+t·(x +t),(*)(1)又△OAB 的重心为G ⎝ ⎛⎭⎪⎫43,43, 依题意,G ⎝ ⎛⎭⎪⎫43,43在光线QR 上, 所以43=4-t 4+t ·⎝ ⎛⎭⎪⎫43+t ,解得t =0或t =43.又0<t<4.所以取t =43,因此点P 的坐标为P ⎝ ⎛⎭⎪⎫43,0.(2)将t =43代入方程(*)式,得光线QR 所在直线方程为3x -6y +4=0. 【通关锦囊】1.第(1)题求解的关键是利用中点坐标公式,将直线关于点的中心对称转化为点关于点的对称.2.解决轴对称问题,一般是转化为求对称点问题,关键是要抓住两点,一是已知点与对称点的连线与对称轴垂直;二是已知点与对称点为端点的线段的中点在对称轴上.【变式训练3】 (1)直线2x -y +3=0关于直线x -y +2=0对称的直线方程是________.(2)(2015·青岛调研)若m>0,n>0,点(-m ,n)关于直线x +y -1=0的对称点在直线x -y +2=0上,那么1m +1n的最小值等于________.[解析] (1)设所求直线上任意一点P(x ,y),则P 关于直线x -y +2=0的对称点为P′(x 0,y 0),由⎩⎪⎨⎪⎧x +x 02-y +y 02+2=0,x -x 0=-(y -y 0),得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2,由点P′(x 0,y 0)在直线2x -y +3=0上, ∴2(y -2)-(x +2)+3=0,即x -2y +3=0.(2)易知点(-m ,n)关于直线x +y -1=0的对称点为M(1-n ,1+m), 又点M(1-n ,1+m)在直线x -y +2=0上, 则1-n -(1+m)+2=0,即m +n =2.于是1m +1n =12(m +n)⎝ ⎛⎭⎪⎫1m +1n =1+12⎝ ⎛⎭⎪⎫n m +m m ≥1+12·2n m ·mn=2, 当且仅当m =n =1时,上式等号成立. 因此1m +1n 的最小值为2.[答案] (1)x -2y +3=0 (2)2掌握1条规律 一般地,与直线Ax +By +C =0(A 2+B 2≠0)平行的直线方程可设为Ax +By +m =0(m≠C);与之垂直的直线方程可设为Bx -Ay +n =0.勿忘2点注意 1.判断两条直线的位置关系时,首先应分析直线的斜率是否存在.两条直线都有斜率,可根据判定定理判断,若直线无斜率时,要单独考虑. 2.(1)求点到直线的距离时,应先化直线方程为一般式.(2)求两平行线之间的距离时,应先将方程化为一般式且x ,y 的系数对应相等.牢记3种对称 1.点P(x 0,y 0)关于A(a ,b)的对称点为P ′(2a -x 0,2b -y 0). 2.设点P(x 0,y 0)关于直线y =kx +b 的对称点为P′(x′,y ′),则有⎩⎪⎨⎪⎧y ′-y0x ′-x 0·k =-1,y ′+y 02=k·x′+x2+b ,可求出x′,y ′. 3.直线关于直线的对称,可化归为点关于直线的对称.巧思妙解之7挖掘直线位置关系的几何特征解题(2014·四川高考)设m∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.[常规解法] 直线x +my =0过定点A (0,0), 直线m (x -1)-y +3=0过定点B (1,3),解方程组⎩⎪⎨⎪⎧x +my =0,mx -y -m +3=0.得P ⎝⎛⎭⎪⎫m (m -3)1+m 2,3-m 1+m 2.因此|PA |2=⎝ ⎛⎭⎪⎫m (m -3)1+m 22+⎝ ⎛⎭⎪⎫3-m 1+m 22=(3-m )21+m 2,|PB |2=⎝ ⎛⎭⎪⎫m (m -3)1+m 2-12+⎝ ⎛⎭⎪⎫3-m 1+m 2-32=(3m +1)21+m 2, 所以|PA |·|PB |=⎪⎪⎪⎪⎪⎪(3m +1)(m -3)1+m 2, 令t =(3m +1)(m -3)1+m 2,得m 2(3-t )-8m -(3+t )=0. 由m ∈R ,得Δ=64+4(3-t )(3+t )≥0, 解之得-5≤t ≤5,因此|PA |·|PB |=|t |≤5, 所以|PA |·|PB |的最大值为5.[巧妙解法] 直线x +my =0过定点A (0,0), 直线m (x -1)-y +3=0过定点B (1,3) 由于1·m +m ·(-1)=0.∴当P 与点A 、B 不重合时,PA ⊥PB . 点P 与点A (或B )重合时,|PA |·|PB |=0, 于是点P 在以AB 为直径的圆上,且|AB |=10, ∴|PA |2+|PB |2=10,故|PA |·|PB |≤|PA |2+|PB |22=5(当且仅当|PA |=|PB |=5时取“=”)或设∠PAB =θ,θ∈⎝⎛⎭⎪⎫0,π2 ,则|PA |=10cos θ,|PB |=10·sin θ,于是|PA |·|PB |=10sin θcos θ=5sin 2θ. ∴当θ=π4时,|PA |·|PB |的最大值为5.[答案] 5 【智慧心语】妙解点拨:(1)审视直线方程系数关系,挖掘条件PA ⊥PB .(2)联想圆内接直角三角形的勾股定理,进而利用基本不等式或三角换元简化求解过程.反思启迪:(1)常规解法中,求交点坐标,借助两点间的距离公式求|PA |、|PB |,进而将|PA |·|PB |表示成关于m 的函数.(2)涉及直线与直线、直线与圆的位置关系的问题,应多考虑几何特征,善于利用几何直观求解,对于几何最值,要善于建立恰当的目标函数或灵活运用平面几何的性质.【类题通关】 经过直线3x -2y +1=0与x +3y +4=0的交点,且与直线x -y +4=0平行的直线方程为________.[解析] 法一:设所求的直线为x -y +c =0(c ≠4),解方程⎩⎪⎨⎪⎧3x -2y +1=0,x +3y +4=0,得两直线的交点(-1,-1).由题意,得-1-(-1)+c =0,则c =0. 所以所求的直线方程为x -y =0.法二:设所求的直线为3x -2y +1+λ(x +3y +4)=0, 即(3+λ)x +(3λ-2)y +1+4λ=0. 又所求直线与x -y +4=0平行, ∴3+λ1=3λ-2-1,且1+4λ≠4, 解之得λ=-14,代入,得所求直线的方程为x -y =0. [答案] x -y =0课后限时自测 [A 级 基础达标练]一、选择题1.已知点A(1,-2),B(m ,2)且线段AB 的垂直平分线的方程是x +2y -2=0,则实数m 的值是( )A .-2B .-7C .3D .1[解析] 因为线段AB 的中点⎝ ⎛⎭⎪⎫1+m 2,0在直线x +2y -2=0上,代入解得m =3.[答案] C2.(2015·济南调研)已知经过点P(2,2)的直线l 与直线ax -y +1=0垂直,若点M(1,0)到直线l 的距离等于5,则a 的值是( )A .-12B .1C .2D .12[解析] 依题意,设直线l 的方程x +ay +c =0, ∵点P(2,2)在l 上,且点M(1,0)到l 的距离等于 5. ∴⎩⎪⎨⎪⎧2+2a +c =0,|1+c|1+a 2= 5.消去c ,可求得a =2.[答案] C3.直线x -2y +1=0关于直线x =1对称的直线方程是( )A .x +2y -1=0B .2x +y -1=0C .2x +y -3=0D .x +2y -3=0[解析] 直线x -2y +1=0与直线x =1的交点坐标为(1,1).又直线x -2y +1=0上的点(-1,0)关于直线x =1的对称点为(3,0). 则所求直线的方程为y -01-0=x -31-3,即x +2y -3=0.[答案] D4.(2015·潍坊模拟)已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是( )A .1710B .8C .2D .175[解析] ∵直线3x +4y -3=0与6x +my +14=0平行,所以3m -24=0⇒m =8, 所以直线3x +4y -3=0和3x +4y +7=0的距离d =|7-(-3)|32+42=2. [答案] C5.如图8­2­2,已知A(4,0)、B(0,4),从点P(2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( )A .3 3B .6C .210D .2 5图8­2­2[解析] 直线AB 的方程为x +y =4,点P(2,0)关于直线AB 的对称点为D(4,2),关于y 轴的对称点为C(-2,0).则光线经过的路程为|CD|=62+22=210.[答案] C 二、填空题6.过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且到点P(0,4)距离为2的直线方程为________.[解析] 由⎩⎪⎨⎪⎧x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2.∴l 1与l 2交点为(1,2),设所求直线y -2=k(x -1),即kx -y +2-k =0, ∵P(0,4)到所求直线的距离为2,∴2=|-2-k|1+k 2,解得k =0或k =43. ∴直线方程为y =2或4x -3y +2=0. [答案] y =2或4x -3y +2=07.直线mx +4y -2=0与直线2x -5y -12=0垂直,且点P(1,n)在直线mx +4y -2=0上,则n 的值是________.[解析] 由两直线垂直,得2m -20=0,则m =10. 代入,得直线方程为10x +4y -2=0,即5x +2y -1=0, 又点P(1,n)在直线5x +2y -1=0上, ∴5+2n -1=0,得n =-2. [答案] -28.l 1,l 2是分别经过点A(1,1),B(0,-1)的两条平行直线,当l 1与l 2间的距离最大时,直线l 1的方程是________.[解析] 当AB⊥l 1时,两直线l 1与l 2间的距离最大, 由k AB =-1-10-1=2,知l 1的斜率k =-12.∴直线l 1的方程为y -1=-12(x -1),即x +2y -3=0.[答案] x +2y -3=0 三、解答题9.已知两条直线l 1:ax -by +4=0,l 2:(a -1)x +y +b =0,求分别满足下列条件的a ,b 的值.(1)直线l 1过点(-3,-1),并且直线l 1与l 2垂直;(2)直线l 1与直线l 2平行,并且坐标原点到l 1,l 2的距离相等. [解] (1)∵l 1⊥l 2,∴a(a -1)+(-b)·1=0,① 又点(-3,-1)在l 1上, ∴-3a +b +4=0② 由①②得a =2,b =2.(2)∵直线l 2的斜率k 2=1-a ,且l 1∥l 2, ∴直线l 1的斜率k 1=1-a ,即ab =1-a.又∵坐标原点到这两条直线的距离相等.∴l 1,l 2在y 轴上的截距互为相反数,即4b =b.故a =2,b =-2或a =23,b =2.10.已知直线l :(2a +b)x +(a +b)y +a -b =0及点P(3,4). (1)证明直线l 过某定点,并求该定点的坐标. (2)当点P 到直线l 的距离最大时,求直线l 的方程.[解] (1)证明:直线l 的方程可化为a(2x +y +1)+b(x +y -1)=0,由⎩⎪⎨⎪⎧2x +y +1=0,x +y -1=0,得⎩⎪⎨⎪⎧x =-2,y =3,∴直线l 恒过定点(-2,3).(2)设直线l 恒过定点A(-2,3),当直线l 垂直于直线PA 时,点P 到直线l 的距离最大.又直线PA 的斜率k PA =4-33+2=15,∴直线l 的斜率k l =-5.故直线l 的方程为y -3=-5(x +2),即5x +y +7=0.[B 级 能力提升练]1.(2014·泰安质检)已知点A(0,2),B(2,0).若点C 在函数y =x 2的图象上,则使得△ABC 的面积为2的点C 的个数为( )A .4B .3C .2D .1[解析] 设点C(t ,t 2),直线AB 的方程是x +y -2=0,|AB|=2 2.由于△ABC 的面积为2,则这个三角形中AB 边上的高h 满足方程12×22h =2,即h = 2.由点到直线的距离公式得2=|t +t 2-2|2,即|t 2+t -2|=2,即t 2+t -2=2或者t 2+t -2=-2.因为这两个方程各有两个不相等的实数根,故这样的点C 有4个.[答案] A2.(2013·四川高考)在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小的点的坐标是________.[解析] 设平面上任一点M ,因为|MA|+|MC|≥|AC|,当且仅当A ,M ,C 共线时取等号,同理|MB|+|MD|≥|BD|,当且仅当B ,M ,D 共线时取等号,连结AC ,BD 交于一点M ,若|MA|+|MC|+|MB|+|MD|最小,则点M 为所求.∵k AC =6-23-1=2,∴直线AC 的方程为y -2=2(x -1),即2x -y =0.① 又∵k BD =5-(-1)1-7=-1,∴直线BD 的方程为y -5=-(x -1),即x +y -6=0.②由①②得⎩⎪⎨⎪⎧2x -y =0,x +y -6=0,∴⎩⎪⎨⎪⎧x =2,y =4,∴M(2,4). [答案] (2,4)3.在直线l :3x -y -1=0上求一点P ,使得P 到A(4,1)和B(0,4)的距离之差最大. [解] 如图所示,设点B 关于l 的对称点为B′,连结AB′并延长交l 于P ,此时的P 满足|PA|-|PB|的值最大.设B′的坐标为(a ,b), 则k BB ′·k l =-1, 即b -4a·3=-1. ∴a +3b -12=0.①又由于线段BB′的中点坐标为⎝ ⎛⎭⎪⎫a 2,b +42,且在直线l 上,∴3×a 2-b +42-1=0,即3a-b -6=0.②①②联立,解得a =3,b =3,∴B ′(3,3). 于是AB′的方程为y -13-1=x -43-4,即2x +y -9=0.解⎩⎪⎨⎪⎧3x -y -1=0,2x +y -9=0,得⎩⎪⎨⎪⎧x =2,y =5,即l与AB′的交点坐标为P(2,5).第三节圆的方程[考纲传真]1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程. 2.初步了解用代数方法处理几何问题的思想.1.圆的定义及方程2.点与圆的位置关系点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系:(1)点M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2.(2)若M(x0,y0)在圆上,则(x0-a)2+(y0-b)2=r2.(3)若M(x0,y0)在圆内,则(x0-a)2+(y0-b)2<r2.1.(夯基释疑)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)确定圆的几何要素是圆心与半径.( )(2)方程(x+a)2+(y+b)2=t2(t∈R)表示圆心为(a,b),半径为t的一个圆.( )(3)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF >0.( )(4)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 02+y 02+Dx 0+Ey 0+F >0.( ) [解析] 由圆的定义及点与圆的位置关系,知(1)(3)(4)正确. (2)中当t ≠0时,表示圆心为(-a ,-b ),半径为|t |的圆,不正确. [答案] (1)√ (2)× (3)√ (4)√2.(教材改编)将圆x 2+y 2-2x -4y +1=0平分的直线是( )A .x +y -1=0B .x +y +3=0C .x -y +1=0D .x -y +3=0[解析] 圆心是(1,2),所以将圆心坐标代入检验选项C 满足. [答案] C3.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的取值范围是( )A .a <-2或a >23B .-23<a <0 C .-2<a <0D .-2<a <23[解析] 由题意知a 2+4a 2-4(2a 2+a -1)>0, 解得-2<a <23.[答案] D4.(2014·陕西高考)若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为__________________.[解析] 两圆关于直线对称则圆心关于直线对称,半径相等.圆C 的圆心为(0,1),半径为1,标准方程为x 2+(y -1)2=1.[答案] x 2+(y -1)2=15.已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程为____________.[解析] 由题意可得圆心(-1,0),圆心到直线x +y +3=0的距离即为圆的半径,故r =22=2,所以圆的方程为(x +1)2+y 2=2. [答案] (x +1)2+y 2=2。

