专题8 平面解析几何(含答案解析)
平面解析几何(解答题专题)三年高考(2017-2019)理数真题(原卷版)

专题08 平面解析几何(解答题)1.【2019年高考全国Ⅰ卷理数】已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB u u u r u u u r,求|AB |.2.【2019年高考全国Ⅱ卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.3.【2019年高考全国Ⅲ卷理数】已知曲线C:y=22x,D为直线y=12上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点:(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.4.【2019年高考北京卷理数】已知抛物线C:x2=−2py经过点(2,−1).(1)求抛物线C的方程及其准线方程;(2)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=−1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.5.【2019年高考天津卷理数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为5. (1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.6.【2019年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.7.【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S . (1)求p 的值及抛物线的准线方程; (2)求12S S 的最小值及此时点G 的坐标.8.【2017年高考全国III 卷理数】已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点()4,2P -,求直线l 与圆M 的方程.9.【2017年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x yE a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.(注:椭圆22221(0)x y a b a b +=>>的准线方程:2a x c=±)10.【2017年高考浙江卷】如图,已知抛物线2x y =,点A 11()24,-,39()24,B ,抛物线上的点13(,)()22P x y x -<<.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求||||PA PQ ⋅的最大值.11.【2018年高考全国Ⅱ卷理数】设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.12.【2018年高考北京卷理数】已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO λ=u u u u r u u u r ,QN QO μ=u u u r u u u r ,求证:11λμ+为定值.13.【2018年高考全国Ⅰ卷理数】设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.14.【2018年高考全国Ⅲ卷理数】已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r.证明:FA u u u r ,FP u u u r ,FB u u u r 成等差数列,并求该数列的公差.15.【2018年高考江苏卷】如图,在平面直角坐标系xOy中,椭圆C过点1 (3,)2,焦点12(3,0),(3,0)F F,圆O的直径为12F F.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于,A B两点.若OAB△的面积为26,求直线l的方程.16.【2018年高考浙江卷】如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足P A,PB的中点均在C上.P MBAOyx(1)设AB中点为M,证明:PM垂直于y轴;(2)若P是半椭圆x2+24y=1(x<0)上的动点,求△PAB面积的取值范围.17.【2018年高考天津卷理数】设椭圆22221x y a b+=(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的离心率为3A 的坐标为(,0)b ,且FB AB ⋅= (1)求椭圆的方程;(2)设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若4AQ AOQ PQ=∠(O 为原点),求k 的值.18.【2017年高考全国I 理数】已知椭圆C :22221()0x y a ba b +=>>,四点P 1(1,1),P 2(0,1),P 3(–1,),P 4(1C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.19.【2017年高考全国II 理数】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足NP =u u u ru u u r.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u r u u u r.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .20.【2017年高考北京卷理数】已知抛物线C :y 2=2px 过点P (1,1).过点(0,12)作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点. (1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.21.【2017年高考天津卷理数】设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (1)求椭圆的方程和抛物线的方程;(2)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为6,求直线AP 的方程.22.【2017年高考山东卷理数】在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b +=>>的离心率为22,焦距为2.(1)求椭圆E 的方程;(2)如图,动直线13:l y k x =-交椭圆E 于A ,B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且1224k k =,M 是线段OC 延长线上一点,且|:||2:3MC AB =,M e 的半径为MC ,,OS OT 是M e 的两条切线,切点分别为,S T ,求SOT ∠的最大值,并求取得最大值时直线l 的斜率.。
专题08 平面解析几何(解析版)

专题8 平面解析几何纵观近几年的高考试题,考查圆锥曲线的题目有小有大,其中小题以考查圆、椭圆、双曲线、抛物线的方程及几何性质为主,难度在中等或以上;大题则主要考查直线与椭圆、直线与抛物线的位置关系问题;命题的主要特点有:一是以过特殊点的直线与圆锥曲线相交为基础设计“连环题”,结合曲线的定义及几何性质,利用待定系数法先行确定曲线的标准方程,进一步研究弦长、图形面积、最值、取值范围等;二是以不同曲线(圆、椭圆、抛物线)的位置关系为基础设计“连环题”,结合曲线的定义及几何性质,利用待定系数法先行确定曲线的标准方程,进一步研究弦长、图形面积、最值、取值范围等;三是直线与圆锥曲线的位置关系问题,综合性较强,往往与向量(共线、垂直、数量积)结合,涉及方程组联立,根的判别式、根与系数的关系、弦长问题等.预测2020年将保持稳定,一大二小.其中客观题考查圆、椭圆、双曲线、抛物线问题,难度在中等或以下.主观题考查或直线与椭圆的位置关系、直线与抛物线的位置关系,相关各种综合问题应有充分准备.一、单选题1.(2020届山东省烟台市高三上期末)若双曲线()222210,0x y a b a b-=>>,则其渐近线方程为( ) A .230x y ±= B .320x y ±= C .20x y ±= D .230x y ±=【答案】C 【解析】由题,离心率c e a ===解得12b a =, 因为焦点在x 轴上,则渐近线方程为12y x =±,即20x y ±= 故选:C2.(2020届山东省枣庄、滕州市高三上期末)已知直线1:0l kx y +=()k R ∈与直线2:220l x ky k -+-=相交于点A ,点B 是圆22(2)(3)2x y +++=上的动点,则||AB 的最大值为( )A.B.C.5+D.3+【答案】C 【解析】 由0220kx y x ky k +=⎧⎨-+-=⎩,消去参数k 得22(1(1)2x y -+-=), 所以A 在以(1,1)C为半径的圆上,又点B 是圆22(2)(3)2x y +++=上的动点,此圆圆心为(2,3)D --,5CD ==,∴AB的最大值为5CD =+ 故选:C.3.(2020届山东省九校高三上学期联考)已知点A 在圆224x y +=上,且712xOA π∠=,则点A 的横坐标为( ) A.2 B.4 CD【答案】A 【解析】由题设点A 00(,)x y ,点A 在圆上,22004x y +=,712xOA π∠=,7coscos()cos cos sin sin 124343434πππππππ=+=-=7cos 122x xOA π∠==,0x =.故选:A4.(2020届山东省泰安市高三上期末)已知圆22:10210C x y y +-+=与双曲线22221(0,0)x y a b a b-=>>的渐近线相切,则该双曲线的离心率是( ) AB .53C .52D【答案】C 【解析】由双曲线22221(0,0)x y a b a b -=>>,可得其一条渐近线的方程为b y x a=,即0bx ay -=,又由圆22:10210C x y y +-+=,可得圆心为(0,5)C ,半径2r =,则圆心到直线的距离为5a d c ==,则52a c =,可得52c e a ==, 故选C.5.(2020届山东省九校高三上学期联考)已知直线1l ,2l 为双曲线M :()222210,0x y a b a b-=>>的两条渐近线,若1l ,2l 与圆N :()2221x y -+=相切,双曲线M 离心率的值为( )ABCD.3【答案】B 【解析】设渐近线方程b y x a =±,即0b x y a±=,与圆N :()2221x y -+=相切,圆心到直线的距离1d ==,22222222()()1,3,3()b b b a c a a a a =+=-=,所以222434,,1,33c a e e e ==>=故选:B6.(2020届山东省德州市高三上期末)双曲线22221x y a b-=(0a >,0b >)的右焦点为()122,0F ,点A的坐标为()0,1,点P 为双曲线左支上的动点,且1APF ∆周长的最小值为8,则双曲线的离心率为( ) A .2 B .3C .2D .22【答案】D 【解析】 如下图所示:设该双曲线的左焦点为点F ,由双曲线的定义可得12PF PF a =+,所以,1APF ∆的周长为11123262AP AF PF AF AP PF a AF a a ++=+++≥++=+, 当且仅当A 、P 、F 三点共线时,1APF ∆的周长取得最小值,即628a +=,解得1a =.因此,该双曲线的离心率为222e a==故选:D.7.(2020届山东省济宁市高三上期末)已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若点2F 关于双曲线渐近线的对称点A 满足11F AO AOF ∠=∠(O 为坐标原点),则双曲线的渐近线方程为( ) A .2y x =± B .3y x = C .2y x =±D .y x =±【答案】B 【解析】如图所示:由对称性可得:M 为2AF 的中点,且2AF OM ⊥, 所以12F A AF ⊥,因为11F AO AOF ∠=∠,所以11AF F O c ==,故而由几何性质可得160AFO ∠=o ,即260MOF ∠=o , 故渐近线方程为3y x =, 故选B.8.(2020·山东省淄博实验中学高三上期末)抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线24y x =的焦点为F ,一条平行于x 轴的光线从点()3,1M 射出,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则ABM ∆的周长为( ) A .712612+B .910+C .832612D .926+【答案】D 【解析】抛物线方程中:令1y =可得14x =,即1,14A ⎛⎫ ⎪⎝⎭, 结合抛物线的光学性质,AB 经过焦点F ,设执行AB 的方程为()1y k x =-, 与抛物线方程联立可得:()2222220k x k x k -++=, 据此可得:11,4A B B Ax x x x =∴==, 且:254A B AB x x p =++=,将4x =代入24y x =可得4y =±,故()4,4B -,故()()22434126MB =-+--=,故△ABM 的周长为12532692644MA AB BM ⎛⎫++=-++=+ ⎪⎝⎭, 本题选择D 选项.9.(2020届山东省滨州市高三上期末)已知抛物线24y x =的焦点为F ,准线为l ,P 为该抛物线上一点,PA l ⊥,A 为垂足.若直线AF 的斜率为3-,则PAF △的面积为( )A .23B .43C .8D .83【答案】B 【解析】由题意,抛物线24y x =的焦点为(1,0)F ,设抛物线24y x =的准线与x 轴交点为D ,则2DF =,又直线AF 的斜率为3-,所以60AFD ∠=o ,因此24AF DF ==,60AFP ∠=o ; 由抛物线的定义可得:PA PF =,所以PAF △是边长为4的等边三角形, 所以PAF △的面积为144sin 60432⨯⨯⨯=o . 故选:B.10.(2020届山东省潍坊市高三上期末)已知点P 为双曲线()2222:10,0x y C a b a b-=>>右支上一点,12,F F 分别为C 的左,右焦点,直线1PF 与C 的一条渐近线垂直,垂足为H ,若114PF HF =,则该双曲线的离心率为( )A B C .53D .73【答案】C 【解析】取1PF 的中点M ,连接2MF ,由条件可知1111142HF PF MF ==, Q O 是12F F 的中点,2//OH MF ∴又1OH PF ⊥Q ,21MF PF ∴⊥1222F F PF c ∴==,根据双曲线的定义可知122PF a c =+,12a cHF +∴=, 直线1PF 的方程是:()ay x c b=+ ,即0ax by ac -+= ,原点到直线的距离OH a ==,1OHF ∴∆中,2222a c a c +⎛⎫+= ⎪⎝⎭,整理为:223250c ac a --= , 即23250e e --= , 解得:53e = ,或1e =-(舍) 故选:C二、多选题11.(2020届山东省德州市高三上期末)已知点A 是直线:20l x y +-=上一定点,点P 、Q 是圆221x y +=上的动点,若PAQ ∠的最大值为90o ,则点A 的坐标可以是( )A .()0,2 B .()1,21-C .()2,0D .()21,1-【答案】AC 【解析】 如下图所示:原点到直线l 的距离为222111d ==+,则直线l 与圆221x y +=相切,由图可知,当AP 、AQ 均为圆221x y +=的切线时,PAQ ∠取得最大值,连接OP 、OQ ,由于PAQ ∠的最大值为90o ,且90APO AQO ∠=∠=o,1OP OQ ==,则四边形APOQ 为正方形,所以22OA OP ==,由两点间的距离公式得()2222OA t t=+-=,整理得22220t t -=,解得0t =或2,因此,点A 的坐标为()0,2或()2,0.故选:AC.12.(2020届山东省德州市高三上期末)已知抛物线2:2C y px =()0p >的焦点为F ,直线的斜率为3且经过点F ,直线l 与抛物线C 交于点A 、B 两点(点A 在第一象限),与抛物线的准线交于点D ,若8AF =,则以下结论正确的是( ) A .4p = B .DF FA =u u u r u u u rC .2BD BF = D .4BF =【答案】ABC 【解析】 如下图所示:分别过点A 、B 作抛物线C 的准线m 的垂线,垂足分别为点E 、M .抛物线C 的准线m 交x 轴于点P ,则PF p =,由于直线l 360o ,//AE x Q 轴,60EAF ∴∠=o ,由抛物线的定义可知,AE AF =,则AEF ∆为等边三角形,60EFP AEF ∴∠=∠=o ,则30PEF ∠=o ,228AF EF PF p ∴====,得4p =,A 选项正确;2AE EF PF ==Q ,又//PF AE ,F ∴为AD 的中点,则DF FA =u u u r u u u r,B 选项正确;60DAE ∴∠=o ,30ADE ∴∠=o ,22BD BM BF ∴==(抛物线定义),C 选项正确; 2BD BF =Q ,118333BF DF AF ∴===,D 选项错误. 故选:ABC.13.