高考数学压轴专题新备战高考《平面解析几何》全集汇编附答案解析

高考数学压轴专题新备战高考《平面解析几何》全集汇编附答案解析

【高中数学】单元《平面解析几何》知识点归纳一、选择题1.已知椭圆22:195x y C +=左右焦点分别为12F F 、,直线):2l y x =+与椭圆C 交于A B 、两点(A 点在x 轴上方),若满足11AF F B λ=u u u v u u u v,则λ的值等于( )A.B .3C .2D【答案】C 【解析】由条件可知,直线l 过椭圆的左焦点()12,0F -.由)222195y x x y ⎧=+⎪⎨+=⎪⎩消去y 整理得232108630x x ++=,解得34x =-或218x =-. 设1122(,),(,)A x y B x y ,由A 点在x 轴上方可得12321,48x x =-=-. ∵11AF F Bλ=u u u v u u u v, ∴1122(2,)(2,)x y x y λ---=+, ∴122(2)x x λ--=+. ∴3212()(2)48λ---=-+, 解得2λ=.选C2.已知椭圆22:12y C x +=,直线:l y x m =+,若椭圆C 上存在两点关于直线l 对称,则m 的取值范围是( )A.33⎛- ⎝⎭B.,44⎛- ⎝⎭C.33⎛⎫- ⎪ ⎪⎝⎭D.44⎛- ⎝⎭【答案】C 【解析】 【分析】设()11,A x y ,()22,B x y 是椭圆C 上关于l 对称的两点,AB 的中点为()00,M x y ,根据椭圆C 上存在两点关于直线:l y x m =+对称,将A ,B 两点代入椭圆方程,两式作差可得002y x =,点M 在椭圆C 内部,可得2221m m +<,解不等式即可.【详解】设()11,A x y ,()22,B x y 是椭圆C 上关于l 对称的两点,AB 的中点为()00,M x y , 则1202x x x +=,1202y y y +=,1AB k =-.又因为A ,B 在椭圆C 上,所以221112y x +=,222212y x +=,两式相减可得121212122y y y y x x x x -+⋅=--+,即002y x =. 又点M 在l 上,故00y x m =+,解得0x m =,02y m =. 因为点M 在椭圆C 内部,所以2221m m +<,解得33,33m ⎛⎫∈-⎪ ⎪⎝⎭. 故选:C 【点睛】本题考查了直线与椭圆的位置关系以及在圆锥曲线中“设而不求”的思想,属于基础题.3.如图,12,F F 是椭圆221:14x C y +=与双曲线2C 的公共焦点,,A B 分别是12,C C 在第二、四象限的公共点,若四边形12AF BF 为矩形,则2C 的离心率是( )A 2B 3C .32D 6【答案】D 【解析】 【分析】 【详解】试题分析:由椭圆与双曲线的定义可知,|AF 2|+|AF 1|=4,|AF 2|-|AF 1|=2a(其中2a 为双曲线的长轴长),∴|AF 2|=a +2,|AF 1|=2-a ,又四边形AF 1BF 2是矩形,∴|AF 1|2+|AF 2|2=|F 1F 2|2=32,∴a 2,∴e 32=62. 考点:椭圆的几何性质.4.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( )A .12k >B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D 【解析】 【分析】联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限, ∴2402161021kk k k -⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k -<<.故选:D . 【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.5.已知抛物线x 2=16y 的焦点为F ,双曲线22145x y -=的左、右焦点分别为F 1、F 2,点P是双曲线右支上一点,则|PF|+|PF 1|的最小值为( ) A .5 B .7 C .9 D .11 【答案】C 【解析】 【分析】由题意并结合双曲线的定义可得1222(4)44PF PF PF PF PF PF FF +=++=++≥+,然后根据两点间的距离公式可得所求最小值. 【详解】由题意得抛物线216x y =的焦点为()0,4F ,双曲线22145x y -=的左、右焦点分别为()()123,0,3,0F F -.∵点P 是双曲线右支上一点, ∴124PF PF =+.∴1222(4)44549PF PF PF PF PF PF FF +=++=++≥+=+=,当且仅当2,,F P F 三点共线时等号成立,∴1PF PF +的最小值为9. 故选C . 【点睛】解答本题的关键是认真分析题意,然后结合图形借助数形结合的方法求解.另外在解题中注意利用双曲线的定义将所求问题进行转化,考查分析理解能力和解决问题的能力,属于基础题.6.已知双曲线2222:1x y C a b-=(0,0)a b >>的两个焦点分别为1F ,2F ,以12F F 为直径的圆交双曲线C 于P ,Q ,M ,N 四点,且四边形PQMN 为正方形,则双曲线C 的离心率为( )A .2BC .2D【答案】D 【解析】 【分析】设P 、Q 、M 、N 分别为第一、二、三、四象限内的点,根据对称性可得出P ⎫⎪⎪⎝⎭,将点P 的坐标代入双曲线C 的方程,即可求出双曲线C 的离心率. 【详解】设双曲线C 的焦距为()20c c >,设P 、Q 、M 、N 分别为第一、二、三、四象限内的点,由双曲线的对称性可知,点P 、Q 关于y 轴对称,P 、M 关于原点对称,P 、N 关于x 轴对称,由于四边形PQMN 为正方形,则直线PM 的倾斜角为4π,可得,22P c c ⎛⎫ ⎪ ⎪⎝⎭, 将点P 的坐标代入双曲线C 的方程得2222122c c a b-=,即()22222122c c a c a -=-,设该双曲线的离心率为()1e e >,则()2221221e e e -=-,整理得42420e e -+=,解得22e =,因此,双曲线C故选:D. 【点睛】本题考查双曲线离心率的计算,解题的关键就是求出双曲线上关键点的坐标,考查计算能力,属于中等题.7.抛物线y 2=8x 的焦点为F ,设A ,B 是抛物线上的两个动点, AF BF +=, 则∠AFB 的最大值为( ) A .3π B .34π C .56π D .23π 【答案】D 【解析】 【分析】设|AF |=m ,|BF |=n ,再利用基本不等式求解mn 的取值范围,再利用余弦定理求解即可. 【详解】设|AF |=m ,|BF |=n ,∵AF BF +=,AB ≥∴213mn AB ≤, 在△AFB 中,由余弦定理得22222()2cos 22m n ABm n mn ABAFB mnmn+-+--∠==212213222AB mnmn mn mn mn --=≥=-∴∠AFB 的最大值为23π. 故选:D 【点睛】本题主要考查了抛物线的焦半径运用,同时也考查了解三角形与基本不等式的混合运用,属于中等题型.8.已知P 是双曲线C 上一点,12,F F 分别是C 的左、右焦点,若12PF F ∆是一个三边长成等差数列的直角三角形,则双曲线C 的离心率的最小值为( ) A .2B .3C .4D .5【答案】A 【解析】 【分析】设直角三角形三边分别为3,4,5x x x ,分23c x =,24c x =和25c x =三种情况考虑,即可算得双曲线离心率的最小值. 【详解】如图,易知该直角三角形三边可设为3,4,5x x x .①若23c x =,则254a x x x =-=,得232ce a==; ②若24c x =,则2532a x x x =-=,得222ce a==; ③若25c x =,则243a x x x =-=,得252ce a==. 故选:A 【点睛】本题主要考查双曲线的离心率的求法,体现了分类讨论的数学思想.9.若双曲线223mx my -=3的一个焦点是()0,2,则m 的值是 A .-1 B .1C .10D 10 【答案】A 【解析】双曲线223mx my -=3的标准方程为22113x y m m-=, ∵焦点在y 轴上,∴134m m+=,且0m <, ∴ 1.m =- 故选A .10.已知点P 是椭圆22221(0,0)x y a b xy a b+=>>≠上的动点,1(,0)F c -、2(,0)F c 为椭圆的左、右焦点,O 为坐标原点,若M 是12F pF ∠的角平分线上的一点,且F 1M ⊥MP ,则|OM|的取值范围是( ) A .(0,)c B .(0,)aC .(,)b aD .(,)c a【答案】A 【解析】 【分析】 【详解】解:如图,延长PF 2,F 1M ,交与N 点,∵PM 是∠F 1PF 2平分线,且F 1M ⊥MP , ∴|PN|=|PF 1|,M 为F 1F 2中点,连接OM ,∵O 为F 1F 2中点,M 为F 1F 2中点 ∴|OM|=|F 2N|=||PN|﹣|PF 2||=||PF 1|﹣|PF 2|| ∵在椭圆中,设P 点坐标为(x 0,y 0)则|PF 1|=a+ex 0,|PF 2|=a ﹣ex 0,∴||PF 1|﹣|PF 2||=|a+ex 0+a ﹣ex 0|=|2ex 0|=|ex 0| ∵P 点在椭圆上,∴|x 0|∈(0,a],又∵当|x 0|=a 时,F 1M ⊥MP 不成立,∴|x 0|∈(0,a ) ∴|OM|∈(0,c ). 故选A .11.已知直线1:(1)(1)20l a x a y -++-=和2:(1)210l a x y +++=互相垂直,则a 的值为( ) A .-1 B .0C .1D .2【答案】A 【解析】分析:对a 分类讨论,利用两条直线相互垂直的充要条件即可得出.详解:1a =-时,方程分别化为:10210x y +=+=,, 此时两条直线相互垂直,因此1a =-满足题意.1a ≠-时,由于两条直线相互垂直,可得:11()112a a a -+-⨯-=-+, 解得1a =-,舍去. 综上可得:1a =-. 故选A .点睛:本题考查了两条直线相互垂直的充要条件,考查了推理能力与计算能力,属于基础题12.如图,设椭圆E :22221(0)x y a b a b+=>>的右顶点为A ,右焦点为F ,B 为椭圆在第二象限上的点,直线BO 交椭圆E 于点C ,若直线BF 平分线段AC 于M ,则椭圆E 的离心率是( ) A .12B .23C .13D .14【答案】C 【解析】如图,设AC 中点为M ,连接OM ,则OM 为△ABC 的中位线, 于是△OFM ∽△AFB ,且OF OM 1FAAB2==, 即c c a -=12可得e=c a =13. 故答案为13.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.13.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,12F F = )A .2213x y +=B .22132x y +=C .22196x y +=D .221129x y +=【答案】C 【解析】 【分析】利用椭圆的性质,根据4AB =,12F F =c =22 4b a=,求解a ,b 然后推出椭圆方程. 【详解】椭圆2222 10x y a b a b +=>>()的焦点分别为1F ,2F ,点A ,B 在椭圆上,12AB F F ⊥于2F ,4AB =,12F F =c =,22 4b a=,222c a b =-,解得3a =,b =,所以所求椭圆方程为:22196x y +=,故选C .【点睛】本题主要考查椭圆的简单性质的应用,椭圆方程的求法,是基本知识的考查.14.过双曲线22134x y -=的左焦点1F 引圆223x y +=的切线,切点为T ,延长1F T 交双曲线右支于P 点,M 为线段1F P 的中点,O 为坐标原点,则MO MT -=( )A .1B .2C .1+D .2【答案】B 【解析】 【分析】根据三角形的中位线性质,双曲线的定义,及圆的切线性质,即可得到结论. 【详解】由图象可得()1111||MO MT MO MF TF MO MF TF -=--=-+=()(22211112322322PF PF OF OT -+-=⋅-+= 故选:B. 【点睛】本题考查圆与双曲线的综合,解题的关键是正确运用双曲线的定义,三角形的中位线性质.15.已知12F F 分别为双曲线()222210,0x y a b a b-=>>的左、右焦点,P 为双曲线上一点,2PF 与x 轴垂直,1230PF F ∠=︒,且焦距为3 ) A .3y x = B .2y x =C .2y x =±D .3y x =±【答案】B 【解析】 【分析】先求出c 的值,再求出点P 的坐标,可得22bPF a=,再由已知求得1PF ,然后根据双曲线的定义可得ba的值,则答案可求. 【详解】解:由题意,223c = 解得3c =,∵()2,0F c ,设(),P c y ,∴22221x y a b-=,解得2b y a =±,∴22b PF a=,∵1230PF F ∠=︒,∴21222b PF PF a==,由双曲线定义可得:2122b PF PF a a-==,则222a b =,即2ba=. ∴双曲线的渐近线方程为2y x =±. 故选:B .【点睛】本题考查双曲线渐近线方程的求解,难度一般.求解双曲线的渐近线方程,可通过找到,,a b c 中任意两个量的倍数关系进行求解.16.O 为坐标原点,F 为抛物线2:4C y x =的焦点,P 为C 上一点,若4PF =,则POF V 的面积为A 2B 3C .2D .3【答案】B 【解析】 【分析】由抛物线的标准方程24y x =可得抛物线的焦点坐标和准线方程,设出(,)P x y ,由PF =4以及抛物线的定义列式可得(1)4x --=,即3x =,再代入抛物线方程可得点P 的纵坐标,再由三角形的面积公式1||2S y OF =可得. 【详解】由24y x =可得抛物线的焦点F (1,0),准线方程为1x =-,如图:过点P 作准线1x =- 的垂线,垂足为M ,根据抛物线的定义可知PM =PF =4,设(,)P x y ,则(1)4x --=,解得3x =,将3x = 代入24y x =可得23y =±,所以△POF 的面积为1||2y OF ⋅=123132⨯= 故选B .【点睛】本题考查了抛物线的几何性质,定义以及三角形的面积公式,关键是①利用抛物线的定义求P 点的坐标;②利用OF 为三角形的底,点P 的纵坐标的绝对值为高计算三角形的面积.属中档题.17.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=u u u v u u u v( )A .-16B .0C .16D .32【答案】B 【解析】 【分析】先求出(4,4)OA =u u u r ,(4,4)OB =-u u u r,再利用平面向量的数量积求解.【详解】∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点.由24y x y x⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-, 则44z i =+,(4,4)OA =u u u r ,(4,4)OB =-u u u r, ∴444(4)0OA OB ⋅=⨯+⨯-=u u u r u u u r.故选B 【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.已知抛物线2:2(0)C x py p =>的焦点为F ,C 的准线与对称轴交于点H ,直线32p y x =-与C 交于A ,B 两点,若43||3AH =,则||AF =( ) A .3 B .83C .2D .4【答案】C 【解析】 【分析】注意到直线32py x =-过点H ,利用||||AM AH =tan 3,AHM ∠=43||3AH =,可得||2AM =,再利用抛物线的定义即可得到答案.【详解】连接AF ,如图,过A 作准线的垂线,垂足为M ,易知点0,,0,22p p F H ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭.易知直 线32p y x =-过点H ,tan 3,3AHM AHM π∠=∠=,则||3,||2AM AH =又43||AH =, 所以||2AM =,由抛物线的定义可得||AF =||2AM =.故选:C. 【点睛】本题考查直线与抛物线的位置关系,涉及到利用抛物线的定义求焦半径,考查学生转化与化归的思想,是一道中档题.19.已知双曲线222:41(0)x C y a a -=>32:2E y px =的焦点与双曲线C 的右焦点重合,则抛物线E 上的动点M 到直线1:4360l x y -+=和2:1l x =-距离之和的最小值为( )A .1B .2C .3D .4【答案】B 【解析】分析:由双曲线的右顶点到渐近线的距离求出234a =,从而可确定双曲线的方程和焦点坐标,进而得到抛物线的方程和焦点,然后根据抛物线的定义将点M 到直线2l 的距离转化为到焦点的距离,最后结合图形根据“垂线段最短”求解.详解:由双曲线方程22241(0)x y a a-=>可得,双曲线的右顶点为(,0)a ,渐近线方程为12y x a=±,即20x ay ±=. ∵双曲线的右顶点到渐近线的距离等于3, ∴2314a =+,解得234a =,∴双曲线的方程为224413x y -=,∴双曲线的焦点为(1,0).又抛物线2:2E y px =的焦点与双曲线C 的右焦点重合, ∴2p =,∴抛物线的方程为24y x =,焦点坐标为(1,0)F .如图,设点M 到直线1l 的距离为||MA ,到直线2l 的距离为||MB ,则MB MF =, ∴MA MB MA MF +=+.结合图形可得当,,A M F 三点共线时,MA MB MA MF +=+最小,且最小值为点F 到直线1l 的距离22416243d ⨯+==+.故选B .点睛:与抛物线有关的最值问题一般情况下都与抛物线的定义有关,根据定义实现由点到点的距离与点到直线的距离的转化,具体有以下两种情形:(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;(2)将抛物线上的点到焦点的距离转化为点到准线的距离,利用“与直线上所有点的连线中的垂线段最短”解决.20.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d 1,到直线3x -4y +9=0的距离为d 2,则d 1+d 2的最小值是( )A .125 B .65C .2D 【答案】A 【解析】试题分析:根据抛物线的定义可知抛物线24y x =上的点P 到抛物线的焦点距离1PF d =,所以122d d MF d +=+,其最小值为()1,0F 到直线3490x y -+=的距离,由点到直线的距离公式可知()()122min min125d d MF d +=+==,故选A. 考点:抛物线定义的应用.。