(2020届山东省滨州市高三上期末)已知双曲线C :22221(0,0)x y a b a b -=>>的左、右焦点分别为1(5,0)F -,2(5,0)F ,则能使双曲线C 的方程为221169x y -=的是( )A .离心率为54B .双曲线过点95,4⎛⎫ ⎪⎝⎭C .渐近线方程为340±=x yD .实轴长为4【答案】ABC 【解析】由题意,可得:焦点在x 轴上,且5c =;A 选项,若离心率为54,则4a =,所以2229b c a =-=,此时双曲线的方程为:221169x y -=,故A 正确;B 选项,若双曲线过点95,4⎛⎫ ⎪⎝⎭,则22222812516125a b a b c ⎧⎪⎪-=⎨⎪+==⎪⎩,解得:22169a b ⎧=⎨=⎩;此时双曲线的方程为:221169x y -=,故B 正确;C 选项,若双曲线的渐近线方程为340±=x y ,可设双曲线的方程为:22(0)169x y m m -=>,所以216925c m m =+=,解得:1m =,所以此时双曲线的方程为:221169x y -=,故C 正确; D 选项,若实轴长为4,则2a =,所以22221b c a =-=,此时双曲线的方程为:224121x y -=,故D 错误;故选:ABC.14.(2020届山东省潍坊市高三上期末)把方程1169x x y y+=-表示的曲线作为函数()y f x =的图象,则下列结论正确的有( )A .()y f x =的图象不经过第一象限B .()f x 在R 上单调递增C .()y f x =的图象上的点到坐标原点的距离的最小值为3D .函数()()43g x f x x =+不存在零点 【答案】ACD 【解析】当0,0x y >>,方程是221169x y +=-不表示任何曲线,故A 正确;当0,0x y ≥≤ ,方程是221169x y -=-,即221916y x -= ,当0,0x y ≤≥ ,方程是221169x y -+=- ,即221169x y -=,当0,0x y ≤≤ ,方程是221169x y --=-,即221169x y+= ,如图画出图象由图判断函数在R 上单调递减,故B 不正确;由图判断()y f x =图象上的点到原点距离的最小值点应在0,0x y ≤≤的图象上,即满足221169x y += ,设图象上的点(),P x y2222279191616x PO x y x x ⎛⎫=+=+-=+ ⎪⎝⎭当0x =时取得最小值3,故C 正确;当()430f x x += ,即()34f x x =-, 函数()()43g x f x x =+的零点,就是函数()y f x = 和34y x =-的交点, 而34y x =-是曲线221916y x -=,0,0x y ≥≤和221169x y -=0,0x y ≤≥的渐近线,所以没有交点,由图象可知34y x =-和221169x y +=,0,0x y ≤≤没有交点,所以函数()()43g x f x x =+不存在零点,故D 正确. 故选:ACD15.(2020届山东省日照市高三上期末联考)过抛物线24y x =的焦点F 作直线交抛物线于A ,B 两点,M为线段AB 的中点,则( ) A .以线段AB 为直径的圆与直线32x =-相离 B .以线段BM 为直径的圆与y 轴相切 C .当2AF FB =u u u r u u u r时,92AB = D .AB 的最小值为4【答案】ACD 【解析】对于选项A ,点M 到准线1x =-的距离为()1122AF BF AB +=,于是以线段AB 为直径的圆与直线1x =-一定相切,进而与直线32x =-一定相离:对于选项B ,显然AB 中点的横坐标与12BM 不一定相等,因此命题错误.对于选项C ,D ,设()11,A x y ,()22,B x y ,直线AB 方程为1x my =+,联立直线与抛物线方程可得2440y my --=,124y y =-,121=x x ,若设()24,4A a a ,则211,4B aa ⎛⎫- ⎪⎝⎭,于是21221424AB x x p a a=++=++,AB 最小值为4;当2AF FB =u u u r u u u r 可得122y y =-, 142a a ⎛⎫=-- ⎪⎝⎭,所212a =,92AB =.故选:ACD.16.(2020届山东省枣庄、滕州市高三上期末)在平面直角坐标系xOy 中,抛物线2:2C y px =(0)p >的焦点为F ,准线为l.设l 与x 轴的交点为K ,P 为C 上异于O 的任意一点,P 在l 上的射影为E ,EPF ∠的外角平分线交x 轴于点Q ,过Q 作QN PE ⊥交EP 的延长线于N ,作QM PF ⊥交线段PF 于点M ,则( )A .||||PE PF =B .||||PF QF =C .||||PN MF =D .||||PN KF =【答案】ABD 【解析】由抛物线的定义,PE PF =,A 正确;∵//PN QF ,PQ 是FPN ∠的平分线,∴FQP NPQ FPQ ∠=∠=,∴||||PF QF =,B 正确; 若||||PN MF =,由PQ 是外角平分线,QN PE ⊥,QM PF ⊥得QM QN =,从而有PM PN =,于是有PM FM =,这样就有QP QF =,PFQ ∆为等边三角形,60FPQ ∠=︒,也即有60FPE ∠=︒,这只是在特殊位置才有可能,因此C 错误;连接EF ,由A 、B 知PE QF =,又//PE QF ,EPQF 是平行四边形,∴EF PQ =,显然EK QN =,∴KF PN =,D 正确.17.(2020届山东省临沂市高三上期末)已知P 是椭圆C :2216x y +=上的动点,Q 是圆D :()22115x y ++=上的动点,则( )A .CB .C 的离心率为6C .圆D 在C 的内部D .PQ 【答案】BC 【解析】2216x y +=Qa ∴=1b =c ∴===C 的焦距为6c e a ===.设(), P x y (x ≤≤, 则()()22222256441111665555x x y x x PD ⎛⎫++=++-=++≥> ⎪⎝⎭=,所以圆D 在C 的内部,且PQ 5=. 故选:BC .18.(2020届山东省烟台市高三上期末)已知抛物线2:4C y x =的焦点为F 、准线为l ,过点F 的直线与抛物线交于两点()11,P x y ,()22,Q x y ,点P 在l 上的射影为1P ,则 ( ) A .若126x x +=,则8PQ =B .以PQ 为直径的圆与准线l 相切C .设()0,1M ,则1PM PP +≥D .过点()0,1M 与抛物线C 有且仅有一个公共点的直线至多有2条 【答案】ABC 【解析】对于选项A,因为2p =,所以122x x PQ ++=,则8PQ =,故A 正确;对于选项B,设N 为PQ 中点,设点N 在l 上的射影为1N ,点Q 在l 上的射影为1Q ,则由梯形性质可得111222PP QQ PF QF PQ NN ++===,故B 正确;对于选项C,因为()1,0F ,所以1PM PP PM PF MF +=+≥=故C 正确; 对于选项D,显然直线0x =,1y =与抛物线只有一个公共点,设过M 的直线为1y kx =+, 联立214y kx y x=+⎧⎨=⎩,可得()222410k x k x +-+=,令0∆=,则1k =,所以直线1y x =+与抛物线也只有一个公共点,此时有三条直线符合题意,故D 错误; 故选:ABC 三、填空题19.(2020届山东省九校高三上学期联考)直线y x =与圆2240x x y -+=相交于A 、B 两点,则AB =__________.【答案】【解析】圆的标准方程为22(2)4x y -+=,圆心到直线的距离d ==所以弦长:AB ==故答案为:20.(2019·北京八十中高二期中)已知椭圆22221(0)x y M a b a b+=>>:,双曲线22221x y N m n -=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.1 2 【解析】由正六边形性质得椭圆上一点到两焦点距离之和为c ,再根据椭圆定义得2c a +=,所以椭圆M的离心率为1.c a == 双曲线N 的渐近线方程为n y x m =±,由题意得双曲线N 的一条渐近线的倾斜角为222ππtan 333n m ∴==,,222222234 2.m n m m e e m m,++∴===∴= 21.(2020·全国高三专题练习(理))已知圆()()22212x y -+-=关于直线()10,0ax by a b +=>>对称,则21a b+的最小值为__________. 【答案】9 【解析】由题意可知直线过圆心,即21a b +=()2121222559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭ 当且仅当22a bb a=时,又()0,0a b >> 即a b =时等号成立, 故21a b+的最小值为9. 故答案为:922.(2020·山东省淄博实验中学高三上期末)双曲线C :()222210,0x y a b a b-=>>的左、右焦点分别为()12,0F -、()22,0F ,M 是C 右支上的一点,1MF 与y 轴交于点P ,2MPF ∆的内切圆在边2PF 上的切点为Q ,若=PQ C 的离心率为____.【解析】设△MPF 2的内切圆与MF 1,MF 2的切点分别为A ,B , 由切线长定理可知MA =MB ,P A =PQ ,BF 2=QF 2, 又PF 1=PF 2,∴MF 1﹣MF 2=(MA +AP +PF 1)﹣(MB +BF 2)=PQ +PF 2﹣QF 2=2PQ ,由双曲线的定义可知MF 1﹣MF 2=2a , 故而a =PQ 2=,又c =2,∴双曲线的离心率为e 2ca==. 故答案为:2.23.(2020届山东省枣庄、滕州市高三上期末)已知F 为双曲线2222:1x y C a b-=(0,0)a b >>的右焦点,过F 作C 的渐近线的垂线FD ,D 为垂足,且3||||FD OF =(O 为坐标原点),则C 的离心率为________. 【答案】2 【解析】由题意(c,0)F ,一条渐近线方程为by x a=,即0bx ay -=, ∴ 22bcFD b b a ==+,由3||||FD OF =得3b =,∴222234b c c a ==-,224c a =,∴2ce a==. 故答案为:2.24.(2020届山东省潍坊市高三上期末)已知P 是抛物线24y x =上的动点,点P 在y 轴上的射影是M ,点A 的坐标为()2,3,则PA PM +的最小值是__________. 101 【解析】设抛物线的焦点是()1,0F ,根据抛物线的定义可知1PM PF =-1PA PM PA PF ∴+=+-,PA PF AF +≥Q ,当,,A P F 三点共线时,等号成立,PA PM ∴+的最小值是1AF -,()()22213010AF =-+-=,PA PM ∴+的最小值是101-.10125.(2020届山东省临沂市高三上期末)已知P 为双曲线C :2214y x -=右支上一点,1F ,2F 分别为C 的左、右焦点,且线段12A A ,12B B 分别为C 的实轴与虚轴.若12A A ,12B B ,1PF 成等比数列,则2PF =______.【答案】6 【解析】2214y x -=Q1222A A a ∴==,1224B B b ==,12A A Q ,12B B ,1PF 成等比数列212112A A PF B B ∴⋅=,解得18PF =,2826PF a ∴=-=故答案为:626.(2020届山东省泰安市高三上期末)已知抛物线()220y px p =>的焦点为F (4,0),过F 作直线l 交抛物线于M ,N 两点,则p =_______,49NF MF-的最小值为______. 【答案】8p = 13【解析】∵ 抛物线()220y px p =>的焦点为F(4,0),∴ 8p =,∴ 抛物线的方程为216y x =,设直线l 的方程为4x my =+,设()11,M x y ,()22,N x y ,由2164y x x my ⎧=⎨=+⎩得216640y my --=, ∴1216y y m +=,1264y y =-, 由抛物线的定义得11MF NF +121144x x =+++()()21124444x x x x +++=++()()211244888my my my my ++++=++()()122121216864m y y m y y m y y ++=+++22216166412864m m m +=-++()()22161641m m +=+14=, ∴49NFMF -11494NF NF ⎛⎫=-- ⎪ ⎪⎝⎭419NF NF =+-42?19NF NF ≥-13=, 当且仅当49NF NF=即6NF =时,等号成立, 故答案为:13. 27.(2020届山东省济宁市高三上期末)已知抛物线2:8C y x =的焦点为F ,准线l ,P 是l 上一点, Q 是直线PF 与C 的一个交点,若3PF QF =u u u r u u u r,则||QF =__________.【答案】83【解析】根据题意画出图形,设l 与x 轴的交点为M ,过Q 向准线l 作垂线,垂足是N ,∵抛物线2:8C y x =,∴焦点为2,0F (),准线方程为2x =-,∵3PF QF =u u u v u u u v ,2288,4,.3333QN PQ QN QF QN FM PF ∴==∴=⨯=∴==28.(2020届山东省滨州市高三上期末)在平面直角坐标系xOy 中,A 为直线:3l y x =上在第三象限内的点,()10,0B -,以线段AB 为直径的圆C (C 为圆心)与直线l 相交于另一个点D ,AB CD ⊥,则圆C 的标准方程为________.【答案】()()227645x y +++=【解析】由题意,设点(,3),0A m m m <,因为()10,0B -,则AB 的中点为103,22m m C -⎛⎫⎪⎝⎭, 以线段AB 为直径的圆C 的方程为:(10)()(3)0x x m y y m +-+-=; 由(10)()(3)03x x m y y m y x +-+-=⎧⎨=⎩,解得:13x y =-⎧⎨=-⎩,即(1,3)D --;又AB CD ⊥,所以0AB CD ⋅=u u u r u u u r;因为(10,3)AB m m =---u u u r ,83,322m m CD -⎛⎫=-- ⎪⎝⎭u u u r 所以()83(10)33022m m m m -⎛⎫⎛⎫--+---=⎪ ⎪⎝⎭⎝⎭, 整理得:2280m m +-=,解得4m =-或2m =,因为0m <,所以4m =-, 所以圆C 的方程为:(10)(4)(12)0x x y y ++++=, 整理得:()()227645x y +++=. 故答案为:()()227645x y +++=. 四、解答题29.(2020届山东省潍坊市高三上期末)在平面直角坐标系中,()()1 ,0,1,0A B -,设ABC V 的内切圆分别与边,,AC BC AB 相切于点,,P Q R ,已知1CP =,记动点C 的轨迹为曲线E . (1)求曲线E 的方程;(2)过()2,0G 的直线与y 轴正半轴交于点S ,与曲线E 交于点,H HA x ⊥轴,过S 的另一直线与曲线E 交于M N 、两点,若6SMG SHN S S =V V ,求直线MN 的方程.【答案】(1)221(0)43x y y +=≠(2)1y x =+或1y x =+.【解析】(1)由内切圆的性质可知CP CQ =,AP AR =,BQ BR =,∴CA CB CP CQ AP BQ +=+++24CP AB AB =+=>.所以曲线E 是以,A B 为焦点,长轴长为4的椭圆(除去与x 轴的交点).设曲线2222:1(0,0)x y E a b y a b+=>>≠则1,24c a ==,即2222,3a b a c ==-=所以曲线E 的方程为221(0)43x y y +=≠.(2)因为HA x ⊥轴,所以31,2H ⎛⎫- ⎪⎝⎭,设()00,S y , 所以03223y --=-,所以01y =,则()0,1S因为2a c =,所以2SG SH =,所以1sin 2261sin 2SMG SMNSM SG MSG SM S S SN SN SH NSH ∠===∠V V 所以3SM SN=,所以3SM SN =-u u u r u u u r设()()1122,, ,,M x y N x y 则()11,1SM x y =-u u u r()22,1SN x y =-u u u r,所以123x x =-①直线MN 斜率不存在时, MN 方程为0x =此时2SM SN==+. ②直线MN 的斜率存在时,设直线MN 的方程为1y kx =+.联立221143y kx x y =+⎧⎪⎨+=⎪⎩,得()2234880,k x kx ++-=所以122122834834k x x kk x x k -⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩,将123x x =-代入得222228348334k x k k x k -⎧=⎪⎪+⎨⎪=⎪+⎩,所以2224833434k k k k ⎛⎫=⎪⎭+ ⎝+. 所以236,2k k ==±, 所以直线MN 的方程为61y x =+或61y x =-+. 30.(2020届山东省泰安市高三上期末)已知椭圆()2222:10x y E a b a b+=>>的离心率e 满足223220e e -+=,右顶点为A ,上顶点为B ,点C (0,-2),过点C 作一条与y 轴不重合的直线l ,直线l 交椭圆E 于P ,Q 两点,直线BP ,BQ 分别交x 轴于点M ,N ;当直线l 经过点A 时,l 的斜率为2.(1)求椭圆E 的方程;(2)证明:BOM BCN S S ∆∆⋅为定值.【答案】(1)2212x y +=(2)证明见解析【解析】(1)由223220e e -+=解得22e =或2e =,∴a =,又222a b c =+,a ∴=,又()020AC k a --==-a ∴=1b ∴=,∴椭圆E 的方程为2212x y +=;(2)由题知,直线l 的斜率存在,设直线l 的方程为2y kx =-, 设()()1122,,,P x y Q x y ,由22212y kx x y =-⎧⎪⎨+=⎪⎩得()2221860k x kx +-+=, ∴12122286,2121k x x x x k k +==++, ()()22=84621k k --⨯⨯+V =216240k ->232k ∴>, ∴()121224421y y k x x k -+=+-=+, ()()121222y y kx kx =--()21212=24k x x k x x -++=224221k k -+,直线BP 的方程为1111y y x x -=+,令0y =解得111x x y =-,则11,01x M y ⎛⎫⎪-⎝⎭, 同理可得22,01x N y ⎛⎫⎪-⎝⎭,12123411BOM BCN x x S S y y ∴=--V V g =()()()12121212123341141x x x x y y y y y y =---++=22226321444212121k k k k +-++++=12,BOM BON S S ∆∴V g 为定值12. 31.(2020届山东省烟台市高三上期末)已知椭圆()222210x y a b a b +=>>F 是其右焦点,直线y kx =与椭圆交于A ,B 两点,8AF BF +=. (1)求椭圆的标准方程;(2)设()3,0Q ,若AQB ∠为锐角,求实数k 的取值范围.【答案】(1)221164x y += (2)10k >10k <- 【解析】(1)设1F 为椭圆的左焦点,连接1F B ,由椭圆的对称性可知,1AF FB =, 所以128AF BF BF BF a +=+==,所以4a =,又c e a==,222a b c =+,解得c =,2b =, 所以椭圆的标准方程为221164x y +=(2)设点1122(,),(,)A x y B x y ,则11(3,)QA x y =-u u u r ,22(3,)QB x y =-u u u r,联立221164x y y kx ⎧+=⎪⎨⎪=⎩,得22(41)160k x +-=, 所以120x x +=,1221641x x k -=+, 因为AQB ∠为锐角,所以0QA QB ⋅>u u u r u u u r,所以1212(3)(3)QA QB x x y y ⋅=--+u u u r u u u r12121293()x x x x y y =-+++ 2121293()(1)x x k x x =-+++2216(1)9041k k +=->+,解得k >k <32.(2020届山东省日照市高三上期末联考)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b +=()0a b >>的焦距为2,且过点1,2⎛ ⎝⎭. (1)求椭圆C 的方程;(2)设椭圆C 的上顶点为B ,右焦点为F ,直线l 与椭圆交于M ,N 两点,问是否存在直线l ,使得F 为BMN ∆的垂心,若存在,求出直线l 的方程:若不存在,说明理由.【答案】(1)2212x y +=(2)存在,43y x =-【解析】(1)由已知可得:22222221112c a b a b c=⎧⎪⎪+=⎨⎪=+⎪⎩解得22a =,21b =,1c =,所以椭圆C :2212x y +=.(2)由已知可得,()0,1B ,()1,0F ,∴1BF k =-,∵BF l ⊥, 设直线l 的方程为:y x m =+,代入椭圆方程整理得2234220x mx m ++-=,设()11,M x y ,()22,N x y ,则1243m x x +=-,212223m x x -⋅=,∵BN MF ⊥,∴1212111y y x x -⋅=--. 即1212120y y x x y x +--=,因为11y x m =+,22y x m =+,()()()1212120x m x m x x x m x +++-+-= 即()212122(1)0x x m x x m m +-++-=.()2222421033m m m m m --+-+-=.所以2340m m +-=,43m =-或1m =. 又1m =时,直线l 过B 点,不合要求,所以43m =-. 故存在直线l :43y x =-满足题设条件. 33.(2019·山东高三月考)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,12||2F F =,过点1F 的直线与椭圆C 交于,A B 两点,延长2BF 交椭圆C 于点M ,2ABF ∆的周长为8.(1)求C 的离心率及方程;(2)试问:是否存在定点0(,0)P x ,使得·PM PB u u u u v u u u v为定值?若存在,求0x ;若不存在,请说明理由.【答案】(1)12,22143x y +=; (2)存在点P ,且0118x =.【解析】(1)由题意可知,12||=2c=2F F ,则1c =, 又2ABF ∆的周长为8,所以48a =,即2a =, 则12c e a ==,2223b a c =-=. 故C 的方程为22143x y +=.(2)假设存在点P ,使得·PM PB u u u u v u u u v为定值.若直线BM 的斜率不存在,直线BM 的方程为1x =,31,2B ⎛⎫⎪⎝⎭,31,2M ⎛⎫- ⎪⎝⎭, 则()209·14PM PB x u u u u v u u u v=--. 若直线BM 的斜率存在,设BM 的方程为()1y k x =-,设点()11,B x y ,()22,M x y ,联立()221431x y y k x ⎧+=⎪⎨⎪=-⎩,得()22224384120k x k x k +-+-=, 根据韦达定理可得:2122843k x x k +=+,212241243k x x k -=+, 由于()202,PM x x y =-u u u u v ,()101,PB x x y =-u u u v, 则()212120012•PM PB x x x x x x y y =-+++u u u u v u u u v()()()()2220002222120122485312143x x k x k x x x k x x kx k --+-=+-++++=+因为·PM PB u u u u v u u u v 为定值,所以2200048531243x x x ---=, 解得0118x =,故存在点P ,且0118x =. 34.(2020届山东省枣庄、滕州市高三上期末)设中心在原点O ,焦点在x 轴上的椭圆C过点12A ⎫⎪⎭,F为C 的右焦点,⊙F的方程为221104x y +-+= (1)求C 的方程;(2)若直线:(l y k x =(0)k >与⊙O 相切,与⊙F 交于M 、N 两点,与C 交于P 、Q 两点,其中M 、P 在第一象限,记⊙O 的面积为()S k ,求(||||)()NQ MP S k -⋅取最大值时,直线l 的方程.【答案】(1)2214x y += (2)(2y x =-【解析】(1)解:设C 的方程为22221x y a b+=(0)a b >>.由题设知223114a b+=① 因为⊙F 的标准方程为221(3)4x y -+=, 所以F 的坐标为(3,0),半径12r =. 设左焦点为1F ,则1F 的坐标为(3,0)-. 由椭圆定义,可得12||a AF AF =+222211[3(3)]0(33)022⎛⎫⎛⎫=--+-+-+- ⎪ ⎪⎝⎭⎝⎭4=②由①②解得2,a =1b =.所以C 的方程为2214x y +=.(2)由题设可知,M 在C 外,N 在C 内,P 在⊙F 内,Q 在⊙F 外,在直线l 上的四点满足||||||,MP MN NP =-||||||NQ PQ NP =-.由2214(3)x y y k x ⎧+=⎪⎨⎪=⎩消去y 得()222214831240k x k x k +-+-= 因为直线l 过椭圆C 内的右焦点F , 所以该方程的判别式>0∆恒成立.设()11,,P x y ()22,Q x y 由韦达定理,得2122,14x x k+=+212212414k x x k -=+.||PQ =224441k k +=+ 又因为⊙F 的直径||1MN =,所以||||||||(||||)NQ MP PQ NP MN NP -=---||||PQ MN =- ||1PQ =-2341k =+.(y kx =可化为0kx y -=.因为l 与⊙O 相切,所以⊙O的半径R =,所以2()S k R π=2231k k π=+. 所以()()2229(||||)()411k NQ MP S k k k π-⋅=++ 2429451k k k π=++229145k k π=≤++π=.当且仅当2214k k =,即2k =时等号成立. 因此,直线l的方程为y x =-.35.(2020届山东省九校高三上学期联考)已知椭圆L :()222210x y a b a b +=>>为2.(1)求椭圆L 的标准方程;(2)过点()0,2Q 的直线l 与椭圆L 交于A 、B 两点,若以AB 为直径的圆恰好过坐标原点,求直线l 的方程及AB 的大小.【答案】(1) 2214x y += (2) 22y x =±+,17AB =. 【解析】解:(1)由22222222314c a b b e a a a -===-=得224a b =, 又∵短轴长为2可得1b =,24a =,∴椭圆L 的标准方程为:2214x y +=.(2)易知直线l 的斜率存在且不为零,设直线l 的斜率为()0k k ≠,设直线l 的方程为:2y kx =+,则联立222440y kx x y =+⎧⎨+-=⎩, 消元得:()224116120k x kx +++=,()()2221616484116430k k k ∆=⨯-+=->,即234k >. 设()11,A x y ,()22,B x y ,∴1221641k x x k -+=+,1221241x x k ⋅=+, 由题意可知OA OB ⊥u u u r u u u r ,0OA OB ⋅=u u ur u u u r 即:()()2121212121240x x y y k x x k x x ⋅+⋅=+⋅+++=,∴()222212132401414k k k k+-+=++,解得2344k =>,∴12x AB =-=224434651k k -=+⋅=.综上:直线l 的方程为:22y x =±+,46517AB =. 36.(2020届山东省临沂市高三上期末)如图,已知点F 为抛物线C :22y px =(0p >)的焦点,过点F的动直线l 与抛物线C 交于M ,N 两点,且当直线l 的倾斜角为45°时,16MN =.(1)求抛物线C 的方程.(2)试确定在x 轴上是否存在点P ,使得直线PM ,PN 关于x 轴对称?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)28y x =(2)存在唯一的点()2,0P -,使直线PM ,PN 关于x 轴对称【解析】(1)当直线l 的倾斜角为45°,则l 的斜率为1,,02p F ⎛⎫⎪⎝⎭Q ,l ∴的方程为2p y x =-.由2,22,p y x y px ⎧=-⎪⎨⎪=⎩得22304p x px -+=.设()11,M x y ,()22,N x y ,则123x x p +=, ∴12416x x p M p N ++===,4p =, ∴抛物线C 的方程为28y x =.(2)假设满足条件的点P 存在,设(),0P a ,由(1)知()2,0F , ①当直线l 不与x 轴垂直时,设l 的方程为()2y k x =-(0k ≠),由()22,8,y k x y x ⎧=-⎨=⎩得()22224840k x k x k -++=,()22222484464640k k k k ∆=+-⋅⋅=+>, 212248k x xk++=,124x x =. ∵直线PM ,PN 关于x 轴对称, ∴0PM PN k k +=,()112PM k x k x a -=-,()222PN k x k x a-=-. ∴()()()()()()122112128(2)222240a k x x a k x x a k x x a x x a k+--+--=-+++=-=⎡⎤⎣⎦, ∴2a =-时,此时()2,0P -.②当直线l 与x 轴垂直时,由抛物线的对称性,易知PM ,PN 关于x 轴对称,此时只需P 与焦点F 不重合即可. 综上,存在唯一的点()2,0P -,使直线PM ,PN 关于x 轴对称.37.(2020届山东省潍坊市高三上学期统考)已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为12,F F ,12||2F F =,过点1F 的直线与椭圆C 交于,A B 两点,延长2BF 交椭圆C 于点M ,2ABF ∆的周长为8.(1)求C 的离心率及方程;(2)试问:是否存在定点0(,0)P x ,使得·PM PB u u u u v u u u v为定值?若存在,求0x ;若不存在,请说明理由.【答案】(1)12,22143x y +=; (2)存在点P ,且0118x =.【解析】(1)由题意可知,12||=2c=2F F ,则1c =, 又2ABF ∆的周长为8,所以48a =,即2a =, 则12c e a ==,2223b a c =-=. 故C 的方程为22143x y +=.(2)假设存在点P ,使得·PM PB u u u u v u u u v为定值.若直线BM 的斜率不存在,直线BM 的方程为1x =,31,2B ⎛⎫⎪⎝⎭,31,2M ⎛⎫- ⎪⎝⎭, 则()209·14PM PB x u u u u v u u u v =--. 若直线BM 的斜率存在,设BM 的方程为()1y k x =-,设点()11,B x y ,()22,M x y ,联立()221431x y y k x ⎧+=⎪⎨⎪=-⎩,得()22224384120k x k x k +-+-=, 根据韦达定理可得:2122843k x x k +=+,212241243k x x k -=+,由于()202,PM x x y =-u u u u v ,()101,PB x x y =-u u u v, 则()212120012•PM PB x x x x x x y y =-+++u u u u v u u u v ()()()()22200022221201202485312143x x k x k x x x kx x k xk --+-=+-++++=+因为·PM PB u u u u v u u u v 为定值,所以2200048531243x x x ---=, 解得0118x =,故存在点P ,且0118x =. 38.(2020届山东省济宁市高三上期末)已知椭圆E :()222210y x a b a b+=>>的一个焦点为(,长轴与短轴的比为2:1.直线l y kx m =+:与椭圆E 交于P 、Q 两点,其中k 为直线l 的斜率. (1)求椭圆E 的方程;(2)若以线段PQ 为直径的圆过坐标原点O ,问:是否存在一个以坐标原点O 为圆心的定圆O ,不论直线l 的斜率k 取何值,定圆O 恒与直线l 相切?如果存在,求出圆O 的方程及实数m 的取值范围;如果不存在,请说明理由.【答案】(1) 2214y x +=(2)存在,2245x y +=.m的取值范围是,⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎣⎭【解析】(1)由已知得:2222c a b a b c ⎧=⎪=⎨⎪=+⎩解得:2,1a b ==∴椭圆E 的方程为2214yx +=(2)假设存在定圆O ,不论直线l 的斜率k 取何值时,定圆O 恒与直线l 相切. 这时只需证明坐标原点O 到直线l 的距离为定值即可.设直线OP 的方程为:,y tx P =点的坐标为()00,x y ,则00y tx =,联立方程组220224414y txx y t x =⎧⎪=⎨++=⎪⎩,解得: ()()22222200024114t OP x y t x t+∴=+=+=+①Q 以线段PQ 为直径的圆过坐标原点O ,OP OQ ∴⊥,直线OQ 的方程为:1y x t=-∴在①式中以1l -换t ,得()2222214141=1414t t OQ t t ⎡⎤⎛⎫+-⎢⎥ ⎪+⎝⎭⎢⎥⎣⎦=+⎛⎫+- ⎪⎝⎭② 又由OP OQ ⊥知:()()()()()222222222224141201414144tt tPQ OP OQ t tt t+++=+=+=++++设坐标原点O 到直线l 的距离为d ,则有PQ d OP OQ =()()()()()22222222222241414414,55201144t t OP OQ l l d d PQ t t t++⋅++∴====+++又当直线OP 与y 轴重合时,()()0,2,1,0P Q ±±此时d =由坐标原点O 到直线l的距离5d =为定值知,所以存在定圆O ,不论直线l 的斜率k 取何值时,定圆O 恒与直线l 相切,定圆O 的方程为:2245x y +=. 直线l 与y 轴交点为()0,m ,且点()0,m 不可能在圆O 内,又当k =0时,直线l 与定圆O切于点0,⎛ ⎝⎭,所以m的取值范围是,,55⎛⎡⎫-∞-⋃+∞ ⎪⎢ ⎪⎝⎦⎣⎭39.(2020届山东省滨州市高三上期末)已知椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1F ,2F ,直线32y x =与椭圆E 在第一象限内的交点是M ,且2MF x ⊥轴,1294MF MF ⋅=u u u u r u u u u r . (1)求椭圆E 的方程;(2)是否存在斜率为1-的直线l 与以线段12F F 为直径的圆相交于A ,B 两点,与椭圆E 相交于C ,D 两点,且||||CD AB ⋅=l 的方程;若不存在,说明理由. 【答案】(1)22143x y +=;(2)存在,y x =-+或y x =-- 【解析】(1)设()1,0F c -,()2,0F c , 由题意,得3,2M c c ⎛⎫ ⎪⎝⎭因为123392,0,224MF MF c c c ⎛⎫⎛⎫⋅=--⋅-= ⎪ ⎪⎝⎭⎝⎭u u u u r u u u u r解得1c =,则31,2M ⎛⎫⎪⎝⎭,又点M 在椭圆上,所以222219141a ba b ⎧+=⎪⎨⎪=+⎩,解得2243a b ⎧=⎨=⎩.所以椭圆E 的方程为22143x y +=;(2)假设存在斜率为1-的直线l ,设为y x m =+, 由(1)知,12(1,0), (1,0)F F -, 所以以线段12F F 为直径的圆为221x y +=. 由题意,圆心()0,0到直线l的距离1d =<,得||m <||AB ===由22143x y y x m ⎧+=⎪⎨⎪=-+⎩消去y , 整理得22784120x mx m -+-=.由题意,()()2222(8)47412336484870m m m m ∆=--⨯⨯-=-=->,解得27m <,又||m <22m <.设()()1122,,,C x y D x y ,则212128412,77m m x x x x -+==21||77CD x =-==,若||||CD AB ⋅=,=整理得42436170m m -+=, 解得212m =,或2172m =.又22m <,所以212m =,即m =.故存在符合条件的直线l ,其方程为2y x =-+,或2y x =--.。