专题08平面解析几何-2019届浙江省高考数学复习必备高三优质考卷分项解析(Word版含解析)

专题08平面解析几何-2019届浙江省高考数学复习必备高三优质考卷分项解析(Word版含解析)

一.基础题组1. 【浙江省“七彩阳光”联盟2019届高三期初联考】双曲线的一条渐近线方程为,则正实数的值为()A.9 B.3 C.D.【答案】D【解析】【分析】求出双曲线的渐近线方程,即可得到结果【详解】2. 【浙江省“七彩阳光”联盟2019届高三期初联考】公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius)在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下结果:平面内到两定点距离之比等于已知数的动点轨迹为直线或圆.后世把这种圆称之为阿波罗尼斯圆. 已知直角坐标系中,则满足的点的轨迹的圆心为____________,面积为____________.【答案】【解析】【分析】由阿波罗尼斯圆求出点的轨迹的圆的方程,就可以得到圆心坐标和圆面积【详解】设,即化简可得故圆心坐标为面积为【点睛】本题考查了阿波罗尼斯圆,即一动点到两定点的距离之比是个常数时其轨迹是圆,运用两点间的距离公式就可以求出圆的标准方程,从而得到结果.3.【浙江省杭州市第二中学2018届高三6月热身考】如图,已知椭圆,双曲线,若以为长轴的直径的圆与的一条渐近线交于两点,且与该渐近线的两交点将线段三等分,则的离心率为()A.B.C.D.【答案】A【解析】分析:设直线与椭圆在第一象限内的交点为,则且,根据这个关系我们能得到的坐标,从而得到的大小.详解:设直线与椭圆在第一象限内的交点为且设,其中则,故,所以,也就是,所以,选A.点睛:圆锥曲线中的离心率的计算,关键是利用题设条件构建关于的一个等式关系.而离心率的取值范围,则需要利用坐标的范围、几何量的范围或点的位置关系构建关于的不等式或不等式组.4. 【浙江省“七彩阳光”联盟2019届高三期初联考】直线与椭圆相交于两点,与轴、轴分别相交于两点.如果是线段的两个三等分点,则直线的斜率为_____________.【答案】【解析】【分析】设直线的方程为,联立椭圆方程,是线段的两个三等分点,则线段的中点与线段的中点重合,得到关系式求出斜率【详解】由题意,设直线的方程为,,则,联立椭圆方程可得,由韦达定理可得,,是线段的两个三等分点线段的中点与线段的中点重合,解得故答案为【点睛】本题考查了直线与椭圆的位置关系,由题目中“是线段的两个三等分点”出发,联立直线方程与椭圆方程,求得线段中点坐标,得到方程求出结果,解题关键是找出相等的量。

2021-2023年高考数学真题分类汇编:平面解析几何解答题

2021-2023年高考数学真题分类汇编:平面解析几何解答题

专题08平面解析几何(解答题)近三年高考真题1.(2023•新高考Ⅰ)在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点1(0,2的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD 的周长大于【解析】(1)设点P 点坐标为(,)x y ,由题意得||y ,两边平方可得:22214y x y y ,化简得:214y x,符合题意.故W 的方程为214y x.(2)解法一:不妨设A ,B ,C 三点在W 上,且AB BC .设21(,)4A a a ,21(,)4B b b ,21(,4C c c ,则22(,)AB b a b a ,22(,)BC c b c b.由题意,0AB BC,即2222()()()()0b a c b b a c b ,显然()()0b a c b ,于是1()()0b a c b .此时,||b a .||1c b .于是{||min b a ,||}1c b .不妨设||1c b ,则1a b b c,则||||||||AB BC b a c b||b a c b|||b a c b||c a1|b c b c设||x b c,则1()(f x x x 322(1)()x f x x ,又11222222222(1)(31)(1)(21)()x x x x x f x x x.显然,2x为最小值点.故()(2f x f 故矩形ABCD的周长为2(||||)2()AB BC f x .注意这里有两个取等条件,一个是||1b c,另一个是||b c ,这显然是无法同时取到的,所以等号不成立,命题得证.解法二:不妨设A ,B ,D 在抛物线W 上,C 不在抛物线W上,欲证命题为||||2AB AD .由图象的平移可知,将抛物线W 看作2y x 不影响问题的证明.设(A a ,2)(0)a a ,平移坐标系使A 为坐标原点,则新抛物线方程为22y x ax ,写为极坐标方程,即22sin cos 2cos a ,即2sin 2cos cos a.欲证明的结论为22sin()2cos()sin 2cos 3322||||cos 2cos ()2a a ,也即222sin 2cos ||||cos cos sin sin a a .不妨设22||||cos sin,将不等式左边看成关于a 的函数,根据绝对值函数的性质,其最小值当22sin 0cos cos a 即sin 2cos a时取得,因此欲证不等式为21cos ||cos sin,即21||cos sin ,根据均值不等式,有2|cos sin |由题意,等号不成立,故原命题得证.2.(2023•上海)已知抛物线2:4y x ,在 上有一点A 位于第一象限,设A 的纵坐标为(0)a a .(1)若A 到抛物线 准线的距离为3,求a 的值;(2)当4a 时,若x 轴上存在一点B ,使AB 的中点在抛物线 上,求O 到直线AB 的距离;(3)直线:3l x ,抛物线上有一异于点A 的动点P ,P 在直线l 上的投影为点H ,直线AP 与直线l 的交点为Q .若在P 的位置变化过程中,||4HQ 恒成立,求a 的取值范围.【解析】(1)抛物线2:4y x 的准线为1x ,由于A 到抛物线 准线的距离为3,则点A 的横坐标为2,则2428(0)a a ,解得a ;(2)当4a 时,点A 的横坐标为2444,则(4,4)A ,设(,0)B b ,则AB 的中点为4(,2)2b ,由题意可得24242b ,解得2b ,所以(2,0)B ,则402423AB k,由点斜式可得,直线AB 的方程为2(2)3y x ,即2340x y ,所以原点O 到直线AB13;(3)如图,设22(,),(,),(3,)(0)44t a P t A a H t t a ,则22444AP t a k t a t a,故直线AP 的方程为24()4a y a x t a,令3x ,可得24(3)4a y a t a ,即24(3,(3))4a Q a t a,则24|||(3)|4a HQ t a t a,依题意,24|(3)|44a t a t a恒成立,又24(3)2204a t a a a t a ,则最小值为24a ,即2a ,即2a ,则221244a a a ,解得02a ,又当2a 时,1624442t t,当且仅当2t 时等号成立,而a t ,即当2a 时,也符合题意.故实数a 的取值范围为(0,2].3.(2022•上海)设有椭圆方程2222:1(0)x y a b a b,直线:0l x y , 下端点为A ,M 在l 上,左、右焦点分别为1(F ,0)、2F ,0).(1)2a ,AM 中点在x 轴上,求点M 的坐标;(2)直线l 与y 轴交于B ,直线AM 经过右焦点2F ,在ABM 中有一内角余弦值为35,求b ;(3)在椭圆 上存在一点P 到l 距离为d ,使12||||6PF PF d ,随a 的变化,求d 的最小值.【解析】(1)由题意可得2,a b c ,22:1,(0,42x y A ,AM ∵的中点在x 轴上,M ,代入0x y 得M .(2)由直线方程可知B ,①若3cos 5BAM,则4tan 3BAM ,即24tan 3OAF ,234OA OF ,b.②若3cos 5BMA,则4sin 5BMA ,∵4MBA, 34cos()252510MBA AMB ,cos BAMtan 7BAM .即2tan 7OAF , 7OA , 7b ,综上b或27.(3)设(cos ,sin )P a b ,62a ,很明显椭圆在直线的左下方,则62a ,即) ,222a b ∵,) ,)22a ,|sin()|1 ,整理可得(1)(35)0a a ,即513a ,从而58626233d a .即d 的最小值为83.4.(2022•浙江)如图,已知椭圆22112x y .设A ,B 是椭圆上异于(0,1)P 的两点,且点1(0,2Q 在线段AB上,直线PA ,PB 分别交直线132y x 于C ,D 两点.(Ⅰ)求点P 到椭圆上点的距离的最大值;(Ⅱ)求||CD 的最小值.【解析】(Ⅰ)设椭圆上任意一点(,)M x y ,则222222||(1)12122111213PM x y y y y y y ,[1y ,1],而函数211213z y y 的对称轴为1[1,1]11y ,则其最大值为21114411(213111111, 1441211||1111max PM,即点P 到椭圆上点的距离的最大值为121111;(Ⅱ)设直线11221:,(,),(,)2AB y kx A x y B x y ,联立直线AB 与椭圆方程有2212112y kx x y,消去y 并整理可得,22(121)1290k x kx ,由韦达定理可得,121222129,121121k x x x x k k, 22212121222212366161||()4()121121k k x x x x x x k k k,设3(C x ,3)y ,4(D x ,4)y ,直线111:1y AP y x x ,直线221:1y BP y x x ,联立1111132y y x x y x 以及2211132y y x x y x,可得12341244,(21)1(21)1x x x x k x k x,由弦长公式可得21234124415||1()|||22(21)1(21)1x x CD x x k x k x1212212121225|5|[(21)1][(21)1](21)(21)()1x x x x k x k x k x x k x x66|231555k,当且仅当316k 时等号成立,||CD的最小值为5.5.(2022•北京)已知椭圆2222:1(0)x yE a ba b的一个顶点为(0,1)A,焦距为.(Ⅰ)求椭圆E的方程;(Ⅱ)过点(2,1)P 作斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与x轴交于点M,N.当||2MN 时,求k的值.【解析】(Ⅰ)由题意得,12bc,1b,c ,2a ,椭圆E的方程为2214x y .(Ⅱ)设过点(2,1)P 的直线为1(2)y k x,1(B x,1)y,2(C x,2)y,联立得221(2)141y k xx y,即2222(14)(168)16160k x k k x k k,∵直线与椭圆相交, △2222[(168)]4(14)(1616)0k k k k k,0k,由韦达定理得212216814k kx xk,2122161614k kx xk,111ABykx∵, 直线AB为1111yy xx,令0y ,则111xxy,11(1xMy,0),同理22(1xNy ,0),1212211212211||||||()|11(2)(2)22x x x x x xMNy y k x k x k x x212112122()11||||(2)(2)x xk x x k22|216162(168)41414k k,2|2k,1|2,4k .6.(2022•新高考Ⅱ)已知双曲线2222:1(0,0)x y C a b a b的右焦点为(2,0)F,渐近线方程为y .(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点1(P x ,1)y ,2(Q x ,2)y 在C 上,且120x x ,10y .过P且斜率为Q且斜率为的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立.①M 在AB 上;②//PQ AB ;③||||MA MB .注:若选择不同的组合分别解答,则按第一个解答计分.【解析】(1)由题意可得ba,2 ,解得1a,b ,因此C 的方程为2213y x ,(2)解法一:设直线PQ 的方程为y kx m ,(0)k ,将直线PQ 的方程代入2213y x 可得222(3)230k x kmx m ,△2212(3)0m k ,120x x ∵122203kmx x k ,2122303m x x k,230k,1222333x x k ,设点M 的坐标为(M x ,)M y,则1122))M M M M y y x x y y x x ,两式相减可得1212)M y y x x ,1212()y y k x x ∵,1212)()M x x k x x ,解得23M kmX k ,两式相加可得12122())M y y y x x ,1212()2y y k x x m ∵,12122)()2M y x x k x x m ,解得M y ,3M M y x k,其中k 为直线PQ 的斜率;若选择①②:设直线AB 的方程为(2)y k x ,并设A 的坐标为3(x ,3)y ,B 的坐标为4(x ,4)y ,则3333(2)y k x y,解得3x,3y ,同理可得4x4y 234243k x x k ,342123ky y k ,此时点M 的坐标满足(2)3M M M My k x y x k,解得234221()32M k X x x k ,34261()32M k y y y k ,M 为AB 的中点,即||||MA MB ;若选择①③:当直线AB 的斜率不存在时,点M 即为点(2,0)F ,此时不在直线3y x k上,矛盾,当直线AB 的斜率存在时,设直线AB 的方程为(2)(0)y m x m ,并设A 的坐标为3(x ,3)y ,B 的坐标为4(x ,4)y ,则3333(2)y m x y,解得3x,3y ,同理可得4x,4y 此时234212()23M m x x x m ,34216()23M my y y m,由于点M 同时在直线3y x k 上,故2362m m k,解得k m ,因此//PQ AB .若选择②③,设直线AB 的方程为(2)y k x ,并设A 的坐标为3(x ,3)y ,B 的坐标为4(x ,4)y ,则3333(2)y k x y,解得3x,3y ,同理可得4x4y 设AB 的中点(C C x ,)C y ,则234212()23C k x x x k ,34216()23C ky y y k ,由于||||MA MB ,故M 在AB 的垂直平分线上,即点M 在直线1()C C y y x x k上,将该直线3y x k 联立,解得2223M C k x x k ,263M C ky y k ,即点M 恰为AB 中点,故点M 在直线AB 上.(2)解法二:由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①② ③,或选由②③ ①:由②成立可知直线AB 的斜率存在且不为0.若选①③ ②,则M 为线段AB 的中点,假设AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,从而12x x ,已知不符.综上,直线AB 的斜率存在且不为0,直线AB 的斜率为k ,直线AB 的方程为(2)y k x .则条件①M 在直线AB 上,等价于20000(2)(2)y k x ky k x ,两渐近线的方程合并为2230x y ,联立方程组,消去y 并化简得:2222(3)440k x k x k ,设3(A x ,3)y ,4(B x ,4)y ,线段中点为(N N x ,)N y ,则2342223N x x k x k .26(2)3N N ky k x k ,设0(M x ,0)y ,则条件③||||AM BM 等价于222203030404()()()()x x y y x x y y ,移项并利用平方差公式整理得:3403434034()[2()]()[(2()]0x x x x x y y y y y ,3403403434[2()][2()]0y y x x x y y y x x,00()0N N x x k y y ,3403403434[2()][2()]0y y x x x y y y x x,00()0N N x x k y y ,200283k x ky k ,由题意知直线PM的斜率为QM的斜率为,由1010)y y x x,2020)y y x x,121202)y y x x x ,直线PQ的斜率1201212122)x x x y y m x x x x,直线00:)PM y x x y,即00y y ,代入双曲线的方程为22330x y,即)3y y 中,得0000(()]3y y ,解得P的横坐标为100)]3x y ,同理,2022003()3x y y x ,012002200323x x x x x y x ,03x m y, 条件②//PQ AB 等价于003m k ky x ,综上所述:条件①M 在AB 上等价于200(2)m k ky k x ,条件②//PQ AB 等价于003ky x ,条件③||||AM BM 等价于200283k x ky k .选①② ③:由①②解得20223k x k 20002843k x ky x k , ③成立;选①③ ②:由①③解得:20223k x k ,20263k ky k ,003ky x , ②成立;选②③ ①:由②③解得:20223k x k ,20263k ky k , 02623x k , ①成立.7.(2022•上海)已知椭圆222:1(1)x y a a,A 、B 两点分别为 的左顶点、下顶点,C 、D 两点均在直线:l x a 上,且C 在第一象限.(1)设F 是椭圆 的右焦点,且6AFB,求 的标准方程;(2)若C 、D 两点纵坐标分别为2、1,请判断直线AD 与直线BC 的交点是否在椭圆 上,并说明理由;(3)设直线AD 、BC 分别交椭圆 于点P 、点Q ,若P 、Q 关于原点对称,求||CD 的最小值.【解析】(1)由题可得(0,1)B ,(,0)F c ,因为6AFB,所以1tan tan 63b AFBc c,解得c ,所以214a ,故 的标准方程为2214x y ;(2)直线AD 与直线BC 的交点在椭圆上,由题可得此时(,0)A a ,(0,1)B ,(,2)C a ,(,1)D a ,则直线3:1BC y x a ,直线11:22AD y x a ,交点为3(5a ,4)5,满足2223()45()15a a ,故直线AD 与直线BC 的交点在椭圆上;(3)(0,1)B ,(cos ,sin )P a ,则直线sin 1:1cos BP y x a ,所以sin 1(,1)cos C a,(,0)A a ,(cos ,sin )Q a ,则直线sin :()cos AQ y x a a a,所以2sin (,cos 1D a,所以222222sin cos 4sin cossin 12sin 222222||11cos cos 12222sin cos CD cos sin sin,设tan 2t ,则11||2()21CD t t,因为114a ba b ,所以114411t t t t,则||6CD ,即||CD 的最小值为6.8.(2021•北京)已知椭圆2222:1(0)x y E a b a b的一个顶点(0,2)A ,以椭圆E 的四个顶点围成的四边形面积为.(Ⅰ)求椭圆E 的方程;(Ⅱ)过点(0,3)P 作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB 、AC 分别与直线3y 交于点M 、N ,当||||15PM PN 时,求k 的取值范围.【解析】(Ⅰ)因为椭圆2222:1(0)x y E a b a b过点(0,2)A ,则2b ,又因为以四个顶点围成的四边形面积为,所以1222a b,解得a ,故椭圆E 的标准方程为22154x y;(Ⅱ)由题意,设过点(0,3)P ,斜率为k 的直线为直线l ,设直线l 的方程为(3)(0)y k x ,即3y kx ,当0k 时,直线l 与椭圆E 没有交点,而直线l 交椭圆E 于不同的两点B ,C ,所以0k ,设1(B x ,1)y ,2(C x ,2)y ,联立方程组223154y kx x y,可得22(45)30250k x kx ,则△22(30)425(45)0k k ,解得||1k ,所以1212223025,4545k x x x x k k,则221212121222036(3)(3)3()945k y y kx kx k x x k x x k ,121212224(3)(3)()645y y kx kx k x x k,直线AB 的方程为11(2)(2)(0)0y y x x ,即1122y y x x ,直线AC 的方程为22(2)(2)0)0y y x x,即2222y y x x ,因为直线AB 交3y 于点M ,所以令3y ,则112M x x y ,故11(,3)2x M y ,同理可得22(,3)2x N y ,注意到12225045x x k,所以1x ,2x 同号,因为120y ,220y ,所以M x ,N x 同号,故||||||||||M N M N PM PN x x x x ,则1212211212(2)(2)|||||||22(2)(2)x x x y x y PM PN y y y y 1221121212(3)(3)2()||2()4x kx x kx x x y y y y 121212122()||2()4kx x x x y y y y 22222253024545||20364844545kk k k k k k5||k ,故||||5||PM PN k ,又||||15PM PN ,即5||15k ,即||3k ,又||1k ,所以1||3k ,故k 的取值范围为[3 ,1)(1 ,3].9.(2021•浙江)如图,已知F 是抛物线22(0)y px p 的焦点,M 是抛物线的准线与x 轴的交点,且||2MF .(Ⅰ)求抛物线的方程:(Ⅱ)设过点F 的直线交抛物线于A ,B 两点,若斜率为2的直线l 与直线MA ,MB ,AB ,x 轴依次交于点P ,Q ,R ,N ,且满足2||||||RN PN QN ,求直线l 在x轴上截距的取值范围.【解析】(Ⅰ)依题意,2p ,故抛物线的方程为24y x ;(Ⅱ)由题意得,直线AB 的斜率存在且不为零,设直线:(1)AB y k x ,将直线AB 方程代入抛物线方程可得,2222(24)0k x k x k ,则由韦达定理有,242,1A B A B x x x x k,则4A B y y ,设直线1:(1)AM y k x ,其中11A A y k x,设直线2:(1)BM y k x ,其中21B B yk x ,则12(1)(1)(1)(1)0011(1)(1)(1)(1)(1)(1)A B A B A B A B A B A B A B A B A B A B A B y y y x y y x y k x x k x k x x k x k k x x x x x x x x,2122244(1)(1)1121A B A B y y k k k x x k k,设直线:2()l y x t ,联立2()(1)y x t y k x ,可得22R k t x k ,则2||||||22R k t k kt x t t k k ,联立12()(1)y x t y k x ,可得1122P k t x k ,则111112||||||22P k t k k t x t t k k ,同理可得,222222,||||22Q Q k t k k tx x t k k,又2||||||RN PN QN ,2112212||||222k k t k k tk kt k k k ,即2222(1)()234k kt k t k k ,22222222(1)343(2)12(2)16161243333()(1)(1)(2)(2)(2)22244t k k k t t k k k k k ,224(21)3(21)t t t t ,即21410t t,解得7t或71)t t ;当直线AB 的斜率不存在时,则直线:1AB x ,(1,2)A ,(1,2)B ,(1,0)M ,直线MA 的方程为1y x ,直线MB 的方程为1y x ,设直线:2()l y x t ,则(12,22)P t t ,2122(,)33t t Q ,(1,22)R t ,(,0)N t ,又2||||||RN PN QN,故22(1)(22)t t 解得t满足(,77,1)(1,) .直线l 在x轴上截距的取值范围为(,77,1)(1,) .10.(2021•新高考Ⅰ)在平面直角坐标系xOy中,已知点1(F ,0),2F ,0),点M 满足12||||2MF MF .记M 的轨迹为C .(1)求C 的方程;(2)设点T 在直线12x上,过T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,且||||||||TA TB TP TQ ,求直线AB 的斜率与直线PQ 的斜率之和.【解析】(1)由双曲线的定义可知,M 的轨迹C 是双曲线的右支,设C 的方程为22221(0,0),1x y a b x a b ,根据题意22222c a c a b,解得14a b c,C 的方程为221(1)16y x x ;(2)(法一)设1(,)2T m ,直线AB 的参数方程为1cos 2sin x t y m t,将其代入C 的方程并整理可得,2222(16cos sin )(16cos 2sin )(12)0t m t m ,由参数的几何意义可知,1||TA t ,2||TB t ,则2212222121216117m m t t sin cos cos,设直线PQ 的参数方程为1cos 2sin x y m,1||TP ,2||TQ ,同理可得,212212117m cos ,依题意,22221212117117m m cos cos,则22cos cos ,又 ,故cos cos ,则cos cos 0 ,即直线AB 的斜率与直线PQ 的斜率之和为0.(法二)设1(,)2T t ,直线AB 的方程为11()2y k x t ,1(A x ,1)y ,2(B x ,2)y ,设1212x x ,将直线AB 方程代入C 的方程化简并整理可得,22222111111(16)(2)1604k x k tk x k k t t ,由韦达定理有,22211111212221111624,1616k k t t k k tx x x x k k ,又由111111(,),(,)22A x k x k t T t可得11||)2AT x ,同理可得21||)2BT x ,222111221(1)(12)11||||(1)()()2216k t AT BT k x x k,设直线PQ 的方程为233441(),(,),(,)2y k x t P x y Q x y ,设3412x x ,同理可得22222(1)(12)||||16k t PT QT k ,又||||||||AT BT PT QT ,则22122212111616k k k k ,化简可得2212k k ,又12k k ,则12k k ,即120k k ,即直线AB 的斜率与直线PQ 的斜率之和为0.11.