专题08 平面解析几何(解答题)

专题08 平面解析几何(解答题)1.【2019年高考全国Ⅰ卷文数】已知点A ,B 关于坐标原点O 对称,│AB │=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,│MA │−│MP │为定值?并说明理由. 【答案】(1)M e 的半径=2r 或=6r ;(2)存在,理由见解析.【解析】(1)因为M e 过点,A B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线+=0x y 上,且,A B 关于坐标原点O 对称,所以M 在直线y x =上,故可设(, )M a a .因为M e 与直线x +2=0相切,所以M e 的半径为|2|r a =+.由已知得||=2AO ,又MO AO ⊥u u u u r u u u r,故可得2224(2)a a +=+,解得=0a 或=4a . 故M e 的半径=2r 或=6r .(2)存在定点(1,0)P ,使得||||MA MP -为定值. 理由如下:设(, )M x y ,由已知得M e 的半径为=|+2|,||=2r x AO .由于MO AO ⊥u u u u r u u u r ,故可得2224(2)x y x ++=+,化简得M 的轨迹方程为24y x =.因为曲线2:4C y x =是以点(1,0)P 为焦点,以直线1x =-为准线的抛物线,所以||=+1MP x . 因为||||=||=+2(+1)=1MA MP r MP x x ---,所以存在满足条件的定点P .【名师点睛】本题考查圆的方程的求解问题、圆锥曲线中的定点定值类问题.解决定点定值问题的关键是能够根据圆的性质得到动点所满足的轨迹方程,进而根据抛物线的定义得到定值,验证定值符合所有情况,使得问题得解.2.【2019年高考全国Ⅱ卷文数】已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.【答案】(1)31-;(2)4b =,a 的取值范围为[42,)+∞.【解析】(1)连结1PF ,由2POF △为等边三角形可知在12F PF △中,1290F PF ∠=︒,2PF c =,13PF c =,于是122(31)a PF PF c =+=+,故C 的离心率是31ce a==-. (2)由题意可知,满足条件的点(,)P x y 存在.当且仅当1||2162y c ⋅=,1y yx c x c⋅=-+-,22221x y a b +=,即||16c y =,① 222x y c +=,②22221x y a b+=,③ 由②③及222a b c =+得422b y c =,又由①知22216y c=,故4b =.由②③得()22222a x c b c=-,所以22c b ≥,从而2222232,a b c b =+≥=故42a ≥.当4b =,42a ≥时,存在满足条件的点P . 所以4b =,a 的取值范围为[42,)+∞.【名师点睛】本题主要考查求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题,熟记椭圆的简单性质即可求解,考查计算能力,属于中档试题.3.【2019年高考全国Ⅲ卷文数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点; (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程. 【答案】(1)见解析;(2)22542x y ⎛⎫+-= ⎪⎝⎭或22522x y ⎛⎫+-= ⎪⎝⎭. 【解析】(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=-.整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -. 故直线AB 的方程为2210tx y -+=. 所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()21212122,121x x t y y t x x t +=+=++=+.设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭. 由于EM AB ⊥u u u u r u u u r ,而()2,2EM t t =-u u u u r ,AB u u u r 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,||EM u u u u r =2,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭;当1t =±时,||2EM =u u u u r ,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭.【名师点睛】此题第一问是圆锥曲线中的定点问题和第二问是求圆的方程,属于常规题型,按部就班地求解就可以,思路较为清晰,但计算量不小.4.【2019年高考北京卷文数】已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(1)求椭圆C 的方程;(2)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.【答案】(1)2212x y +=;(2)见解析. 【解析】(1)由题意得,b 2=1,c =1. 所以a 2=b 2+c 2=2.所以椭圆C 的方程为2212x y +=.(2)设P (x 1,y 1),Q (x 2,y 2), 则直线AP 的方程为1111y y x x -=+. 令y =0,得点M 的横坐标111M x x y =--. 又11y kx t =+,从而11||||1M x OM x kx t ==+-.同理,22||||1x ON kx t =+-.由22,12y kx t x y =+⎧⎪⎨+=⎪⎩得222(12)4220k x ktx t +++-=. 则122412kt x x k +=-+,21222212t x x k-=+. 所以1212||||||||11x x OM ON kx t kx t ⋅=⋅+-+-()12221212||(1)(1)x x k x x k t x x t =+-++-22222222212||224(1)()(1)1212t k t kt k k t t k k-+=-⋅+-⋅-+-++12||1t t+=-. 又||||2OM ON ⋅=,所以12||21tt+=-. 解得t =0,所以直线l 经过定点(0,0).【名师点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.5.【2019年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .已知3||2||OA OB =(O 为原点).(1)求椭圆的离心率; (2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x =4上,且OC AP ∥,求椭圆的方程.【答案】(1)12;(2)2211612x y +=.【解析】(1)设椭圆的半焦距为c ,由已知有32a b =,又由222a b c =+,消去b 得22232a a c ⎛⎫=+ ⎪ ⎪⎝⎭,解得12c a =. 所以,椭圆的离心率为12. (2)由(1)知,2,3a c b c ==,故椭圆方程为2222143x y c c+=.由题意,(, 0)F c -,则直线l 的方程为3()4y x c =+, 点P 的坐标满足22221,433(),4x y c cy x c ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 并化简,得到2276130x cx c +-=,解得1213,7c x c x ==-. 代入到l 的方程,解得1239,214y c y c ==-.因为点P在x轴上方,所以3,2P c c ⎛⎫⎪⎝⎭.由圆心C在直线4x=上,可设(4, )C t.因为OC AP∥,且由(1)知( 2 , 0)A c-,故3242ctc c=+,解得2t=.因为圆C与x轴相切,所以圆的半径长为2,又由圆C与l相切,得23(4)242314c+-=⎛⎫+ ⎪⎝⎭,可得=2c.所以,椭圆的方程为2211612x y+=.【名师点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力. 6.【2019年高考江苏卷】如图,在平面直角坐标系xOy中,椭圆C:22221(0)x ya ba b+=>>的焦点为F1(–1、0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:222(1)4x y a-+=交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1=52.(1)求椭圆C的标准方程;(2)求点E的坐标.【答案】(1)22143x y+=;(2)3(1,)2E--.【解析】(1)设椭圆C 的焦距为2c .因为F 1(−1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥x 轴, 所以DF 2=222211253()222DF F F -=-=, 因此2a =DF 1+DF 2=4,从而a =2. 由b 2=a 2−c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1. 将x =1代入圆F 2的方程(x −1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(−1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-. 因此3(1,)2E --.解法二:由(1)知,椭圆C:221 43x y+=.如图,连结EF1.因为BF2=2a,EF1+EF2=2a,所以EF1=EB,从而∠BF1E=∠B.因为F2A=F2B,所以∠A=∠B,所以∠A=∠BF1E,从而EF1∥F2A.因为AF2⊥x轴,所以EF1⊥x轴.因为F1(−1,0),由221431xx y⎧⎪⎨+==-⎪⎩,得32y=±.又因为E是线段BF2与椭圆的交点,所以32y=-.因此3(1,)2E--.【名师点睛】本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.7.【2019年高考浙江卷】如图,已知点(10)F,为抛物线22(0)y px p=>的焦点,过点F的直线交抛物线于A、B两点,点C在抛物线上,使得ABC△的重心G在x轴上,直线AC交x轴于点Q,且Q在点F 的右侧.记,AFG CQG △△的面积分别为12,S S . (1)求p 的值及抛物线的准线方程;(2)求12S S 的最小值及此时点G 的坐标.【答案】(1)p =2,准线方程为x =−1;(2)最小值为312+,此时G (2,0). 【解析】(1)由题意得12p=,即p =2. 所以,抛物线的准线方程为x =−1.(2)设()()(),,,,,A A B B c c A x y B x y C x y ,重心(),G G G x y .令2,0A y t t =≠,则2A x t =.由于直线AB 过F ,故直线AB 方程为2112t x y t-=+,代入24y x =,得()222140t y y t---=,故24B ty =-,即2B y t =-,所以212,B tt ⎛⎫- ⎪⎝⎭.又由于()()11,33G A B c G A B c x x x x y y y y =++=++及重心G 在x 轴上,故220c t y t-+=,得242211222,2,,03t t C t t G t t t ⎛⎫⎛⎫-+⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 所以,直线AC 方程为()222y t t x t-=-,得()21,0Q t-.由于Q 在焦点F 的右侧,故22t >.从而4224221244242222211|2|||322221222211|||1||2|23A ct t t FG y t S t t t t t S t t QG y t t t t-+-⋅⋅--====--+--⋅--⋅-.令22m t =-,则m >0,122113222134323424S m S m m m m m m=-=--=+++++⋅+…. 当3m =时,12S S 取得最小值312+,此时G (2,0). 【名师点睛】本题主要考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.8.【2018年高考全国Ⅰ文数】设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠. 【答案】(1)y =112x +或112y x =--;(2)见解析. 【解析】(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,–2). 所以直线BM 的方程为y =112x +或112y x =--. (2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由2(2)2y k x y x=-⎧⎨=⎩,得ky 2–2y –4k =0,可知y 1+y 2=2k ,y 1y 2=–4.直线BM ,BN 的斜率之和为1221121212122()22(2)(2)BM BN y y x y x y y y k k x x x x ++++=+=++++.① 将112y x k =+,222yx k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得121221121224()882()0y y k y y x y x y y y k k++-++++===.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM =∠ABN . 综上,∠ABM =∠ABN .【名师点睛】本题主要考查抛物线的标准方程与几何性质、直线与抛物线的位置关系,考查考生的化归与转化能力、运算求解能力,考查的数学核心素养是直观想象与数学运算.在设直线的方程时,一定要注意所设方程的适用范围,如用点斜式时,要考虑到直线的斜率不存在的情况,以免解答不严密或漏解.(1)求出直线l 与抛物线的交点,利用两点式写出直线BM 的方程;(2)由(1)知,当直线l 与x 轴垂直时,结论显然成立,当直线l 与x 轴不垂直时,设出斜率k ,联立直线l 与C 的方程,求出M ,N 两点坐标之间的关系,再表示出BM 与BN 的斜率,得其和为0,从而说明BM 与BN 两条直线的斜率互为相反数,进而可知两角相等.9.【2018年高考全国Ⅱ卷文数】设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.【答案】(1)y =x –1;(2)22(3)(2)16x y -+-=或22(11)(6)144x y -++=. 【解析】(1)由题意得F (1,0),l 的方程为y =k (x –1)(k >0). 设A (x 1,y 1),B (x 2,y 2).由2(1)4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=. 216160k ∆=+=,故212224k x x k++=. 所以212244(1)(1)k AB AF BF x x k+=+=+++=. 由题设知22448k k +=,解得k =–1(舍去),k =1. 因此l 的方程为y =x –1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+.设所求圆的圆心坐标为(x 0,y 0),则00220005(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩,解得0032x y =⎧⎨=⎩,或00116.x y =⎧⎨=-⎩, 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.【名师点睛】本题主要考查抛物线与直线和圆的综合,考查考生的数形结合能力、运算求解能力,考查的数学核心素养是直观想象、数学运算.(1)利用点斜式写出直线l 的方程,代入抛物线方程,得到关于x 的一元二次方程,利用根与系数的关系以及抛物线的定义加以求解;(2)由题意写出线段AB 的垂直平分线所在直线的方程,设出圆心的坐标,由题意列出方程组,解得圆心的坐标,即可求解.10.【2018年高考全国Ⅲ卷文数】已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB的中点为(1,)(0)M m m >. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r .证明:2||||||FP FA FB =+u u u r u u u r u u u r. 【答案】(1)见解析;(2)见解析.【解析】(1)设11()A x y ,,22()B x y ,,则2211143x y +=,2222143x y +=.两式相减,并由1212=y y k x x --得1212043x x y y k +++⋅=.由题设知1212x x +=,122y y m +=,于是34k m=-. 由题设得302m <<,故12k <-.(2)由题意得F (1,0).设33()P x y ,,则331122(1)(1)(1)(00)x y x y x y -+-+-=,,,,.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<.又点P 在C 上,所以34m =,从而3(1)2P -,,3||=2FP u u u r . 于是222211111||(1)(1)3(1)242x x FA x y x =-+=-+-=-u u u r .同理2||=22x FB -u u u r .所以1214()32FA FB x x +=-+=u u u r u u u r .故2||=||+||FP FA FB u u u r u u u r u u u r .【名师点睛】本题主要考查椭圆的方程及简单几何性质、直线的斜率公式、直线与椭圆的位置关系、向量的坐标运算与向量的模等,考查运算求解能力、数形结合思想,考查的数学核心素养是数学抽象、数学运算.圆维曲线中与中点弦有关的问题常用点差法,建立弦所在直线的斜率与中点坐标间的关系,也可以通过联立直线方程与圆锥曲线方程,消元,根据根与系数的关系求解.11.【2018年高考北京卷文数】已知椭圆2222:1(0)x y M a b a b +=>>的离心率为63,焦距为22.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B . (1)求椭圆M 的方程;(2)若1k =,求||AB 的最大值;(3)设(2,0)P -,直线P A 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)44Q -共线,求k .【答案】(1)2213x y +=;(2)6;(3)1. 【解析】(1)由题意得222c =,所以2c =,又63c e a ==,所以3a =, 所以2221b a c =-=,所以椭圆M 的标准方程为2213x y +=.(2)设直线AB 的方程为y x m =+,由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232m x x +=-,212334m x x -=,则222212121264||1||1()42m AB k x x k x x x x ⨯-=+-=+⋅+-=,易得当20m =时,max ||6AB =,故||AB 的最大值为6. (3)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,则221133x y += ①,222233x y += ②,又(2,0)P -,所以可设1112PA y k k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+, 所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-u u u r ,4471(,)44QD x y =+-u u u r ,因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =. 【名师点睛】本题主要考查椭圆的方程及几何性质、直线与椭圆的位置关系,考查考生的逻辑思维能力、运算求解能力,考查数形结合思想,考查的数学核心素养是直观想象、逻辑推理、数学运算.解决椭圆的方程问题,常用基本量法,同时注意椭圆的几何量的关系;弦长的计算,通常要将直线与椭圆方程联立,利用根与系数的关系求解.12.【2018年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的右顶点为A ,上顶点为B .已知椭圆的离心率为53,||13AB =. (1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.【答案】(1)22194x y +=;(2)12-. 【解析】本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.满分14分.(1)设椭圆的焦距为2c ,由已知得2259c a =,又由222a b c =+,可得23a b =.由22||13AB a b =+=,从而3,2a b ==.所以,椭圆的方程为22194x y +=.(2)设点P 的坐标为11(,)x y ,点M 的坐标为22(,)x y ,由题意,210x x >>, 点Q 的坐标为11(,)x y --.由BPM △的面积是BPQ △面积的2倍,可得||=2||PM PQ ,从而21112[()]x x x x -=--,即215x x =. 易知直线AB 的方程为236x y +=,由方程组236,,x y y kx +=⎧⎨=⎩消去y ,可得2632x k =+.由方程组221,94,x y y kx ⎧+⎪=⎨⎪=⎩消去y ,可得12694x k =+. 由215x x =,可得2945(32)k k +=+,两边平方,整理得2182580k k ++=,解得89k =-,或12k =-.当89k =-时,290x =-<,不合题意,舍去;当12k =-时,212x =,1125x =,符合题意.所以,k 的值为12-.【名师点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,涉及轨迹方程问题、定值问题、最值问题、参数的取值或取值范围问题等,其中考查较多的圆锥曲线是椭圆与抛物线,解决此类问题要重视化归与转化思想及设而不求法的应用.13.【2018年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F -,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △的面积为267,求直线l 的方程.【答案】(1)椭圆C的方程为2214xy+=,圆O的方程为223x y+=;(2)①(2,1);②532y x=-+.【解析】(1)因为椭圆C的焦点为12()3,0,(3,0)F F-,可设椭圆C的方程为22221(0)x ya ba b+=>>.又点1(3,)2在椭圆C上,所以2222311,43,a ba b⎧+=⎪⎨⎪-=⎩,解得224,1,ab⎧=⎪⎨=⎪⎩因此椭圆C的方程为2214xy+=.因为圆O的直径为12F F,所以其方程为223x y+=.(2)①设直线l与圆O相切于0000(),,(00)P x y x y>>,则22003x y+=,所以直线l的方程为000()xy x x yy=--+,即0003xy xy y=-+.由22001,43,xyxy xy y⎧+=⎪⎪⎨⎪=-+⎪⎩消去y,得222200004243640()x y x x x y+-+-=.(*)因为直线l与椭圆C有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x∆=--+-=-=.因为00,0x y>,所以002,1x y==.因此点P的坐标为(2,1).②因为三角形OAB的面积为267,所以21267AB OP⋅=,从而427AB=.设1122,,()(),A x y B x y ,由(*)得2200022001,22448(2)2(4)x y x x x y ±-=+,所以2222121()()x B y y x A =-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =, 因此P 的坐标为102(,)22. 综上,直线l 的方程为532y x =-+.【名师点睛】本题主要考查直线方程、圆的方程、圆的几何性质、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等知识,考查分析问题能力和运算求解能力. (1)利用椭圆的几何性质求圆的方程和椭圆的方程. (2)①利用直线与圆、椭圆的位置关系建立方程求解; ②结合①,利用弦长公式、三角形的面积公式求解.14.【2018年高考浙江卷】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.PMBAOyx(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+24y =1(x <0)上的动点,求△P AB 面积的取值范围.【答案】(1)见解析;(2)1510[62,]4. 【解析】本题主要考查椭圆、抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.满分15分. (1)设00(,)P x y ,2111(,)4A y y ,2221(,)4B y y . 因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程202014()422y x y y ++=⋅即22000280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=. 因此,PM 垂直于y 轴. (2)由(1)可知120212002,8,y y y y y x y +=⎧⎪⎨=-⎪⎩ 所以2221200013||()384PM y y x y x =+-=-, 21200||22(4)y y y x -=-.因此,PAB △的面积3221200132||||(4)24PABS PM y y y x =⋅-=-△. 因为220001(0)4y x x +=<,所以2200004444[4,5]y x x x -=--+∈.因此,PAB △面积的取值范围是1510[62,]4. 【名师点睛】圆锥曲线问题是高考重点考查内容之一,也是难点之一.椭圆、抛物线是其中常考内容,需要熟练地掌握椭圆和拋物线的定义、基本性质、标准方程等,对于处理有关问题有很大的帮助.同时还要注意运算能力的培养和提高.15.【2017年高考全国Ⅰ卷文数】设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程. 【答案】(1)1;(2)7y x =+.【解析】(1)设A (x 1,y 1),B (x 2,y 2),则12x x ≠,2114x y =,2224x y =,x 1+x 2=4,于是直线AB 的斜率12121214y y x x k x x -+===-.(2)由24x y =,得2x y'=.设M (x 3,y 3),由题设知312x =,解得32x =,于是M (2,1). 设直线AB 的方程为y x m =+,故线段AB 的中点为N (2,2+m ),|MN |=|m +1|.将y x m =+代入24xy =得2440x x m --=.当16(1)0m ∆=+>,即1m >-时,1,2221x m =±+. 从而12||=2||42(1)AB x x m -=+.由题设知||2||AB MN =,即42(1)2(1)m m +=+,解得7m =. 所以直线AB 的方程为7y x =+.【名师点睛】本题主要考查直线与圆锥曲线的位置关系,主要利用根与系数的关系:因为直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用根与系数的关系及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用根与系数的关系直接解决,但应注意不要忽视判别式的作用. (1)设A (x 1,y 1),B (x 2,y 2),由两点斜率公式求AB 的斜率;(2)联立直线与抛物线方程,消y ,得12||=2||42(1)AB x x m -=+,解出m 即可.16.【2017年高考全国Ⅱ卷文数】设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =u u u ru u u u r.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u r u u u r.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【答案】(1)222x y +=;(2)见解析.【解析】(1)设P (x ,y ),M (00,x y ),则N (0,0x ),00(,),(0,)NP x x y NM y =-=u u u r u u u u r ,由2NP NM =u u u ru u u u r 得0022x x y y ==,. 因为M (00,x y )在C 上,所以22122x y +=.因此点P 的轨迹方程为222x y +=.(2)由题意知F (−1,0),设Q (−3,t ),P (m ,n ),则(3,),(1,),33OQ t PF m n OQ PF m tn =-=---⋅=+-u u u r u u u r u u u r u u u r, (,),(3,)OP m n PQ m t n ==---u u u r u u u r.由1OP PQ ⋅=u u u r u u u r得2231m m tn n --+-=,又由(1)知222m n +=,故330m tn +-=.所以0OQ PF ⋅=u u u r u u u r ,即OQ PF ⊥u u u r u u u r.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .【名师点睛】定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒成立的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.(1)转移法求轨迹:设所求动点坐标及相应已知动点坐标,利用条件列两种坐标关系,最后代入已知动点轨迹方程,化简可得所求轨迹方程;(2)证明直线过定点问题,一般方法是以算代证:即证0OQ PF ⋅=u u u r u u u r,先设 P (m ,n ),则需证330m tn +-=,即根据条件1OP PQ ⋅=u u u r u u u r可得2231m m tn n --+-=,而222m n +=,代入即得330m tn +-=.17.【2017年高考全国Ⅲ卷文数】在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C的坐标为(0,1).当m 变化时,解答下列问题: (1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 【答案】(1)不会,理由见解析;(2)见解析 【解析】(1)不能出现AC ⊥BC 的情况,理由如下:设1(,0)A x ,2(,0)B x ,则12x x ,满足220x mx +-=,所以122x x =-. 又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为121112x x --⋅=-, 所以不能出现AC ⊥BC 的情况.(2)BC 的中点坐标为(2122x ,),可得BC 的中垂线方程为221()22x y x x -=-. 由(1)可得12x x m +=-,所以AB 的中垂线方程为2mx =-.联立22(21)22m x x y x x ⎧=-⎪⎪⎨⎪-=-⎪⎩,,又22220x mx +-=,可得212m x y ⎧=-⎪⎪⎨⎪=-⎪⎩,,所以过A 、B 、C 三点的圆的圆心坐标为(122m --,),半径292m r +=,故圆在y 轴上截得的弦长为22232m r -=(),即过A 、B 、C 三点的圆在y 轴上截得的弦长为定值. 