(2021•乙卷(文))已知抛物线2:2(0)C y px p 的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF,求直线OQ 斜率的最大值.【解析】(1)由题意知,2p ,24y x .(2)由(1)知,抛物线2:4C y x ,(1,0)F ,设点Q 的坐标为(,)m n ,则(1,)QF m n,9(99,9)PQ QF m nP 点坐标为(109,10)m n ,将点P 代入C 得21004036n m ,整理得22100362594010n n m ,当0n 时,2100259n n K m n,当0n 时,2101019259325n n K m n n n,当且仅当925n n ,即35n 时,等号成立,取得最大值.故答案为:13.12.(2022•甲卷(文))设抛物线2:2(0)C y px p 的焦点为F ,点(,0)D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,||3MF .(1)求C 的方程;(2)设直线MD ,ND 与C 的另一个交点分别为A ,B ,记直线MN ,AB 的倾斜角分别为 , .当 取得最大值时,求直线AB 的方程.【解析】(1)由题意可知,当x p 时,222y p,得M y,可知||MD ,||2p FD .则在Rt MFD 中,222||||||FD DM FM,得22())92p,解得2p .则C 的方程为24y x ;(2)设1(M x ,1)y ,2(N x ,2)y ,3(A x ,3)y ,4(B x ,4)y ,当MN 与x 轴垂直时,由对称性可知,AB 也与x 轴垂直,此时2,则0 ,由(1)可知(1,0)F ,(2,0)D ,则1212221212124tan 44MN y y y y k y y x x y y,又N 、D 、B 三点共线,则ND BD k k ,即24240022y y x x,242224002244y y y y,得248y y ,即428y y;同理由M 、D 、A 三点共线,得318y y .则34123434124tan 2()y y y y x x y y y y.由题意可知,直线MN 的斜率不为0,设:1MN l x my ,由241y x x my ,得2440y my ,124y y m ,124y y ,则41tan 4m m,41tan 242m m,则11tan tan 12tan()1111tan tan 122m m m m m m,∵1tan m,1tan 2m,tan 与tan 正负相同,22, 当 取得最大值时,tan() 取得最大值,当0m时,1tan()142m m;当0m 时,tan() 无最大值, 当且仅当12m m,即2m 时,等号成立,tan() 取最大值,此时AB 的直线方程为33344()y y x x y y ,即34344()0x y y y y y ,又123412128()888y y y y m y y y y∵34128816y y y y ,AB的方程为4160x,即40x .13.(2023•甲卷(文))已知直线210x y 与抛物线2:2(0)C y px p 交于A ,B两点,||AB .(1)求p ;(2)设F 为C 的焦点,M ,N 为C 上两点,且0FM FN,求MFN 面积的最小值.【解析】设1(A x ,1)y ,2(B x ,2)y ,联立22102(0)x y y px p,消去x 得:2420y py p ,124y y p ,122y y p ,△21680p p ,(21)0p p ,12p,12|||4AB y y ,216848p p ,2260p p ,(23)(2)0p p ,2p ,(2)由(1)知24y x ,所以(1,0)F ,显然直线MN 的斜率不可能为零,设直线:MN x my n ,1(M x ,1)y ,2(N x ,2)y 由24y x x my n,可得2440y m n ,所以124y y m ,124y y n ,△22161600m n m n ,因为0MF NF,所以1212(1)(1)0x x y y ,即1212(1)(1)0my n my n y y ,即221212(1)(1)()(1)0m y y m n y y n ,将124y y m ,24y n ,代入得22461m n n ,224()(1)0m n n ,所以1n ,且2610n n ,解得3n 或3n 设点F 到直线MN 的距离为d ,所以d12|||MN y y1|n ,所以MNF 的面积11||1|22S MN d n,又3n 或3n 3n 时,MNF 的面积2(212min S .14.(2023•甲卷(理))设抛物线2:2(0)C y px p ,直线210x y 与C 交于A ,B 两点,且||AB .(1)求p 的值;(2)F 为22y px 的焦点,M ,N 为抛物线上的两点,且0MF NF,求MNF 面积的最小值.【解析】设1(A x ,1)y ,2(B x ,2)y ,联立22102(0)x y y px p,消去x 得:2420y py p ,124y y p ,122y y p ,△21680p p ,(21)0p p ,12p,12|||4AB y y ,216848p p ,2260p p ,(23)(2)0p p ,2p ;(2)由(1)知24y x ,所以(1,0)F ,显然直线MN 的斜率不可能为零,设直线:MN x my n ,1(M x ,1)y ,2(N x ,2)y ,由24y x x my n,可得2440y my n ,所以124y y m ,124y y n ,△22161600m n m n ,因为0MF NF ,所以1212(1)(1)0x x y y ,即1212(1)(1)0my n my n y y ,即221212(1)(1)()(1)0m y y m n y y n ,将124y y m ,24y n ,代入得22461m n n ,224()(1)0m n n ,所以1n ,且2610n n ,解得3n 或3n 设点F 到直线MN 的距离为d ,所以d12|||MN y y1|n ,所以MNF 的面积11||1|22S MN d n ,又3n 或3n 3n 时,MNF 的面积2(212min S .15.(2023•天津)设椭圆22221(0)x y a b a b的左、右顶点分别为1A ,2A ,右焦点为F ,已知1||3A F ,2||1A F .(Ⅰ)求椭圆方程及其离心率;(Ⅱ)已知点P 是椭圆上一动点(不与顶点重合),直线2A P 交y 轴于点Q ,若△1A PQ 的面积是△2A FP 面积的二倍,求直线2A P 的方程.【解析】(Ⅰ)由题意可知,31a c a c ,解得21a c,222413b a c .则椭圆方程为22143x y ,椭圆的离心率为12c e a ;(Ⅱ)由题意可知,直线2A P 的斜率存在且不为0,当0k 时,直线方程为(2)y k x ,取0x ,得(0,2)Q k .联立22(2)143y k x x y ,得2222(43)1616120k x k x k .△2222(16)4(43)(1612)1440k k k ,221612243P k x k ,得228643P k x k ,则21243P k y k .11212322111216124(2)4()224343A PQ A A Q A A Pk k k S S S k k k .22211261()24343A FP k k S k k . 3221612124343k k k k k ,即223k ,得6(0)2k k ;同理求得当0k 时,62k . 直线2A P 的方程为6(2)2y x .16.(2022•天津)椭圆22221(0)x y a b a b的右焦点为F 、右顶点为A ,上顶点为B ,且满足||3||2BF AB .(1)求椭圆的离心率e ;(2)直线l 与椭圆有唯一公共点M ,与y 轴相交于(N N 异于)M .记O 为坐标原点,若||||OM ON ,且OMN 3【解析】(1)∵22||3||BF aAB a b 22234a a b ,223a b ,2223()a a c ,2223a c ,222633c e a ;(2)由(1)可知椭圆为222213x y a a,即2223x y a ,设直线:l y kx m ,联立2223x y a ,消去y 可得:2222(31)6(3)0k x kmx m a ,又直线l 与椭圆只有一个公共点,△2222364(31)(3)0k m k m a ,2223(31)m a k ,又2331M km x k , 22233131M M k m m y kx m m k k ,又||||OM ON , 222223(()3131km m m k k ,解得213k,3k ,又OMN的面积为2113||||||||2231M km ON x m k ,212224m ,又k 2223(31)m a k ,26a ,22b , 椭圆的标准方程为22162x y .17.(2022•新高考Ⅰ)已知点(2,1)A 在双曲线2222:1(1)1x y C a a a 上,直线l 交C 于P ,Q 两点,直线AP ,AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ,求PAQ 的面积.【解析】(1)将点A 代入双曲线方程得224111a a ,化简得42440a a ,22a ,故双曲线方程为2212x y ,由题显然直线l 的斜率存在,设:l y kx m ,设1(P x ,12)(y Q x ,2)y ,则联立双曲线得:222(21)4220k x kmx m ,故122421km x x k ,21222221m x x k ,12121212111102222AP AQ y y kx m kx m k k x x x x ,化简得:12122(12)()4(1)0kx x m k x x m ,故2222(22)4(12)(4(1)02121k m km m k m k k ,即(1)(21)0k m k ,而直线l 不过A 点,故1k ;(2)设直线AP 的倾斜角为,由tan PAQ22tan21tan 2PAQ PAQ,得tan 22PAQ 由2PAQ , 2PAQ,得tan AP k,即1112y x ,联立1112y x ,及221112x y得1110533x y ,同理22x y 故12122068,39x x x x ,而12||2|,|||2|AP x AQ x,由tan PAQsin 3PAQ,故12121||||sin 2()4|29PAQ S AP AQ PAQ x x x x .18.(2023•新高考Ⅱ)已知双曲线C中心为坐标原点,左焦点为( 0).(1)求C 的方程;(2)记C 的左、右顶点分别为1A ,2A ,过点(4,0) 的直线与C 的左支交于M ,N 两点,M 在第二象限,直线1MA 与2NA 交于P ,证明P 在定直线上.【解析】(1)双曲线C中心为原点,左焦点为( 0),则222c a b c c e a,解得24a b ,故双曲线C 的方程为221416x y ;(2)证明:过点(4,0) 的直线与C 的左支交于M ,N 两点,则可设直线MN 的方程为4x my ,1(M x ,1)y ,2(N x ,2)y ,记C 的左,右顶点分别为1A ,2A ,则1(2,0)A ,2(2,0)A ,联立224416x my x y ,化简整理可得,22(41)32480m y my ,故△222(32)448(41)2641920m m m 且2410m ,1223241m y y m ,1224841y y m ,直线1MA 的方程为11(2)2y y x x,直线2NA 方程22(2)2y y x x ,故21211212(2)(2)22(2)(6)y x y my x x y x y my 121211212()26my y y y y my y y 12212483222414148641m m y m m m y m 1212162141483641m y m m y m ,故2123x x ,解得1x ,所以1P x ,故点P 在定直线1x 上运动.19.(2021•上海)已知22:12x y ,1F ,2F 是其左、右焦点,直线l 过点(P m,0)(m ,交椭圆于A ,B 两点,且A ,B 在x 轴上方,点A 在线段BP 上.(1)若B 是上顶点,11||||BF PF ,求m 的值;(2)若1213F A F A ,且原点O 到直线l的距离为15,求直线l 的方程;(3)证明:对于任意m 12//F A F B 的直线有且仅有一条.【解析】(1)因为 的方程:2212x y ,所以22a ,21b ,所以2221c a b ,所以1(1,0)F ,2(1,0)F ,若B 为 的上顶点,则(0,1)B ,所以1||BF ,1||1PF m ,又11||||BF PF ,所以1m(2)设点A ,sin ) ,则2221211)213F A F A sin cos sin ,因为A 在线段BP 上,横坐标小于0,解得cos ,故()33A ,设直线l的方程为(0)33y kx k ,由原点O 到直线l,则15d ,化简可得231030k k ,解得3k 或13k ,故直线l的方程为13y x或3y x(舍去,无法满足m ,所以直线l的方程为139y x ;(3)联立方程组2212y kx km x y ,可得22222(12)4220k x k mx k m ,设1(A x ,1)y ,2(B x ,2)y ,则222121222422,1212k m k m x x x x k k ,因为12//F A F B ,所以2112(1)(1)x y x y ,又y kx km ,故化简为122212x x k ,又122216882||||1212k k m x x k k ,两边同时平方可得,2224210k k m ,整理可得22142k m ,当m 时,221042k m ,因为点A ,B 在x 轴上方,所以k 有且仅有一个解,故对于任意m ,使得12//F A F B 的直线有且仅有一条.20.(2021•甲卷(文))在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为 .(1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为(1,0),M 为C 上的动点,点P满足AP ,写出P 的轨迹1C 的参数方程,并判断C 与1C 是否有公共点.【解析】(1)由极坐标方程为,得2cos ,化为直角坐标方程是22x y ,即22(2x y,表示圆心为C 0)(2)【解法1】根据题意知,点P 的轨迹是以A为缩放比例将圆1C 作位似变换得到的,因此1C的圆心为(3 0),半径差为2 ,所以圆C 内含于圆1C ,圆C 与圆1C 没有公共点.【解法2】设点P 的直角坐标为(,)x y ,1(M x ,1)y ,因为(1,0)A ,所以(1,)AP x y ,1(1AM x ,1)y ,由AP ,即1111)x x y ,解得11(1)122x x y y ,所以1)1M x)y ,代入C的方程得221)1)2x ,化简得点P的轨迹方程是22(34x y,表示圆心为1(3C ,0),半径为2的圆;化为参数方程是32cos 2sin x y, 为参数;计算1|||(332CC ,所以圆C 与圆1C 内含,没有公共点.21.(2023•北京)已知椭圆2222:1(0)x y E a b a b,A 、C 分别为E 的上、下顶点,B 、D 分别为E 的左、右顶点,||4AC .(1)求E 的方程;(2)点P 为第一象限内E 上的一个动点,直线PD 与直线BC 交于点M ,直线PA 与直线2y 交于点N .求证://MN CD .【解析】(1)由题意可得:24b,c e a,222a b c ,解得2b ,29a , 椭圆E 的方程为22194x y .(2)证明:(0,2)A ,(3,0)B ,(0,2)C ,(3,0)D ,直线BC 的方程为132x y ,化为2360x y .设直线AP 的方程为:2y kx ,(0)k ,4(N k ,2) .联立222194y kx x y ,化为:22(49)360k x kx ,解得0x 或23649k k,236(49k P k ,22818)49k k .直线PD 方程为:22218849(3)36349k k y x k k ,即22188(3)273612k y x k k ,与2360x y 联立,解得26432k x k k ,2281896k y k k.264(32k M k k,2281896k k k .2228182296464332MN k k k k k k k k,23CD k,//MN CD .22.(2021•新高考Ⅱ)已知椭圆C 的方程为22221(0)x y a b a b,右焦点为F ,0).(Ⅰ)求椭圆C 的方程;(Ⅱ)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x 相切.证明:M ,N ,F 三点共线的充要条件是||MN .【解析】(Ⅰ)由题意可得,椭圆的离心率3c a,又c所以a 2221b a c ,故椭圆的标准方程为2213x y ;(Ⅱ)证明:先证明充分性,当||MN 时,设直线MN 的方程为x ty s ,此时圆心(0,0)O 到直线MN的距离1d ,则221s t ,联立方程组2213x ty s x y ,可得222(3)230t y tsy s ,则△22222244(3)(3)12(3)24t s t s t s ,因为2||3MN t ,所以21t ,22s ,因为直线MN 与曲线222(0)x y b x 相切,所以0s,则s ,则直线MN的方程为x ty恒过焦点F ,故M ,N ,F 三点共线,所以充分性得证.若M ,N ,F 三点共线时,设直线MN的方程为x my ,则圆心(0,0)O 到直线MN的距离为1d ,解得21m ,联立方程组2213x my x y,可得22(3)10m y ,即2410y ,所以||44MN所以必要性成立;综上所述,M,N,F三点共线的充要条件是||MN.23.(2021•天津)已知椭圆22221(0)x y a ba b的右焦点为F,上顶点为B,离心率为,且||BF.(1)求椭圆的标准方程;(2)直线l与椭圆有唯一的公共点M,与y轴的正半轴交于点N,过N与BF垂直的直线交x轴于点P.若//MP BF,求直线l的方程.【解析】(1)因为离心率5e,||BF所以222caaa b c,解得a ,2c ,1b ,所以椭圆的方程为2215x y .(2)先证明椭圆22221x ya b上过点(M x,)y的椭圆的切线方程为:00221xx yya b.由于椭圆过点0(x,0)y,则2200221x ya b①,对椭圆求导得22b xya y,即切线的斜率22b xka y,故切线的方程2002()b xy y x xa y,将①代入得00221xx yya b.则切线MN 的方程为0015x x y y ,令0x ,得01N y y,因为PN BF ,所以1PN BF k k ,所以1(12PN k ,解得2NP k ,设1(P x ,0),则01120NPy k x ,即1012x y ,因为//MP BF ,所以MP BF k k ,所以0001122y x y ,即000122y x y ,所以000122x y y,又因为220015x y ,所以22002042115520y y y ,解得06y ,因为0N y ,所以00y ,所以06y,036x ,所以6156y,即0x y .24.(2021•甲卷(文))抛物线C 的顶点为坐标原点O ,焦点在x 轴上,直线:1l x 交C 于P ,Q 两点,且OP OQ .已知点(2,0)M ,且M 与l 相切.(1)求C ,M 的方程;(2)设1A ,2A ,3A 是C 上的三个点,直线12A A ,13A A 均与M 相切.判断直线23A A 与M 的位置关系,并说明理由.【解析】(1)因为1x 与抛物线有两个不同的交点,故可设抛物线C 的方程为:22(0)y px p ,令1x ,则2y p ,根据抛物线的对称性,不妨设P 在x 轴上方,Q 在x 轴下方,故2),(1,2P p Q p ,因为OP OQ ,故112(202p p p,抛物线C 的方程为:2y x ,因为M 与l 相切,故其半径为1,故22:(2)1M x y .另(1)根据抛物线的对称性,由题意可得45POx QOx ,因此点P ,Q 的坐标为(1,1) ,由题意可设抛物线C 的方程为:22(0)y px p ,可得12p ,因此抛物线C 的方程为2y x .而圆M 的半径为圆心M 到直线l 的距离为1,可得M 的方程为22(2)1x y .(2)很明显,对于12A A 或者13A A 斜率不存在的情况以及23A A 斜率为0的情况满足题意.否则:设11(A x ,1)y ,22(A x ,2)y ,33(A x ,3)y .当1A ,2A ,3A 其中某一个为坐标原点时(假设1A 为坐标原点时),设直线12A A 方程为0kx y ,根据点(2,0)M 到直线距离为11,解得k 联立直线12A A 与抛物线方程可得3x ,此时直线23A A 与M 的位置关系为相切,当1A ,2A ,3A 都不是坐标原点时,即123x x x ,直线12A A 的方程为1212()0x y y y y y ,1 ,即22212121(1)230y y y y y ,同理,由对称性可得,22213131(1)230y y y y y ,所以2y ,3y 是方程222111(1)230y t y t y 的两根,则2112323221123,11y y y y y y y y ,依题意有,直线23A A 的方程为2323()0x y y y y y ,令M 到直线23A A 的距离为d ,则有22122223122123213(2)(2)1121()1()1y y y y d y y y y ,此时直线23A A 与M 的位置关系也为相切,综上,直线23A A 与M 相切.(2)另设2(i i A y ,)i y ,1i ,2,3,由直线的两点式可知,直线12A A 的方程为222122122()()()()y y y y y y x y ,化简可得1212()0x y y y y y ,因为直线12A A 与圆M2212121(2)1()y y y y ,整理得22212121(1)230y y y y y ,同理有22213131(1)230y y y y y ,所以2y ,3y 是关于y 的方程222111(1)230y y y y y 的两个根,则2112323221123,11y y y y y y y y ,依题意有,直线23A A 的方程为2323()0x y y y y y ,令M 到直线23A A 的距离为d ,则有22122223122123213(2)(2)1121()1()1y y y y d y y y y ,此时直线23A A 与M 的位置关系也为相切,综上,直线23A A 与M 相切.25.(2023•乙卷(文))已知椭圆2222:1(0)y x C a b a b的离心率为3,点(2,0)A 在C 上.(1)求C 的方程;(2)过点(2,3) 的直线交C 于点P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【解析】(1)由题意,22232c a b a b c,解得32a b c . 椭圆C 的方程为22194y x ;证明:(2)如图,要使过点(2,3) 的直线交C 于点P ,Q 两点,则PQ 的斜率存在且小于0,设:3(2)PQ y k x ,即23y kx k ,0k ,1(P x ,1)y ,2(Q x ,2)y ,联立2223194y kx k y x ,得22(49)8(23)16(3)0k x k k x k k .△22[8(23)]4(49)16(3)17280k k k k k k .1228(23)49k k x x k ,12216(3)49k k x x k ,直线11:(2)2y AP y x x,取0x ,得112(0,)2y M x ;直线22:(2)2y AQ y x x,取0x ,得222(0,2y N x . 1212211212222(2)2(2)22(2)(2)y y y x y x x x x x 12211212(23)(2)(23)(2)22()4kx k x kx k x x x x x 121212122(43)()4(23)22()4kx x k x x k x x x x 222216(3)8(23)2(43)4(23)4949216(3)8(23)244949k k k k k k k k k k k k k k k 32322322223296649648723272481082164832481636k k k k k k k k k k k k k k 1082636.MN 的中点为(0,3),为定点.。

高考数学一轮复习第8章平面解析几何课件

高考数学一轮复习第8章平面解析几何课件
第八章 平面解析几何
[五年考情]
考点
2016 年 2015 年 2014 年
2013 年
2012 年
直线的倾斜角 与斜率、直线的 方程、距离
17,4 分(文) 15,4 分(理)
3,5 分(理) 4,5 分(文)
圆的方程、直线
与圆的位置关 系、圆与圆的位 10,6 分(文)
14,4 分(理) 14,4 分(文)
双曲线的标 准方程及其 性质
7,5 分(理) 13,4 分 17,4 分(文)
9,5 分(理) 9,5 分(文)
8,5 分(理)
抛物线的标
准方程及其 9,4 分(理) 5,5 分(理)
15,4 分(理) 16,4 分(理)
性质
直线与圆锥 曲线的位置 关系及圆锥 曲线的综合 应用
19,15 分 (理)
19,15 分 (文)
19,15 分 (理)
19,15 分 (文)
21,15 分 (理)
22,7 分(文)
22(2),9 分(理) 22,14 分(文)
21(2),8 分(理) 22,15 分(文)
[重点关注] 综合近 5 年浙江卷高考试题,我们发现高考主要考查直线的方程、圆的方 程、直线与圆、圆与圆的位置关系、圆锥曲线(椭圆、双曲线、抛物线)的定义、 标准方程及性质、直线与圆锥曲线的位置关系及综合应用,突出对数形结合思 想、函数与方程思想、转化与化归思想的考查.
老师没提了一个问题,同学们就应当立即主动地去思考,积极地寻找答案,然后和老师的解答进行比较。通过超前思考,可以把注意力集中在对这些“难点”的理解 上,保证“好钢用在刀刃上”,从而避免了没有重点的泛泛而听。通过将自己的思考跟老师的讲解做比较,还可以发现自己对新知识理解的不妥之处,及时消除知识 的“隐患”。

数学课件——高考 平面解析几何专题学习

数学课件——高考 平面解析几何专题学习

专题 平面解析几何【高考导航】在对口高考中,平面解析几何主要掌握以下两种题型:一、求直线的方程、判断直线的位置关系,二、求圆锥曲线的方程,解多种圆锥曲线的综合题、直线与圆锥曲线的综合题。

求直线的方程,关键要根据已知条件,合理选用点斜式、斜截式、两点式、截距式或一般式。

使用直线方程的特殊形式时,要特别注意经过原点的直线、竖线、水平线等特例,并要求最后结果用一般式表示。

求圆锥曲线的方程,关键要紧扣圆锥曲线的定义,灵活应用圆锥曲线的性质,求圆锥曲线的方程。

解多种圆锥曲线的综合题,关键要找到不同曲线之间的位置关系,再采用待定系数法求方程。

直线与圆锥曲线的综合题,常把直线方程代入圆锥曲线方程,得到关于x(或y)的一元二次方程,再用韦达定理求解。

【真题回访】1.设有直线l 1:3x+2y+1=0,l 2:x+y+1=0, l 3:3x-5y+6=0,则过l 1与l 2与的交点,且与l 3垂直的直线的一般式方程为 。

【解】5x+3y+1=02.若抛物线y 2=2px(p>0)过点M(4,4),则点M 到准线的距离d=(A)A) 5 B) 4 C) 3 D) 23.已知双曲线经过点(4,-3) ,且焦点在x 轴上,渐近线方程是y=±21,则该双曲线的方程是(A)A) x 2-4y 2=4 B) x 2-3y 2=7 C) x 2-4y 2=-4 D) x 2-3y 2=-74.圆x 2+y 2+2x+6y+9=0的圆心到直线3x-4y=4的距离为 1 。

【仿真题型】求直线的方程、判断直线的位置关系【例1】已知直线l 与点A(3,3),B(5,2)的距离相等,且过两直线3x-y-1=0和x+y-3=0的交点,求直线l 的方程. 【解】解方程组⎩⎨⎧=-+=--03013y x y x ,得交点(1,2). 设直线l 的方程为y-2=k(x-1),(1)当直线l ∥AB 时,k=k AB =-0.5,∴直践l 的方程为:x+2y-5=0(2)当直线l 与线段AB 相交时,AB 的中点为M(4,25),又M 在直线l 上,由直线方程的两点式,求得直线方程为:x-6y+11=0【例2】一光线经过点P(2,3),射到直线l:x+y+1=0上,反射后经过点Q(1,1),(1)求入射线所在的直线的方程;(2)求这条光线从P到Q的长度。

专题8 平面解析几何(解析版)

专题8 平面解析几何(解析版)

专题8 平面解析几何纵观近几年的高考试题,考查圆锥曲线的题目有小有大,其中小题以考查圆、椭圆、双曲线、抛物线的方程及几何性质为主,难度在中等或以上;大题则主要考查直线与椭圆、直线与抛物线的位置关系问题;命题的主要特点有:一是以过特殊点的直线与圆锥曲线相交为基础设计“连环题”,结合曲线的定义及几何性质,利用待定系数法先行确定曲线的标准方程,进一步研究弦长、图形面积、最值、取值范围等;二是以不同曲线(圆、椭圆、抛物线)的位置关系为基础设计“连环题”,结合曲线的定义及几何性质,利用待定系数法先行确定曲线的标准方程,进一步研究弦长、图形面积、最值、取值范围等;三是直线与圆锥曲线的位置关系问题,综合性较强,往往与向量(共线、垂直、数量积)结合,涉及方程组联立,根的判别式、根与系数的关系、弦长问题等.预测2021年将保持稳定,一大二小.其中客观题考查圆、椭圆、双曲线、抛物线问题,难度在中等或以下.主观题考查或直线与椭圆的位置关系、直线与抛物线的位置关系,相关各种综合问题应有充分准备.一、单选题1.(2020届山东省菏泽一中高三2月月考)已知点()2,4M 在抛物线C :22y px =(0p >)上,点M 到抛物线C 的焦点的距离是( ) A .4 B .3 C .2 D .1【答案】A 【解析】由点()2,4M 在抛物线22y px =上,可得164p =,解得4p =,即抛物线2:8C y x =,焦点坐标(2,0)F ,准线方程为2x =-. 所以,点M 到抛物线C 焦点的距离为:()224--=. 故选:A .A B .2 C .4D .【答案】C 【解析】圆22650x y y +-+=可化为22(3)4x y +-=.设221212,,,,(,3)44x x A x B x P t ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,则12,l l 的斜率分别为1212,22x xk k ==, 所以12,l l 的方程为()21111:24x x l y x x =-+,即112x y x y =-,()22222:24x x l y x x =-+,即222x y x y =-,由于12,l l 都过点(,3)P t -,所以11223232x t y x t y ⎧-=-⎪⎪⎨⎪-=-⎪⎩,即()()1122,,,A x y B x y 都在直线32xt y -=-上, 所以直线AB 的方程为32xt y -=-,恒过定点(0,3), 即直线AB 过圆心(0,3),则直线AB 截圆22650x y y +-+=所得弦长为4. 故选:C.3.(2020届山东省济宁市高三3月月考)过点(的直线将圆()22325x y -+=分成两段圆弧,当两段圆弧中的劣弧所对圆心角最小时,该直线的斜率为( ) A. BC.3-D.3【答案】D 【解析】点(为圆内定点,圆心到直线的距离越长,则劣弧所对的圆心角越大,∴只有当过点(的直线与过点(和圆心的直线垂直时,可以使两段圆弧中的劣弧所对的圆心角最小,过点()2,3和圆心()3,0的直线斜率为303k -==- ∴过点()2,3的直线斜率为133k -=故选:D4.(2020届山东省济宁市第一中学高三一轮检测)过点()1,2P 的直线与圆221x y +=相切,且与直线10ax y +-=垂直,则实数a 的值为( )A .0B .43-C .0或43D .43【答案】C【解析】当0a =时,直线10ax y +-=,即直线1y =,此时过点()1,2P 且与直线1y =垂直的直线为1x =,而1x =是与圆相交,不满足题意,所以0a =不成立,当0a ≠时,过点()1,2P 且与直线10ax y +-=垂直的直线斜率为1a ,可设该直线方程为()121y x a-=-,即210x ay a -+-=,再根据直线与圆相切,即圆心到直线距离为1可得,22111a a -=+,解得43a =.故本题正确答案为C. 5.(2020届山东省高考模拟)已知双曲线()222210,0x y a b a b -=>>的左、右焦点分别为12F F 、,圆222x y b +=与双曲线在第一象限内的交点为M ,若123MF MF =.则该双曲线的离心率为( )A .2B .3C .2D .3【答案】D 【解析】根据题意可画出以上图像,过M 点作12F F 垂线并交12F F 于点H ,因为123MF MF ,M 在双曲线上,所以根据双曲线性质可知,122MF MF a ,即2232MF MF a ,2MF a =,因为圆222x y b +=的半径为b ,OM 是圆222x y b +=的半径,所以OM b =, 因为OM b =,2MF a =,2OF c =,222+=a b c , 所以290OMF ,三角形2OMF 是直角三角形,因为2MHOF ,所以22OF MH OM MF ,ab cMH,即M 点纵坐标为ab c ,将M 点纵坐标带入圆的方程中可得22222a b c x b ,解得2b cx,2,b ab ccM, 将M 点坐标带入双曲线中可得422221b a a c c ,化简得4422b a a c ,222422c aa a c ,223c a =,3c ae,故选D 。