【名师点睛】解答本题时,设()()12,0,,0A x B x ,由AC ⊥BC 得1210x x +=,由根与系数的关系得122x x =-,矛盾,所以不存在;求出过A ,B ,C 三点的圆的圆心坐标和半径,即可得圆的方程,再利用垂径定理求弦长.直线与圆综合问题的常见类型及解题策略:(1)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形.代数方法:运用根与系数的关系及弦长公式:222121212||1||1()4AB k x x k x x x x =+-=++-; (2)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题. 18.【2017年高考北京卷文数】已知椭圆C 的两个顶点分别为A (−2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4:5.【答案】(1)2214x y +=;(2)见解析.【解析】(1)设椭圆C 的方程为22221(0)x y a b a b+=>>.由题意得2,3,2a c a=⎧⎪⎨=⎪⎩解得3c =.所以2221b a c =-=.所以椭圆C 的方程为2214x y +=.(2)设(,)M m n ,则(,0),(,)D m N m n -. 由题设知2m ≠±,且0n ≠.直线AM 的斜率2AM n k m =+,故直线DE 的斜率2DE m k n+=-. 所以直线DE 的方程为2()m y x m n +=--. 直线BN 的方程为(2)2ny x m=--. 联立2(),(2),2m y x m n n y x m +⎧=--⎪⎪⎨⎪=-⎪-⎩解得点E 的纵坐标222(4)4E n m y m n -=--+. 由点M 在椭圆C 上,得2244m n -=.所以45E y n =-. 又12||||||||25BDE E S BD y BD n =⋅=⋅△,1||||2BDN S BD n =⋅△,所以BDE △与BDN △的面积之比为4:5.【名师点睛】本题对考生计算能力要求较高,重点考查了计算能力,以及转化与化归的能力,解答此类题目,主要利用,,,a b c e 的关系,确定椭圆方程是基础,本题易错点是对复杂式子的变形能力不足,导致错漏百出.本题能较好地考查考生的逻辑思维能力、运算求解能力、分析问题与解决问题的能力等. (1)根据条件可知32,2c a a ==,以及222b a c =-,从而求得椭圆方程;(2)设(,)M m n ,则(,0),(,)D m N m n -,根据条件求直线DE 的方程,并且表示出直线BN 的方程,并求得两条直线的交点纵坐标,根据1212E BDE BDNN BD y S S BD y ⋅⋅=⋅⋅△△即可求出面积比值. 19.【2017年高考天津卷文数】已知椭圆22221(0)x y a b a b+=>>的左焦点为,()0F c -,右顶点为A ,点E的坐标为(0,)c ,EFA △的面积为22b .(1)求椭圆的离心率;(2)设点Q 在线段AE 上,3||2FQ c =,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .(i )求直线FP 的斜率; (ii )求椭圆的方程.【答案】(1)12;(2)(ⅰ)34;(ⅱ)2211612x y +=.【解析】(1)设椭圆的离心率为e .由已知,可得21()22b c a c +=.又由222b a c =-,可得2220c ac a +-=,即2210e e +-=. 又因为01e <<,解得12e =. 所以,椭圆的离心率为12. (2)(ⅰ)依题意,设直线FP 的方程为(0)x my c m =->,则直线FP 的斜率为1m. 由(1)知2a c =,可得直线AE 的方程为12x yc c +=,即220x y c +-=, 与直线FP 的方程联立,可解得(22)3,22m c c x y m m -==++,即点Q 的坐标为(22)3(,)22m c cm m -++. 由已知|FQ |=32c ,有222(22)33[]()()222m c c c c m m -++=++,整理得2340m m -=,所以43m =, 故直线FP 的斜率为34.(ii )由2a c =,可得3b c =,故椭圆方程可以表示为2222143x y c c+=.由(i )得直线FP 的方程为3430x y c -+=,与椭圆方程联立22223430,1,43x y c x y c c -+=⎧⎪⎨+=⎪⎩ 消去y ,整理得2276130x cx c +-=,解得137cx =-(舍去),或x c =. 因此可得点3(,)2c P c ,进而可得2235|()()22|c c FP c c =++=, 所以53||||||22c cFP FQ Q c P -=-==. 由已知,线段PQ 的长即为PM 与QN 这两条平行直线间的距离, 故直线PM 和QN 都垂直于直线FP .因为QN FP ⊥,所以339||||tan 248c c QN FQ QFN =⋅∠=⨯=, 所以FQN △的面积为2127||||232c FQ QN =,同理FPM △的面积等于27532c ,由四边形PQNM 的面积为3c ,得22752733232c c c -=,整理得22c c =,又由0c >,得2c =.所以,椭圆的方程为2211612x y +=.【名师点睛】圆锥曲线问题在历年高考中都是较有难度的压轴题,本题对考生的计算能力要求较高,是一道难题,重点考查了运算求解能力以及转化与化归的能力.求解此类问题时,利用,,,a b c e 的关系,确定椭圆离心率是基础,通过联立直线方程与椭圆(圆锥曲线)的方程,根据根与系数的关系进行解题,但本题需求解交点坐标,在求解过程要善于发现四边形PQNM 中的几何关系,从而易求其面积,进而使问题获解.(1)先根据题意得出21()22b c a c +=,然后结合222b a c =-,即可求得离心率;(2)(ⅰ)首先设直线FP 的方程为x my c =-,再写出直线AE 的方程,两方程联立得到点Q 的坐标,根据32FQ c =求得m 的值,即得直线FP 的斜率;(ⅱ)将直线FP 的方程和椭圆方程联立,可得点P 的坐标,再求,FP FQ ,确定直线PM 和QN 都垂直于直线FP ,根据平面几何关系求面积,从而可求得c 的值,进而得椭圆的方程.20.【2017年高考山东卷文数】在平面直角坐标系xOy 中,已知椭圆C :22221x y a b +=(a >b >0)的离心率为22,椭圆C 截直线y =1所得线段的长度为22. (1)求椭圆C 的方程;(2)动直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,⊙N 的半径为|NO |.设D 为AB 的中点,DE ,DF 与⊙N 分别相切于点E ,F ,求∠EDF 的最小值.【答案】(1)22142x y +=;(2)EDF ∠的最小值为π3. 【解析】(1)由椭圆的离心率为22,得2222()a a b =-, 又当1y =时,2222a x a b =-,得2222a a b-=,所以224,2a b ==,因此椭圆方程为22142x y +=.(2)设1122(,),(,)A x y B x y ,联立方程2224y kx mx y =+⎧⎨+=⎩, 得222(21)4240k x kmx m +++-=, 由0∆>得2242m k <+.(*)且122421kmx x k +=+, 因此122221my y k +=+,所以222(,)2121km mD k k -++, 又(0,)N m -, 所以222222()()2121km m ND m k k =-++++ 整理得2242224(13)(21)m k k ND k ++=+ , 因为NF m =,所以2422222224(31)831(21)(21)ND k k k k k NF+++==+++.令283,3t k t =+≥, 故21214t k ++=, 所以2221616111(1)2NDt t NFt t=+=++++ . 令1y t t=+,所以211y t'=-. 当3t ≥时,0y '>,从而1y t t =+在[3,)+∞上单调递增,因此1103t t +≥,等号当且仅当3t =时成立,此时0k =,所以22134ND NF≤+=,由(*)得 22m -<< 且0m ≠.故12NF ND ≥, 设2EDF θ∠=, 则1sin 2NF ND θ=≥ , 所以θ的最小值为π6, 从而EDF ∠的最小值为π3,此时直线l 的斜率是0. 综上所述:当0k =,(2,0)(0,2)m ∈-U 时,EDF ∠取到最小值π3. 【名师点睛】圆锥曲线中的两类最值问题:①涉及距离、面积的最值以及与之相关的一些问题; ②求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些问题.常见解法:①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决; ②代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解. 解答本题时,(1)由22c a =得2a b =,由椭圆C 截直线y =1所得线段的长度为22,得2222a a b -=,求得椭圆的方程为22142x y +=;(2)由2224x y y kx m⎧+=⎨=+⎩,解得22(21)4k x kmx +++ 2240m -=,确定222(,)2121km m D k k -++,4222||3221m DN k k k =+++,结合22ND NF的单调性求EDF ∠的最小值.21.【2017年高考浙江卷】如图,已知抛物线2x y =,点A 11()24-,,39()24B ,,抛物线上的点13(,)()22P x y x -<<.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求||||PA PQ ⋅的最大值. 【答案】(1)(1,1)-;(2)2716. 【解析】本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力.满分15分. (1)设直线AP 的斜率为k ,2114122x k x x -==-+, 因为1322x -<<,所以直线AP 斜率的取值范围是(1,1)-. (2)联立直线AP 与BQ 的方程110,24930,42kx y k x ky k ⎧-++=⎪⎪⎨⎪+--=⎪⎩ 解得点Q 的横坐标是22432(1)Q k k x k -++=+. 因为|P A |=211()2k x ++=21(1)k k ++, |PQ |=222(1)(1)1()1Q k k k x x k -++-=-+,所以3(1)(1)k k PA PQ ⋅--+=.令3()(1)(1)f k k k =--+,因为2()(42)(1)f k k k '=--+,所以 f (k )在区间1(1,)2-上单调递增,1(,1)2上单调递减, 因此当k =12时,||||PA PQ ⋅取得最大值2716. 【名师点睛】本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力.(1)由斜率公式可得AP 的斜率为12x -,再由1322x -<<,得直线AP 的斜率的取值范围;(2)联立直线AP 与BQ 的方程,得Q 的横坐标,进而通过表达||PA 与||PQ 的长度,利用函数3()(1)(1)f k k k =--+的单调性求解||||PA PQ ⋅的最大值.22.【2017年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.【答案】(1)22143x y +=;(2)4737(,)77.【解析】(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=,。
2021-2023年高考数学真题分类汇编:平面解析几何解答题

专题08平面解析几何(解答题)近三年高考真题1.(2023•新高考Ⅰ)在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点1(0,2的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD 的周长大于【解析】(1)设点P 点坐标为(,)x y ,由题意得||y ,两边平方可得:22214y x y y ,化简得:214y x,符合题意.故W 的方程为214y x.(2)解法一:不妨设A ,B ,C 三点在W 上,且AB BC .设21(,)4A a a ,21(,)4B b b ,21(,4C c c ,则22(,)AB b a b a ,22(,)BC c b c b.由题意,0AB BC,即2222()()()()0b a c b b a c b ,显然()()0b a c b ,于是1()()0b a c b .此时,||b a .||1c b .于是{||min b a ,||}1c b .不妨设||1c b ,则1a b b c,则||||||||AB BC b a c b||b a c b|||b a c b||c a1|b c b c设||x b c,则1()(f x x x 322(1)()x f x x ,又11222222222(1)(31)(1)(21)()x x x x x f x x x.显然,2x为最小值点.故()(2f x f 故矩形ABCD的周长为2(||||)2()AB BC f x .注意这里有两个取等条件,一个是||1b c,另一个是||b c ,这显然是无法同时取到的,所以等号不成立,命题得证.解法二:不妨设A ,B ,D 在抛物线W 上,C 不在抛物线W上,欲证命题为||||2AB AD .由图象的平移可知,将抛物线W 看作2y x 不影响问题的证明.设(A a ,2)(0)a a ,平移坐标系使A 为坐标原点,则新抛物线方程为22y x ax ,写为极坐标方程,即22sin cos 2cos a ,即2sin 2cos cos a.欲证明的结论为22sin()2cos()sin 2cos 3322||||cos 2cos ()2a a ,也即222sin 2cos ||||cos cos sin sin a a .不妨设22||||cos sin,将不等式左边看成关于a 的函数,根据绝对值函数的性质,其最小值当22sin 0cos cos a 即sin 2cos a时取得,因此欲证不等式为21cos ||cos sin,即21||cos sin ,根据均值不等式,有2|cos sin |由题意,等号不成立,故原命题得证.2.(2023•上海)已知抛物线2:4y x ,在 上有一点A 位于第一象限,设A 的纵坐标为(0)a a .(1)若A 到抛物线 准线的距离为3,求a 的值;(2)当4a 时,若x 轴上存在一点B ,使AB 的中点在抛物线 上,求O 到直线AB 的距离;(3)直线:3l x ,抛物线上有一异于点A 的动点P ,P 在直线l 上的投影为点H ,直线AP 与直线l 的交点为Q .若在P 的位置变化过程中,||4HQ 恒成立,求a 的取值范围.【解析】(1)抛物线2:4y x 的准线为1x ,由于A 到抛物线 准线的距离为3,则点A 的横坐标为2,则2428(0)a a ,解得a ;(2)当4a 时,点A 的横坐标为2444,则(4,4)A ,设(,0)B b ,则AB 的中点为4(,2)2b ,由题意可得24242b ,解得2b ,所以(2,0)B ,则402423AB k,由点斜式可得,直线AB 的方程为2(2)3y x ,即2340x y ,所以原点O 到直线AB13;(3)如图,设22(,),(,),(3,)(0)44t a P t A a H t t a ,则22444AP t a k t a t a,故直线AP 的方程为24()4a y a x t a,令3x ,可得24(3)4a y a t a ,即24(3,(3))4a Q a t a,则24|||(3)|4a HQ t a t a,依题意,24|(3)|44a t a t a恒成立,又24(3)2204a t a a a t a ,则最小值为24a ,即2a ,即2a ,则221244a a a ,解得02a ,又当2a 时,1624442t t,当且仅当2t 时等号成立,而a t ,即当2a 时,也符合题意.故实数a 的取值范围为(0,2].3.(2022•上海)设有椭圆方程2222:1(0)x y a b a b,直线:0l x y , 下端点为A ,M 在l 上,左、右焦点分别为1(F ,0)、2F ,0).(1)2a ,AM 中点在x 轴上,求点M 的坐标;(2)直线l 与y 轴交于B ,直线AM 经过右焦点2F ,在ABM 中有一内角余弦值为35,求b ;(3)在椭圆 上存在一点P 到l 距离为d ,使12||||6PF PF d ,随a 的变化,求d 的最小值.【解析】(1)由题意可得2,a b c ,22:1,(0,42x y A ,AM ∵的中点在x 轴上,M ,代入0x y 得M .(2)由直线方程可知B ,①若3cos 5BAM,则4tan 3BAM ,即24tan 3OAF ,234OA OF ,b.②若3cos 5BMA,则4sin 5BMA ,∵4MBA, 34cos()252510MBA AMB ,cos BAMtan 7BAM .即2tan 7OAF , 7OA , 7b ,综上b或27.(3)设(cos ,sin )P a b ,62a ,很明显椭圆在直线的左下方,则62a ,即) ,222a b ∵,) ,)22a ,|sin()|1 ,整理可得(1)(35)0a a ,即513a ,从而58626233d a .即d 的最小值为83.4.(2022•浙江)如图,已知椭圆22112x y .设A ,B 是椭圆上异于(0,1)P 的两点,且点1(0,2Q 在线段AB上,直线PA ,PB 分别交直线132y x 于C ,D 两点.(Ⅰ)求点P 到椭圆上点的距离的最大值;(Ⅱ)求||CD 的最小值.【解析】(Ⅰ)设椭圆上任意一点(,)M x y ,则222222||(1)12122111213PM x y y y y y y ,[1y ,1],而函数211213z y y 的对称轴为1[1,1]11y ,则其最大值为21114411(213111111, 1441211||1111max PM,即点P 到椭圆上点的距离的最大值为121111;(Ⅱ)设直线11221:,(,),(,)2AB y kx A x y B x y ,联立直线AB 与椭圆方程有2212112y kx x y,消去y 并整理可得,22(121)1290k x kx ,由韦达定理可得,121222129,121121k x x x x k k, 22212121222212366161||()4()121121k k x x x x x x k k k,设3(C x ,3)y ,4(D x ,4)y ,直线111:1y AP y x x ,直线221:1y BP y x x ,联立1111132y y x x y x 以及2211132y y x x y x,可得12341244,(21)1(21)1x x x x k x k x,由弦长公式可得21234124415||1()|||22(21)1(21)1x x CD x x k x k x1212212121225|5|[(21)1][(21)1](21)(21)()1x x x x k x k x k x x k x x66|231555k,当且仅当316k 时等号成立,||CD的最小值为5.5.(2022•北京)已知椭圆2222:1(0)x yE a ba b的一个顶点为(0,1)A,焦距为.(Ⅰ)求椭圆E的方程;(Ⅱ)过点(2,1)P 作斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与x轴交于点M,N.当||2MN 时,求k的值.【解析】(Ⅰ)由题意得,12bc,1b,c ,2a ,椭圆E的方程为2214x y .(Ⅱ)设过点(2,1)P 的直线为1(2)y k x,1(B x,1)y,2(C x,2)y,联立得221(2)141y k xx y,即2222(14)(168)16160k x k k x k k,∵直线与椭圆相交, △2222[(168)]4(14)(1616)0k k k k k,0k,由韦达定理得212216814k kx xk,2122161614k kx xk,111ABykx∵, 直线AB为1111yy xx,令0y ,则111xxy,11(1xMy,0),同理22(1xNy ,0),1212211212211||||||()|11(2)(2)22x x x x x xMNy y k x k x k x x212112122()11||||(2)(2)x xk x x k22|216162(168)41414k k,2|2k,1|2,4k .6.(2022•新高考Ⅱ)已知双曲线2222:1(0,0)x y C a b a b的右焦点为(2,0)F,渐近线方程为y .(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点1(P x ,1)y ,2(Q x ,2)y 在C 上,且120x x ,10y .过P且斜率为Q且斜率为的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立.①M 在AB 上;②//PQ AB ;③||||MA MB .注:若选择不同的组合分别解答,则按第一个解答计分.【解析】(1)由题意可得ba,2 ,解得1a,b ,因此C 的方程为2213y x ,(2)解法一:设直线PQ 的方程为y kx m ,(0)k ,将直线PQ 的方程代入2213y x 可得222(3)230k x kmx m ,△2212(3)0m k ,120x x ∵122203kmx x k ,2122303m x x k,230k,1222333x x k ,设点M 的坐标为(M x ,)M y,则1122))M M M M y y x x y y x x ,两式相减可得1212)M y y x x ,1212()y y k x x ∵,1212)()M x x k x x ,解得23M kmX k ,两式相加可得12122())M y y y x x ,1212()2y y k x x m ∵,12122)()2M y x x k x x m ,解得M y ,3M M y x k,其中k 为直线PQ 的斜率;若选择①②:设直线AB 的方程为(2)y k x ,并设A 的坐标为3(x ,3)y ,B 的坐标为4(x ,4)y ,则3333(2)y k x y,解得3x,3y ,同理可得4x4y 234243k x x k ,342123ky y k ,此时点M 的坐标满足(2)3M M M My k x y x k,解得234221()32M k X x x k ,34261()32M k y y y k ,M 为AB 的中点,即||||MA MB ;若选择①③:当直线AB 的斜率不存在时,点M 即为点(2,0)F ,此时不在直线3y x k上,矛盾,当直线AB 的斜率存在时,设直线AB 的方程为(2)(0)y m x m ,并设A 的坐标为3(x ,3)y ,B 的坐标为4(x ,4)y ,则3333(2)y m x y,解得3x,3y ,同理可得4x,4y 此时234212()23M m x x x m ,34216()23M my y y m,由于点M 同时在直线3y x k 上,故2362m m k,解得k m ,因此//PQ AB .若选择②③,设直线AB 的方程为(2)y k x ,并设A 的坐标为3(x ,3)y ,B 的坐标为4(x ,4)y ,则3333(2)y k x y,解得3x,3y ,同理可得4x4y 设AB 的中点(C C x ,)C y ,则234212()23C k x x x k ,34216()23C ky y y k ,由于||||MA MB ,故M 在AB 的垂直平分线上,即点M 在直线1()C C y y x x k上,将该直线3y x k 联立,解得2223M C k x x k ,263M C ky y k ,即点M 恰为AB 中点,故点M 在直线AB 上.(2)解法二:由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①② ③,或选由②③ ①:由②成立可知直线AB 的斜率存在且不为0.若选①③ ②,则M 为线段AB 的中点,假设AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,从而12x x ,已知不符.综上,直线AB 的斜率存在且不为0,直线AB 的斜率为k ,直线AB 的方程为(2)y k x .则条件①M 在直线AB 上,等价于20000(2)(2)y k x ky k x ,两渐近线的方程合并为2230x y ,联立方程组,消去y 并化简得:2222(3)440k x k x k ,设3(A x ,3)y ,4(B x ,4)y ,线段中点为(N N x ,)N y ,则2342223N x x k x k .26(2)3N N ky k x k ,设0(M x ,0)y ,则条件③||||AM BM 等价于222203030404()()()()x x y y x x y y ,移项并利用平方差公式整理得:3403434034()[2()]()[(2()]0x x x x x y y y y y ,3403403434[2()][2()]0y y x x x y y y x x,00()0N N x x k y y ,3403403434[2()][2()]0y y x x x y y y x x,00()0N N x x k y y ,200283k x ky k ,由题意知直线PM的斜率为QM的斜率为,由1010)y y x x,2020)y y x x,121202)y y x x x ,直线PQ的斜率1201212122)x x x y y m x x x x,直线00:)PM y x x y,即00y y ,代入双曲线的方程为22330x y,即)3y y 中,得0000(()]3y y ,解得P的横坐标为100)]3x y ,同理,2022003()3x y y x ,012002200323x x x x x y x ,03x m y, 条件②//PQ AB 等价于003m k ky x ,综上所述:条件①M 在AB 上等价于200(2)m k ky k x ,条件②//PQ AB 等价于003ky x ,条件③||||AM BM 等价于200283k x ky k .选①② ③:由①②解得20223k x k 20002843k x ky x k , ③成立;选①③ ②:由①③解得:20223k x k ,20263k ky k ,003ky x , ②成立;选②③ ①:由②③解得:20223k x k ,20263k ky k , 02623x k , ①成立.7.(2022•上海)已知椭圆222:1(1)x y a a,A 、B 两点分别为 的左顶点、下顶点,C 、D 两点均在直线:l x a 上,且C 在第一象限.(1)设F 是椭圆 的右焦点,且6AFB,求 的标准方程;(2)若C 、D 两点纵坐标分别为2、1,请判断直线AD 与直线BC 的交点是否在椭圆 上,并说明理由;(3)设直线AD 、BC 分别交椭圆 于点P 、点Q ,若P 、Q 关于原点对称,求||CD 的最小值.【解析】(1)由题可得(0,1)B ,(,0)F c ,因为6AFB,所以1tan tan 63b AFBc c,解得c ,所以214a ,故 的标准方程为2214x y ;(2)直线AD 与直线BC 的交点在椭圆上,由题可得此时(,0)A a ,(0,1)B ,(,2)C a ,(,1)D a ,则直线3:1BC y x a ,直线11:22AD y x a ,交点为3(5a ,4)5,满足2223()45()15a a ,故直线AD 与直线BC 的交点在椭圆上;(3)(0,1)B ,(cos ,sin )P a ,则直线sin 1:1cos BP y x a ,所以sin 1(,1)cos C a,(,0)A a ,(cos ,sin )Q a ,则直线sin :()cos AQ y x a a a,所以2sin (,cos 1D a,所以222222sin cos 4sin cossin 12sin 222222||11cos cos 12222sin cos CD cos sin sin,设tan 2t ,则11||2()21CD t t,因为114a ba b ,所以114411t t t t,则||6CD ,即||CD 的最小值为6.8.(2021•北京)已知椭圆2222:1(0)x y E a b a b的一个顶点(0,2)A ,以椭圆E 的四个顶点围成的四边形面积为.(Ⅰ)求椭圆E 的方程;(Ⅱ)过点(0,3)P 作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB 、AC 分别与直线3y 交于点M 、N ,当||||15PM PN 时,求k 的取值范围.【解析】(Ⅰ)因为椭圆2222:1(0)x y E a b a b过点(0,2)A ,则2b ,又因为以四个顶点围成的四边形面积为,所以1222a b,解得a ,故椭圆E 的标准方程为22154x y;(Ⅱ)由题意,设过点(0,3)P ,斜率为k 的直线为直线l ,设直线l 的方程为(3)(0)y k x ,即3y kx ,当0k 时,直线l 与椭圆E 没有交点,而直线l 交椭圆E 于不同的两点B ,C ,所以0k ,设1(B x ,1)y ,2(C x ,2)y ,联立方程组223154y kx x y,可得22(45)30250k x kx ,则△22(30)425(45)0k k ,解得||1k ,所以1212223025,4545k x x x x k k,则221212121222036(3)(3)3()945k y y kx kx k x x k x x k ,121212224(3)(3)()645y y kx kx k x x k,直线AB 的方程为11(2)(2)(0)0y y x x ,即1122y y x x ,直线AC 的方程为22(2)(2)0)0y y x x,即2222y y x x ,因为直线AB 交3y 于点M ,所以令3y ,则112M x x y ,故11(,3)2x M y ,同理可得22(,3)2x N y ,注意到12225045x x k,所以1x ,2x 同号,因为120y ,220y ,所以M x ,N x 同号,故||||||||||M N M N PM PN x x x x ,则1212211212(2)(2)|||||||22(2)(2)x x x y x y PM PN y y y y 1221121212(3)(3)2()||2()4x kx x kx x x y y y y 121212122()||2()4kx x x x y y y y 22222253024545||20364844545kk k k k k k5||k ,故||||5||PM PN k ,又||||15PM PN ,即5||15k ,即||3k ,又||1k ,所以1||3k ,故k 的取值范围为[3 ,1)(1 ,3].9.(2021•浙江)如图,已知F 是抛物线22(0)y px p 的焦点,M 是抛物线的准线与x 轴的交点,且||2MF .(Ⅰ)求抛物线的方程:(Ⅱ)设过点F 的直线交抛物线于A ,B 两点,若斜率为2的直线l 与直线MA ,MB ,AB ,x 轴依次交于点P ,Q ,R ,N ,且满足2||||||RN PN QN ,求直线l 在x轴上截距的取值范围.【解析】(Ⅰ)依题意,2p ,故抛物线的方程为24y x ;(Ⅱ)由题意得,直线AB 的斜率存在且不为零,设直线:(1)AB y k x ,将直线AB 方程代入抛物线方程可得,2222(24)0k x k x k ,则由韦达定理有,242,1A B A B x x x x k,则4A B y y ,设直线1:(1)AM y k x ,其中11A A y k x,设直线2:(1)BM y k x ,其中21B B yk x ,则12(1)(1)(1)(1)0011(1)(1)(1)(1)(1)(1)A B A B A B A B A B A B A B A B A B A B A B y y y x y y x y k x x k x k x x k x k k x x x x x x x x,2122244(1)(1)1121A B A B y y k k k x x k k,设直线:2()l y x t ,联立2()(1)y x t y k x ,可得22R k t x k ,则2||||||22R k t k kt x t t k k ,联立12()(1)y x t y k x ,可得1122P k t x k ,则111112||||||22P k t k k t x t t k k ,同理可得,222222,||||22Q Q k t k k tx x t k k,又2||||||RN PN QN ,2112212||||222k k t k k tk kt k k k ,即2222(1)()234k kt k t k k ,22222222(1)343(2)12(2)16161243333()(1)(1)(2)(2)(2)22244t k k k t t k k k k k ,224(21)3(21)t t t t ,即21410t t,解得7t或71)t t ;当直线AB 的斜率不存在时,则直线:1AB x ,(1,2)A ,(1,2)B ,(1,0)M ,直线MA 的方程为1y x ,直线MB 的方程为1y x ,设直线:2()l y x t ,则(12,22)P t t ,2122(,)33t t Q ,(1,22)R t ,(,0)N t ,又2||||||RN PN QN,故22(1)(22)t t 解得t满足(,77,1)(1,) .直线l 在x轴上截距的取值范围为(,77,1)(1,) .10.(2021•新高考Ⅰ)在平面直角坐标系xOy中,已知点1(F ,0),2F ,0),点M 满足12||||2MF MF .记M 的轨迹为C .(1)求C 的方程;(2)设点T 在直线12x上,过T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,且||||||||TA TB TP TQ ,求直线AB 的斜率与直线PQ 的斜率之和.【解析】(1)由双曲线的定义可知,M 的轨迹C 是双曲线的右支,设C 的方程为22221(0,0),1x y a b x a b ,根据题意22222c a c a b,解得14a b c,C 的方程为221(1)16y x x ;(2)(法一)设1(,)2T m ,直线AB 的参数方程为1cos 2sin x t y m t,将其代入C 的方程并整理可得,2222(16cos sin )(16cos 2sin )(12)0t m t m ,由参数的几何意义可知,1||TA t ,2||TB t ,则2212222121216117m m t t sin cos cos,设直线PQ 的参数方程为1cos 2sin x y m,1||TP ,2||TQ ,同理可得,212212117m cos ,依题意,22221212117117m m cos cos,则22cos cos ,又 ,故cos cos ,则cos cos 0 ,即直线AB 的斜率与直线PQ 的斜率之和为0.