专题08 平面解析几何(理)(解析版)-临考2021年高考数学各类解答题分类强化总结提分训练

专题08 平面解析几何(理)(解析版)-临考2021年高考数学各类解答题分类强化总结提分训练

专题08:临考强化之平面解析几何(理)解答题专项提分训练(解析版)一、解答题1.已知M 过点)Q ,且与N :(2216x y +=内切,设M 的圆心M 的轨迹为曲线C . (1)求曲线C 的方程;(2)若x 轴上有两点(),0A t -,(),0B t (0t >),点P 在曲线C 上(不在x 轴上),直线PA ,PB 的斜率分别为1k ,2k ,直线PA ,PB 分别与直线4x =交于C ,D 两点.若12k k 是定值,求t 的值,并求出此时CD 的最小值.【答案】(1)2214x y +=;(2)2t =,CD 取最小值为【分析】(1)设M 的半径为R ,根据M 过点)Q,且与N 相切,得到4R MQMN R ⎧=⎪⎨=-⎪⎩,进而得到4MN MQ +=,再利用椭圆的定义求解; (2)设()00,P x y ,结合220014x y =-,计算 12k k ,由12k k 取定值时的t ,写出PA ,PB方程,分别与4x =联立求得,D C y y 求解. 【详解】(1)设M 的半径为R ,因为M 过点)Q,且与N 相切,所以4R MQ MN R ⎧=⎪⎨=-⎪⎩,即4MN MQ +=.因为4NQ <,所以点M 的轨迹是以N ,Q 为焦点的椭圆.设椭圆的方程为22221x y a b+=(0a b >>),则24a =,且c所以2a =,1b =.所以曲线C 的方程为2214x y +=.(2)设()00,P x y ,则220014x y =-,010y k x t =+,020y k x t =-,于是()202200122222220001444x y x k k x t x t x t --===---, 显然,只有24t =即2t =时,12k k 取定值14-, 此时PA 方程为()12y k x =+,PB 方程为()22y k x =-. 联立()124y k x x ⎧=+⎨=⎩及()224y k x x ⎧=-⎨=⎩,得16C y k =,22D y k =,由1214k k =-知1k 、2k 异号.所以1212126262212C D CD y y k k k k k k =-=-=+=当且仅当1262k k =-时,CD 取最小值为【点睛】方法点睛:求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 2.己知抛物线2:4C y x =的焦点为F ,直线2y x =-与抛物线C 交于A ,B 两点. (1)求FAB 的面积;(2)过抛物线C 上一点Р作圆()22:34M x y -+=的两条斜率都存在的切线,分别与抛物线C 交于异于点P 的两点D ,E .证明:直线DE 与圆M 相切. 【答案】(1)(2)见解析. 【分析】(1)将直线方程和抛物线联立,整理得关于x 的一元二次方程,设()11,A x y ,()22,B x y ,通过韦达定理和弦长公式求出AB 的值,再通过点到直线的距离公式求出F 点到AB 的距离,进而求出面积;(2)设P 为抛物线上的一点,则P 点坐标为2,4a a ⎛⎫⎪⎝⎭,设过P 点的圆的切线方程为()24a x m y a =-+,通过圆心到直线的距离等于半径可得关于m 的一元二次方程,进而求出D 、E 的坐标,再根据圆心到直线的距离等于半径,得证直线DE 与圆M 相切.(1)联立224y x y x=-⎧⎨=⎩,消去y 整理得:2840x x -+=, 6444480∆=-⨯=>,设()11,A x y ,()22,B x y , 则128x x +=,124x x =,12AB x ∴=-===由题得:()1,0F ,F 到直线AB的距离为d ==,11222FABSAB d ∴==⨯= (2)设P 为抛物线上的一点,设2,4a P a ⎛⎫⎪⎝⎭, 设过P 的圆的切线方程()24a x m y a =-+,则由相切知圆心()3,0M到切线距离2d ==即212830m m --=,设切线PD 解析式为:()214a x m y a =-+,切线PE 解析式为:()224a x m y a =-+,1m 、2m 为方程的两根,则1223m m +=,1214m m =-, 联立得:2416160y my m -+-=,解得:()()()21141,41D m m --,()()()22241,41E m m --,()()()1212:24110DE x m m y m m -+-+--=,化简得:3410x y ++=, 圆心到直线DE的距离2d ==,∴直线DE 与圆M 相切.【点睛】(1)解答直线与抛物线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系; (2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形;(3)强化有关直线与抛物线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.3.椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为12,,F F E 是椭圆C 上一点,且12122, 4.F F EF EF =+= (1)求椭圆C 的方程;(2)M ,N 是y 轴上的两个动点(点M 与点E 位于x 轴的两侧),190MF N MEN ∠=∠=,直线EM 交x 轴于点P ,求EP PM的值.【答案】(1)22143x y +=;(2)3. 【分析】(1)根据椭圆定义直接求解即可;(2)设出(0,)(0)M m m >,根据直角的性质求出N 点坐标、E 点的纵坐标,进而求出点P 坐标,最后利用两点间距离公式进行求解即可. 【详解】(1)因为12122,4F F EF EF =+=,所以22222,241,2,3,c a c a b a c ==⇒===-=∴椭圆方程为22143x y +=;(2)因为M ,N 是y 轴上的两个动点,所以不妨设(0,)(0)M m m >,(0,)N n ,因为点M 与点E 位于x 轴的两侧,所以设000(,)(0)E x y y <,所以2200143x y +=,由(1)知1c =,所以1(1,0)F -, 因为190MF N ∠=,所以1111111F M F N m n k k n m⋅=-⇒⋅=-⇒=-,因为90MEN ∠=,所以220000001111()10EM ENy m y m k k x y y m x x m---⋅=-⇒⋅=-⇒++--=--, 而2200143x y +=,所以20013()90y y m m +--=,解得03y m =-或03y m =,因为00y <,0m >,所以03y m =-, 因此04EM mk x =-,所以直线EM 的直线方程为: 04m y x m x =-+,令0y =,得04xx =,即0(,0)4x P ,3EP PM ===. 【点睛】关键点睛:根据直角得到N 点坐标、E 点的纵坐标是解题的关键.4.在平面直角坐标系xOy 中,P 是圆22:2150E x y x ++-=上的动点,已知()1,0F ,且线段PF 的垂直平分线交PE 于Q ,设Q 的轨迹为曲线C . (1)求C 的方程;(2)设直线l 与C 交于A ,B 两点,若31,2M ⎛⎫⎪⎝⎭,且ABM 内切圆的圆心在直线FM 上,则直线l 具备以下哪个性质?证明你的结论.①l 恒过定点,②l 的斜率恒为定值,③O 到l 的距离恒为定值.【答案】(1)22143x y +=;(2)答案见解析. 【分析】(1)先求出圆的圆心和半径,由于Q 在PF 的垂直平分线上,所以QF QP =,从而有4QE QF QE QP EP EF +=+==>,所以由椭圆的定义可知Q 的轨迹是以E ,F 为焦点,长轴长为4的椭圆,从而可求得C 的方程;(2)判断出直线的斜率存在,则设l 的方程为y kx m =+,然后将直线方程与椭圆方程联立,消去y ,再由根与系数的关系可得122843km x x k +=-+,212241243m x x k -⋅=+,由ABM 的内切圆圆心在直线FM 上,可得直线MA ,MB 关于直线FM 对称,则有直线MA ,MB 的斜率之和为0,即12123322011y y x x --+=--,化简结前面的式子可求得()2448230k m k m +--+=,从而可求出直线的斜率,【详解】圆E 的方程化为()22116x y ++=,的:所以圆心()1,0E -,半径4r =.因为Q 在PF 的垂直平分线上,所以QF QP =, 所以4QE QF QE QP EP +=+==. 又因为2EF =,则2QE QF +>,所以Q 的轨迹是以E ,F 为焦点,长轴长为4的椭圆, 由24a =,1c =,得223b a c =-=.所以C 的方程为22143x y +=.(2)直线l 满足性质②,证明如下: 若直线l 的斜率不存在,则//AB FM ,此时ABM 的内切圆圆心不在FM 上,不符合题意. 设l 的方程为y kx m =+.联立22,1,43y kxm x y =+⎧⎪⎨+=⎪⎩消y 得:()22143kx m x ++=, 整理得:()2224384120k x kmx m +++-=.设()11,A x y ,()22,B x y ,则11x ≠,21x ≠,且122843km x x k +=-+,212241243m x x k -⋅=+. 因为ABM 的内切圆圆心在直线FM 上,所以FM 平分AMB ∠,即直线MA ,MB 关于直线FM 对称. 又因为FM x ⊥轴,且直线MA ,MB 的斜率均存在, 所以直线MA ,MB 的斜率之和为0,即12123322011y y x x --+=--.化为()()()()121212331122011y x x y x x ⎛⎫⎛⎫--+-- ⎪ ⎪⎝⎭⎝⎭=--, 又由11y kx m =+,22y kx m =+,整理得()()()12121232322011kx x m k x x mx x ⎛⎫+--++- ⎪⎝⎭=--, 所以22241238232043243m km k m k m k k -⎛⎫⎛⎫⋅+---+-= ⎪⎪++⎝⎭⎝⎭, 整理得:()2448230k m k m +--+=.化为()()212230k k m -+-=.若2230k m +-=,则l 过点M ,此时A ,B ,M 共线,不符合题意. 所以210k -=,即12k=. 所以l 的斜率恒为定值12. 【点睛】关键点点睛:此题考查轨迹方程的求法,考查直线与椭圆的位置关系,解题的关键是由ABM 的内切圆圆心在直线FM 上,可得直线MA ,MB 关于直线FM 对称,进而得直线MA ,MB 的斜率之和为0,由此列方程可求出直线的斜率,考查计算能力5.已知椭圆()222:11x C y m m+=>的左右焦点分别为1F ,2F ,过右焦点2F 作直线l 交椭圆C 于()11,A x y ,()22,B x y ,其中10y >,20y <,12AF F △、12BF F △的重心分别为1G 、2G .(1)若1G 坐标为11,36⎛⎫ ⎪⎝⎭,求椭圆C 的方程;(2)设11BFG 和2ABG △的面积为1S 和2S ,且124533S S ≤≤,求实数m 的取值范围. 【答案】(1)22314x y +=;(2)321m <≤【分析】(1)根据重心的定义,求出点A 的坐标,再代入椭圆方程得出m ,进而得出椭圆C 的方程;(2)结合图象,将三角形面积进行拆分,然后利用面积关系即可得出实数m 的取值范围. 【详解】(1)连接OA ,由重心的性质可知13OA OG =设(,)A x y ,则11(,)3,36x y ⎛⎫= ⎪⎝⎭,即11,2A ⎛⎫ ⎪⎝⎭,故21114m +=,243m =椭圆C 的方程为22314x y +=. (2)设()1,0F c -,2,0F c ,则221m c =+11111111133BOF G OF G OB BOF AOF AOB S S S S S S S =++=++△△△△△△()()21121211122663ccy cy c y y y y =-++-=-,()2122133ABO S S c y y ==-△, 则112212245,33S y y S y y -⎡⎤=∈⎢⎥-⎣⎦,得1212,2y y ⎡⎤∈--⎢⎥⎣⎦, 设:l x ty c =+,联立椭圆方程222:1x C y m+=,得()222210t m y tcy ++-=,由韦达定理得12222tc y y t m -+=+,12221y y t m -=+ 则()2121222221122452222,y y y y t c t y m y y y --++⎡⎤+=-=∈--⎢⎥⎣⎦22224102t c t m ≤≤+,()22289m t m -≤对t 恒成立 故2890m -≤,3214m <≤.【点睛】关键点睛:解决问题二的关键在于将三角形的面积进行拆分得出1212,2y y ⎡⎤∈--⎢⎥⎣⎦,进而结合韦达定理以及不等式的恒成立问题求出实数m 的取值范围.6.已知椭圆C :22221x y a b+=()0a b >>的右顶点为B ,直线m :10x y --=过椭圆C 的右焦点F ,点B 到直线m的距离为2. (1)求椭圆C 的方程;(2)椭圆C 的左顶点为A ,M 是椭圆位于x 轴上方部分的一个动点,以点F 为圆心,过点M 的圆与x 轴的右交点为T ,过点B 作x 轴的垂线l 交直线AM 于点N ,过点F 作直线FEMT ⊥,交直线l 于点E .求BE EN的值.【答案】(1)22143x y +=;(2)1. 【分析】先求出点F 的坐标,得到c 的值,再利用点到直线的距离求出a ,进而求出b ,得到答案.(2)由题意得出点,,A B F 的坐标,设M()00,x y ,,先求出圆F 的半径FM,从而得出点T 的坐标,由直线l 和直线AM 的方程求出点N 的坐标,由条件FE MT ⊥,得出直线EF 的方程,得到点E 的坐标,从而可得出BE ,EN ,得出答案. 【详解】解:(1)将0y =代入直线m :10x y --=得1x =, ∴()1,0F ,即1c =, ∵(),0B a 到直线m2=,解得2a =, ∴2223b a c =-=,∴椭圆C 的方程为:22143x y +=.(2)由题意可知()2,0A -,()2,0B ,()1,0F ,设M 的坐标为()00,x y ,则00y >,∵点M 在椭圆C 上,∴22314x y ⎛⎫=- ⎪⎝⎭,∴2FM ==-,∵点M 在椭圆C 上,∴022x -≤≤,∴0202x -< , ∴022FM x =-,∵圆F 过点M 与点T , ∴022x FM FT ==-,∴点03,02T x ⎛⎫- ⎪⎝⎭,易求直线l 的方程为2x =,直线AM 的方程为()0022y y x x =++, 将N 2x =代入直线AM 的方程得:0N 042y y x =+, 故点N 的坐标为0042,2y x ⎛⎫⎪+⎝⎭, ∵()00,M x y ,03,02T x ⎛⎫- ⎪⎝⎭,∴()00000023232MTy y k x x x -==-⎛⎫-- ⎪⎝⎭, ∵EF MT ⊥,∴()00322EF x k y -=,∴直线EF 的方程为:()()003212x y x y -=-,将2E x =代入得:()00322E x y y -=,∴点()00322,2x E y -⎛⎫⎪⎝⎭又∵()2,0B ,∴()00322E x BE y y -==,()000032422E Nx y EN y y y x -=-=-+()()22000034822x y y x --=+()()()220000346422x x y x ---=+()()20003422x y x -=+()00323x y -=,∴()()00003221322x BE y x EN y -==-. 【点睛】关键点睛:本题考查求椭圆的方程,考查直线与椭圆的位置关系,解答本题的关键是设出点M 的坐标,由条件表示出()00322,2x E y -⎛⎫⎪⎝⎭,得出()00322Ex BE y y -==,求出E N EN y y =-()00323x y -=,属于中档题.7.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程为y =,右准线方程为x =(1)求双曲线C 的标准方程;(2)过点(0,1)P -的直线l 分别交双曲线C 的左、右两支于点,A B ,交双曲线C 的两条渐近线于点,D E (D 在y 轴左侧).①是否存在直线l ,使得OA OB ⊥?若存在,求出直线l 的方程,若不存在,说明理由;②记ODE 和OAB 的面积分别为12,S S ,求12S S 的取值范围.【答案】(1)2212y x -=(2)[3,1)【分析】(1)由双曲线的渐近线方程和准线方程,可得a ,b ,c 的方程组,解得a ,b ,可得双曲线的方程;(2)①可设直线l 的方程为1y kx =-,与双曲线的方程联立,运用判别式大于0和韦达定理,以及两直线垂直的条件,解方程,即可判断存在性;②联立渐近线方程和直线l 的方程,求得D ,E 的横坐标,可得||DE ,由弦长公式得到||AB ,再由三角形的面积公式得到12S S 关于k 的函数,然后求出其范围即可. 【详解】(1)双曲线2222:1(0,0)x y C a b a b -=>>的渐近线方程为b y x a=±,准线方程为2a x c=±,由题意可得b a=,2a c =,又222+=a b c ,解得1a =,b =c =则双曲线的方程为2212y x -=;(2)①由题意可知直线l 的斜率存在,可设直线l 的方程为1y kx =-, 与双曲线方程2222x y -=联立,可得22(2)230k x kx -+-=, 由△22412(2)0k k =+->,解得k < 则12222k x x k +=--,122302x x k =-<-,解得k <<如果存在直线l ,使得OA OB ⊥,则12120x x y y +=, 即为212121212(1)(1)(1)()1x x kx kx k x x k x x +--=+-++22232(1)()()1022kk k k k =+⋅--⋅-+=--,解得k ∈∅, 所以不存在直线l ,使得OA OB ⊥;②由1y kx y =-⎧⎪⎨=⎪⎩,可得D;由1y kx y =-⎧⎪⎨=⎪⎩,可得E,||DE =;||AB 由ODE 和OAB的高相等,可得12||||S DE S AB ===,由k <<23(1k -∈,3],所以12S S的取值范围是1). 【点睛】关键点点睛:三角形的面积比可转化为||||DE AB ,利用直线与双曲线联立,由韦达定理、弦长公式求出||||DE AB ,转化为求关于k 的函数,是解题的关键,属于中档题. 8.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,过点1F 的直线l交椭圆于A ,B 两点,交y 轴于点M ,若122FF =,2ABF 的周长为8. (1)求椭圆C 的标准方程;(2)1MA F A λ=,1MB F B μ=,试分析λμ+是否为定值,若是,求出这个定值,否则,说明理由.【答案】(1)22143x y +=;(2)λμ+为定值83. 【分析】(1)因为2ABF 的周长为8,求得2a =,进而求得2b 的值,得到椭圆的标准方程; (2)设直线l 的方程为(1)y k x =+,联立方程组,根据根与系数的关系和题设条件,求得111x x λ=+和221x x μ=+,进而求得λμ+为定值.【详解】(1)因为2ABF 的周长为8,所以48a =,解得2a =,由122FF =,得2==,所以23b =,因此椭圆C 的标准方程为22143x y +=.(2)由题可得直线l 的斜率存在,设直线l 的方程为(1)y k x =+,由22(1)143y k x x y =+⎧⎪⎨+=⎪⎩,整理得()22223484120k x k x k +++-=, 设()11,A x y ,()22,B x y ,则212221228,34412.34k x x kk x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩设(0,)M k ,又1(1,0)F -,所以()11,MA x y k =-,()1111,F A x y =+,则111x x λ=+. 同理可得()22,MB x y k =-,()1221,F B x y =+,则221x x μ=+. 所以()()()()12211212121212121211211111x x x x x x x x x x x x x x x x x x λμ++++++=+==+++++++22222222222224128282483434412841283413434k k k k k k k k k k kk k -⨯---++==---++-+++24893-==-, 所以λμ+为定值83. 【点睛】解答圆锥曲线的定点、定值问题的策略:1、参数法:参数解决定点问题的思路:①引进动点的坐标或动直线中的参数表示变化量,即确定题目中核心变量(通常为变量k );②利用条件找到k 过定点的曲线0(),F x y =之间的关系,得到关于k 与,x y 的等式,再研究变化量与参数何时没有关系,得出定点的坐标;2、由特殊到一般发:由特殊到一般法求解定点问题时,常根据动点或动直线的特殊情况探索出定点,再证明该定点与变量无关.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题八平面解析几何一、选择题1.(2020·浙江高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y =234x -图像上的点,则|OP |=()A .222B .4105C 7D .10【答案】D 【解析】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413bc a=-=-=,即双曲线的右支方程为()22103y x x -=>,而点P 还在函数234y x =-由()22210334y x x y x ⎧⎪⎨->-==⎪⎩,解得132332x y ⎧=⎪⎪⎨⎪=⎪⎩,即13271044OP =+=故选:D.2.(2019年浙江卷)渐近线方程为0x y ±=的双曲线的离心率是()A.22B.1C.2D.2【答案】C 【解析】因为双曲线的渐近线为0x y ±=,所以==1a b ,则222c a b =+=,双曲线的离心率2ce a==3.(2018年浙江卷)双曲线的焦点坐标是()A .(−,0),(,0)B .(−2,0),(2,0)C .(0,−),(0,)D .(0,−2),(0,2)【解析】因为双曲线方程为,所以焦点坐标可设为,因为,所以焦点坐标为,选B.4.(2018年浙江卷)已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2−4e·b+3=0,则|a−b|的最小值是()A.B.C.2D.【答案】A【解析】设,则由得,由得因此的最小值为圆心到直线的距离减去半径1,为选A.5.(2017年浙江卷)椭圆的离心率为()A.B.C.D.【答案】B【解析】椭圆中.离心率,故选B.6.(2016年浙江理)已知椭圆C1:22xm+y2=1(m>1)与双曲线C2:22xn–y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则()A.m>n且e1e2>1B.m>n且e1e2<1C.m<n且e1e2>1D.m<n且e1e2<1【解析】由题意知2211m n -=+,即222m n =+,由于m >1,n >0,可得m >n ,又22212222222111111()(1)(1)(1)(1)2m n e e m n m n n n -+=⋅=-+=-++=42422112n n n n++>+,故121e e >.故选A .7.(2015年浙江文)如图,斜线段与平面所成的角为,为斜足,平面上的动点满足,则点的轨迹是A .直线B .抛物线C .椭圆D .双曲线的一支【答案】C【解析】由题可知,当点运动时,在空间中,满足条件的绕旋转形成一个圆锥,用一个与圆锥高成角的平面截圆锥,所得图形为椭圆.故选C.8.(2015年浙江理)如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是()A.11BF AF -- B.2211BF AF -- C.11BF AF ++ D.2211BF AF ++【答案】A.【解析】11--===∆∆AF BF x x AC BC S S A B ACF BCF ,故选A.二、填空题9.(2020·浙江高考真题)设直线:(0)l y kx b k =+>,圆221:1C x y +=,222:(4)1C x y -+=,若直线l 与1C ,2C 都相切,则k =_______;b =______.【答案】333-【解析】由题意,12,C C 1=1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得,33k b ==-.故答案为:32333-10.(2019年浙江卷)已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______.【解析】方法1:由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y 可得22(2)16x y -+=,联立方程22195x y +=可解得321,22x x =-=(舍),点P 在椭圆上且在x 轴的上方,求得315,22P ⎛⎫-⎪ ⎪⎝⎭,所以1521512PF k ==方法2:焦半径公式应用解析1:由题意可知|2OF |=|OM |=c =,由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-求得315,22P ⎛- ⎝⎭,所以1521512PF k ==.11.(2019年浙江卷)已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆相切于点(2,1)A --,则m =_____,r =______.【答案】(1).2m =-(2).5r =【解析】可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入得2m =-,此时||415r AC ==+=12.(2018年浙江卷)已知点P (0,1),椭圆+y 2=m (m >1)上两点A ,B 满足=2,则当m =___________时,点B 横坐标的绝对值最大.【答案】5【解析】设,由得因为A ,B 在椭圆上,所以,与对应相减得,当且仅当时取最大值.13.(2016年浙江文)已知a ∈R ,方程222(2)4850a x a y x y a +++++=表示圆,则圆心坐标是_____,半径是______.【答案】(2,4)--,5【解析】由题意,知22a a =+,12a =-或,当1a =-时,方程为224850x y x y +++-=,即22(2)(4)25x y +++=,圆心为(2,4)--,半径为5,当2a =时,方程为224448100x y x y ++++=,2215((1)24x y +++=-不表示圆.14.(2016年浙江理)若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是_______.【答案】9【解析】1109M M x x +=⇒=.15.(2016年浙江文)设双曲线x 2–23y =1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且 F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是_______.【答案】()【解析】由已知得1,2a b c ===,则2ce a==,设(),P x y 是双曲线上任一点,由对称性不妨设P 在双曲线的右支上,则12x <<,121PF x =+,221PF x =-,12F PF ∠为锐角,则2221212PF PF F F +>,即()()22221214x x ++->,解得72x >,所以722x <<,则()124PF PF x +=∈.16.(2015年浙江文)椭圆()的右焦点关于直线的对称点在椭圆上,则椭圆的离心率是.【答案】【解析】设关于直线的对称点为,则有,解得,所以在椭圆上,即有,解得,所以离心率.17.(2015年浙江理)双曲线2212x y -=的焦距是,渐近线方程是.【答案】32,x y 22±=.【解析】由题意得:2=a ,1=b ,31222=+=+=b ac ,∴焦距为322=c ,渐近线方程为x x a b y 22±=±=.三、解答题18.(2020·浙江高考真题)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(Ⅰ)若116=p ,求抛物线2C 的焦点坐标;(Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.【答案】(Ⅰ)1(,0)32;(Ⅱ)1040【解析】(Ⅰ)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(Ⅱ)设()()()112200,,,,,,:A x y B x y M x y I x y m λ=+,由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩,1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++,由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++,又22222()220y pxy p y m y p y pm x y m λλλ⎧=⇒=+⇒--=⎨=+⎩,012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222mx p m λλ∴=+-+.由2222142, 22x y x px y px ⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-+222221822228162p p p m p p p λλλλλ+⇒-+=+⋅=++≥+,18p ≥,21160p ≤,1040p ≤,所以,p 的最大值为1040,此时2105(,55A .法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=,所以点M 的纵坐标为22M mty m =-+.将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=,所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m x m+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以当105m t ==时,p 取到最大值为1040.19.(2019年浙江卷)如图,已知点(10)F ,为抛物线22(0)y px p =>,点F 为焦点,过点F 的直线交抛物线于,A B 两点,点C 在抛物线上,使得V ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 右侧.记,AFG CQG △△的面积为12,S S.(1)求p 的值及抛物线的标准方程;(2)求12S S 的最小值及此时点G 的坐标.【答案】(1)1,1x =-;(2)312+,()2,0G .【解析】(1)由题意可得12p=,则2,24p p ==,抛物线方程为24y x =,准线方程为1x =-.(2)设()()1122,,,A x y B x y ,设直线AB 的方程为()1,0y k x k =->,与抛物线方程24y x =联立可得:()2222240k x k x k -++=,故:2222242,1kx x x x +=+=,()12121242,4y y k x x y y k+=+-==-⨯=-,设点C 的坐标为()33,C x y ,由重心坐标公式可得:1233G x x x x ++=321423x k ⎛⎫++ ⎝=⎪⎭,1233G y y y y ++=3143y k =⎛⎫+ ⎪⎝⎭,令0G y =可得:34y k =-,则233244y x k==.即222144123382G k x k k ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝=⎭=,由斜率公式可得:131322311313444AC y y y y k y y x x y y --===-+-,直线AC 的方程为:()33134y y x x y y -=-+,令0y =可得:()()231331331334444Q y y y y y y y y y x x -+-+=+=+=-,故()11112218121323118223G F y S x x y y k k ⎡⎤⎛⎫⎛⎫+-⨯=⨯- ⎪=⨯-⨯ ⎪⎢⎥⎝⎭⎝=⨯⎭⎣⎦,且()()32213311822423Q G y y y S x x y k ⎛⎫+ ⎪⎝⎭⎡⎤=⨯-⨯-=---⎢⎥⎣⎦,由于34y k=-,代入上式可得:12222833y S k k k ⎛⎫=-- ⎪⎝⎭,由12124,4y y y y k +==-可得1144y y k -=,则12144y k y =-,则()()()2211122121112281233222284433y y S y S y y k k k y k -==⎛⎫-+--⎛⎫⨯- ⎭⎪⎝⎭⎪⎝()212142488168y y =--++-3212≥-+.当且仅当21214888y y -=-,即218y =+1y =.此时12144y k y ==-,281223G x k ⎛⎫+= ⎪⎝⎭=,则点G 的坐标为()2,0G .20.(2018年浙江卷)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C上.(Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+=1(x<0)上的动点,求△PAB 面积的取值范围.【答案】(Ⅰ)见解析.(Ⅱ).【解析】(Ⅰ)设,,.因为,的中点在抛物线上,所以,为方程即的两个不同的实数根.所以.因此,垂直于轴.(Ⅱ)由(Ⅰ)可知所以,.因此,的面积.因为,所以.因此,面积的取值范围是.21.(2017年浙江卷)如图,已知抛物线.点A,抛物线上的点P(x,y),过点B作直线AP的垂线,垂足为Q(I)求直线AP斜率的取值范围;(II)求的最大值【答案】(I)(-1,1);(II).【解析】(Ⅰ)设直线AP的斜率为k,,因为,所以直线AP斜率的取值范围是.(Ⅱ)联立直线AP与BQ的方程解得点Q的横坐标是.因为|PA|==,|PQ|=,所以.令,因为,所以f(k)在区间上单调递增,上单调递减,因此当k=时,取得最大值.22.(2016年浙江文)如图,设抛物线的焦点为F,抛物线上的点A到y轴的距离等于|AF|–1.(Ⅰ)求p的值;(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M.求M的横坐标的取值范围.【答案】(Ⅰ)p=2;(Ⅱ).【解析】(Ⅰ)由题意可得,抛物线上点A到焦点F的距离等于点A到直线x=–1的距离,由抛物线的定义得,即p=2.(Ⅱ)由(Ⅰ)得,抛物线的方程为,可设.因为AF不垂直于y轴,可设直线AF:x=sy+1,,由消去x得,故,所以,.又直线AB的斜率为,故直线FN的斜率为.从而得直线FN:,直线BN:.所以.设M(m,0),由A,M,N三点共线得,于是.所以m<0或m>2.经检验,m<0或m>2满足题意.综上,点M的横坐标的取值范围是.23.(2016年浙江理)如图,设椭圆2221x ya+=(a>1).(Ⅰ)求直线y=kx+1被椭圆截得的线段长(用a 、k 表示);(Ⅱ)若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.【答案】(Ⅰ)2222211a k k a k ++(Ⅱ)202e <≤.【解析】(Ⅰ)设直线1y kx =+被椭圆截得的线段为AP ,由22211y kx x y a =+⎧⎪⎨+=⎪⎩得()2222120a k x a kx ++=,故10x =,222221a kx a k=-+.因此22212222111a k AP k x k a k=+-=++.(Ⅱ)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足AP AQ =.记直线AP ,AQ 的斜率分别为1k ,2k ,且1k ,20k >,12k k ≠.由(Ⅰ)知,2211221211a k k AP +=2222222211a k k AQ +=,22221122222212212111a k k a k k a ka k++=所以()()22222222121212120k k k k a a k k ⎡⎤-+++-=⎣⎦.由于12k k ≠,1k ,20k >得()2222221212120k k a a k k+++-=,因此22221211(1)(1)1(2)a a k k ++=+-,①因为①式关于1k ,2k 的方程有解的充要条件是221(2)1a a +->,所以a >.因此,任意以点()0,1A 为圆心的圆与椭圆至多有3个公共点的充要条件为1a <≤,由c e a a==得,所求离心率的取值范围为202e <≤.24.(2015年浙江文)如图,已知抛物线211C 4y x =:,圆()222C 11x y +-=:,过点P(t,0)(t>0)作不过原点O 的直线PA ,PB 分别与抛物线1C 和圆2C 相切,A ,B 为切点.(1)求点A ,B 的坐标;(2)求PAB ∆的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则该直线与抛物线相切,称该公共点为切点.【答案】(1)()2222222,,,11t t A t t B t t ⎛⎫ ⎪++⎝⎭;(2)32t 【解析】(1)由题意可知,直线PA 的斜率存在,故可设直线PA 的方程为()y k x t =-.所以()2{14y k x t y x=-=消去y ,整理得:2440x kx kt -+=.因为直线PA 与抛物线相切,所以216160k kt ∆=-=,解得k t =.所以2x t =,即点()22,A t t.设圆2C 的圆心为()0,1D ,点B 的坐标为()00,x y ,由题意知,点B ,O 关于直线D P 对称,故有00001{ 220y x t x t y =-+-=,解得2002222,11t t x y t t ==++.即点22222,11t t B t t ⎛⎫ ⎪++⎝⎭.(2)由(1)知,,直线PA 的方程为20tx y t --=,所以点B 到直线PA的距离为2d =所以PAB ∆的面积为3122t S AP d =⋅=.25.(2015年浙江理)已知椭圆2212x y +=上两个不同的点A ,B 关于直线12y mx =+对称.(1)求实数m 的取值范围;(2)求AOB ∆面积的最大值(O 为坐标原点).【答案】(1)3m <-或3m >;(2)2.【解析】(1)由题意知0m ≠,可设直线AB 的方程为1y x b m =-+,由22121x y y x bm ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222112()102b x x b m m +-+-=,∵直线1y x b m =-+与椭圆2212x y +=有两个不同的交点,∴224220b m ∆=-++>,①,将AB 中点2222(,)22mb m bM m m ++代入直线方程12y mx =+解得2222m b m +=-,②。

相关文档
最新文档