(法二)设1(,)2T t ,直线AB 的方程为11()2y k x t ,1(A x ,1)y ,2(B x ,2)y ,设1212x x ,将直线AB 方程代入C 的方程化简并整理可得,22222111111(16)(2)1604k x k tk x k k t t ,由韦达定理有,22211111212221111624,1616k k t t k k tx x x x k k ,又由111111(,),(,)22A x k x k t T t可得11||)2AT x ,同理可得21||)2BT x ,222111221(1)(12)11||||(1)()()2216k t AT BT k x x k,设直线PQ 的方程为233441(),(,),(,)2y k x t P x y Q x y ,设3412x x ,同理可得22222(1)(12)||||16k t PT QT k ,又||||||||AT BT PT QT ,则22122212111616k k k k ,化简可得2212k k ,又12k k ,则12k k ,即120k k ,即直线AB 的斜率与直线PQ 的斜率之和为0.11.(2021•乙卷(文))已知抛物线2:2(0)C y px p 的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF,求直线OQ 斜率的最大值.【解析】(1)由题意知,2p ,24y x .(2)由(1)知,抛物线2:4C y x ,(1,0)F ,设点Q 的坐标为(,)m n ,则(1,)QF m n,9(99,9)PQ QF m nP 点坐标为(109,10)m n ,将点P 代入C 得21004036n m ,整理得22100362594010n n m ,当0n 时,2100259n n K m n,当0n 时,2101019259325n n K m n n n,当且仅当925n n ,即35n 时,等号成立,取得最大值.故答案为:13.12.(2022•甲卷(文))设抛物线2:2(0)C y px p 的焦点为F ,点(,0)D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,||3MF .(1)求C 的方程;(2)设直线MD ,ND 与C 的另一个交点分别为A ,B ,记直线MN ,AB 的倾斜角分别为 , .当 取得最大值时,求直线AB 的方程.【解析】(1)由题意可知,当x p 时,222y p,得M y,可知||MD ,||2p FD .则在Rt MFD 中,222||||||FD DM FM,得22())92p,解得2p .则C 的方程为24y x ;(2)设1(M x ,1)y ,2(N x ,2)y ,3(A x ,3)y ,4(B x ,4)y ,当MN 与x 轴垂直时,由对称性可知,AB 也与x 轴垂直,此时2,则0 ,由(1)可知(1,0)F ,(2,0)D ,则1212221212124tan 44MN y y y y k y y x x y y,又N 、D 、B 三点共线,则ND BD k k ,即24240022y y x x,242224002244y y y y,得248y y ,即428y y;同理由M 、D 、A 三点共线,得318y y .则34123434124tan 2()y y y y x x y y y y.由题意可知,直线MN 的斜率不为0,设:1MN l x my ,由241y x x my ,得2440y my ,124y y m ,124y y ,则41tan 4m m,41tan 242m m,则11tan tan 12tan()1111tan tan 122m m m m m m,∵1tan m,1tan 2m,tan 与tan 正负相同,22, 当 取得最大值时,tan() 取得最大值,当0m时,1tan()142m m;当0m 时,tan() 无最大值, 当且仅当12m m,即2m 时,等号成立,tan() 取最大值,此时AB 的直线方程为33344()y y x x y y ,即34344()0x y y y y y ,又123412128()888y y y y m y y y y∵34128816y y y y ,AB的方程为4160x,即40x .13.(2023•甲卷(文))已知直线210x y 与抛物线2:2(0)C y px p 交于A ,B两点,||AB .(1)求p ;(2)设F 为C 的焦点,M ,N 为C 上两点,且0FM FN,求MFN 面积的最小值.【解析】设1(A x ,1)y ,2(B x ,2)y ,联立22102(0)x y y px p,消去x 得:2420y py p ,124y y p ,122y y p ,△21680p p ,(21)0p p ,12p,12|||4AB y y ,216848p p ,2260p p ,(23)(2)0p p ,2p ,(2)由(1)知24y x ,所以(1,0)F ,显然直线MN 的斜率不可能为零,设直线:MN x my n ,1(M x ,1)y ,2(N x ,2)y 由24y x x my n,可得2440y m n ,所以124y y m ,124y y n ,△22161600m n m n ,因为0MF NF,所以1212(1)(1)0x x y y ,即1212(1)(1)0my n my n y y ,即221212(1)(1)()(1)0m y y m n y y n ,将124y y m ,24y n ,代入得22461m n n ,224()(1)0m n n ,所以1n ,且2610n n ,解得3n 或3n 设点F 到直线MN 的距离为d ,所以d12|||MN y y1|n ,所以MNF 的面积11||1|22S MN d n,又3n 或3n 3n 时,MNF 的面积2(212min S .14.(2023•甲卷(理))设抛物线2:2(0)C y px p ,直线210x y 与C 交于A ,B 两点,且||AB .(1)求p 的值;(2)F 为22y px 的焦点,M ,N 为抛物线上的两点,且0MF NF,求MNF 面积的最小值.【解析】设1(A x ,1)y ,2(B x ,2)y ,联立22102(0)x y y px p,消去x 得:2420y py p ,124y y p ,122y y p ,△21680p p ,(21)0p p ,12p,12|||4AB y y ,216848p p ,2260p p ,(23)(2)0p p ,2p ;(2)由(1)知24y x ,所以(1,0)F ,显然直线MN 的斜率不可能为零,设直线:MN x my n ,1(M x ,1)y ,2(N x ,2)y ,由24y x x my n,可得2440y my n ,所以124y y m ,124y y n ,△22161600m n m n ,因为0MF NF ,所以1212(1)(1)0x x y y ,即1212(1)(1)0my n my n y y ,即221212(1)(1)()(1)0m y y m n y y n ,将124y y m ,24y n ,代入得22461m n n ,224()(1)0m n n ,所以1n ,且2610n n ,解得3n 或3n 设点F 到直线MN 的距离为d ,所以d12|||MN y y1|n ,所以MNF 的面积11||1|22S MN d n ,又3n 或3n 3n 时,MNF 的面积2(212min S .15.(2023•天津)设椭圆22221(0)x y a b a b的左、右顶点分别为1A ,2A ,右焦点为F ,已知1||3A F ,2||1A F .(Ⅰ)求椭圆方程及其离心率;(Ⅱ)已知点P 是椭圆上一动点(不与顶点重合),直线2A P 交y 轴于点Q ,若△1A PQ 的面积是△2A FP 面积的二倍,求直线2A P 的方程.【解析】(Ⅰ)由题意可知,31a c a c ,解得21a c,222413b a c .则椭圆方程为22143x y ,椭圆的离心率为12c e a ;(Ⅱ)由题意可知,直线2A P 的斜率存在且不为0,当0k 时,直线方程为(2)y k x ,取0x ,得(0,2)Q k .联立22(2)143y k x x y ,得2222(43)1616120k x k x k .△2222(16)4(43)(1612)1440k k k ,221612243P k x k ,得228643P k x k ,则21243P k y k .11212322111216124(2)4()224343A PQ A A Q A A Pk k k S S S k k k .22211261()24343A FP k k S k k . 3221612124343k k k k k ,即223k ,得6(0)2k k ;同理求得当0k 时,62k . 直线2A P 的方程为6(2)2y x .16.(2022•天津)椭圆22221(0)x y a b a b的右焦点为F 、右顶点为A ,上顶点为B ,且满足||3||2BF AB .(1)求椭圆的离心率e ;(2)直线l 与椭圆有唯一公共点M ,与y 轴相交于(N N 异于)M .记O 为坐标原点,若||||OM ON ,且OMN 3【解析】(1)∵22||3||BF aAB a b 22234a a b ,223a b ,2223()a a c ,2223a c ,222633c e a ;(2)由(1)可知椭圆为222213x y a a,即2223x y a ,设直线:l y kx m ,联立2223x y a ,消去y 可得:2222(31)6(3)0k x kmx m a ,又直线l 与椭圆只有一个公共点,△2222364(31)(3)0k m k m a ,2223(31)m a k ,又2331M km x k , 22233131M M k m m y kx m m k k ,又||||OM ON , 222223(()3131km m m k k ,解得213k,3k ,又OMN的面积为2113||||||||2231M km ON x m k ,212224m ,又k 2223(31)m a k ,26a ,22b , 椭圆的标准方程为22162x y .17.(2022•新高考Ⅰ)已知点(2,1)A 在双曲线2222:1(1)1x y C a a a 上,直线l 交C 于P ,Q 两点,直线AP ,AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ,求PAQ 的面积.【解析】(1)将点A 代入双曲线方程得224111a a ,化简得42440a a ,22a ,故双曲线方程为2212x y ,由题显然直线l 的斜率存在,设:l y kx m ,设1(P x ,12)(y Q x ,2)y ,则联立双曲线得:222(21)4220k x kmx m ,故122421km x x k ,21222221m x x k ,12121212111102222AP AQ y y kx m kx m k k x x x x ,化简得:12122(12)()4(1)0kx x m k x x m ,故2222(22)4(12)(4(1)02121k m km m k m k k ,即(1)(21)0k m k ,而直线l 不过A 点,故1k ;(2)设直线AP 的倾斜角为,由tan PAQ22tan21tan 2PAQ PAQ,得tan 22PAQ 由2PAQ , 2PAQ,得tan AP k,即1112y x ,联立1112y x ,及221112x y得1110533x y ,同理22x y 故12122068,39x x x x ,而12||2|,|||2|AP x AQ x,由tan PAQsin 3PAQ,故12121||||sin 2()4|29PAQ S AP AQ PAQ x x x x .18.(2023•新高考Ⅱ)已知双曲线C中心为坐标原点,左焦点为( 0).(1)求C 的方程;(2)记C 的左、右顶点分别为1A ,2A ,过点(4,0) 的直线与C 的左支交于M ,N 两点,M 在第二象限,直线1MA 与2NA 交于P ,证明P 在定直线上.【解析】(1)双曲线C中心为原点,左焦点为( 0),则222c a b c c e a,解得24a b ,故双曲线C 的方程为221416x y ;(2)证明:过点(4,0) 的直线与C 的左支交于M ,N 两点,则可设直线MN 的方程为4x my ,1(M x ,1)y ,2(N x ,2)y ,记C 的左,右顶点分别为1A ,2A ,则1(2,0)A ,2(2,0)A ,联立224416x my x y ,化简整理可得,22(41)32480m y my ,故△222(32)448(41)2641920m m m 且2410m ,1223241m y y m ,1224841y y m ,直线1MA 的方程为11(2)2y y x x,直线2NA 方程22(2)2y y x x ,故21211212(2)(2)22(2)(6)y x y my x x y x y my 121211212()26my y y y y my y y 12212483222414148641m m y m m m y m 1212162141483641m y m m y m ,故2123x x ,解得1x ,所以1P x ,故点P 在定直线1x 上运动.19.(2021•上海)已知22:12x y ,1F ,2F 是其左、右焦点,直线l 过点(P m,0)(m ,交椭圆于A ,B 两点,且A ,B 在x 轴上方,点A 在线段BP 上.(1)若B 是上顶点,11||||BF PF ,求m 的值;(2)若1213F A F A ,且原点O 到直线l的距离为15,求直线l 的方程;(3)证明:对于任意m 12//F A F B 的直线有且仅有一条.【解析】(1)因为 的方程:2212x y ,所以22a ,21b ,所以2221c a b ,所以1(1,0)F ,2(1,0)F ,若B 为 的上顶点,则(0,1)B ,所以1||BF ,1||1PF m ,又11||||BF PF ,所以1m(2)设点A ,sin ) ,则2221211)213F A F A sin cos sin ,因为A 在线段BP 上,横坐标小于0,解得cos ,故()33A ,设直线l的方程为(0)33y kx k ,由原点O 到直线l,则15d ,化简可得231030k k ,解得3k 或13k ,故直线l的方程为13y x或3y x(舍去,无法满足m ,所以直线l的方程为139y x ;(3)联立方程组2212y kx km x y ,可得22222(12)4220k x k mx k m ,设1(A x ,1)y ,2(B x ,2)y ,则222121222422,1212k m k m x x x x k k ,因为12//F A F B ,所以2112(1)(1)x y x y ,又y kx km ,故化简为122212x x k ,又122216882||||1212k k m x x k k ,两边同时平方可得,2224210k k m ,整理可得22142k m ,当m 时,221042k m ,因为点A ,B 在x 轴上方,所以k 有且仅有一个解,故对于任意m ,使得12//F A F B 的直线有且仅有一条.20.(2021•甲卷(文))在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为 .(1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为(1,0),M 为C 上的动点,点P满足AP ,写出P 的轨迹1C 的参数方程,并判断C 与1C 是否有公共点.【解析】(1)由极坐标方程为,得2cos ,化为直角坐标方程是22x y ,即22(2x y,表示圆心为C 0)(2)【解法1】根据题意知,点P 的轨迹是以A为缩放比例将圆1C 作位似变换得到的,因此1C的圆心为(3 0),半径差为2 ,所以圆C 内含于圆1C ,圆C 与圆1C 没有公共点.【解法2】设点P 的直角坐标为(,)x y ,1(M x ,1)y ,因为(1,0)A ,所以(1,)AP x y ,1(1AM x ,1)y ,由AP ,即1111)x x y ,解得11(1)122x x y y ,所以1)1M x)y ,代入C的方程得221)1)2x ,化简得点P的轨迹方程是22(34x y,表示圆心为1(3C ,0),半径为2的圆;化为参数方程是32cos 2sin x y, 为参数;计算1|||(332CC ,所以圆C 与圆1C 内含,没有公共点.21.(2023•北京)已知椭圆2222:1(0)x y E a b a b,A 、C 分别为E 的上、下顶点,B 、D 分别为E 的左、右顶点,||4AC .(1)求E 的方程;(2)点P 为第一象限内E 上的一个动点,直线PD 与直线BC 交于点M ,直线PA 与直线2y 交于点N .求证://MN CD .【解析】(1)由题意可得:24b,c e a,222a b c ,解得2b ,29a , 椭圆E 的方程为22194x y .(2)证明:(0,2)A ,(3,0)B ,(0,2)C ,(3,0)D ,直线BC 的方程为132x y ,化为2360x y .设直线AP 的方程为:2y kx ,(0)k ,4(N k ,2) .联立222194y kx x y ,化为:22(49)360k x kx ,解得0x 或23649k k,236(49k P k ,22818)49k k .直线PD 方程为:22218849(3)36349k k y x k k ,即22188(3)273612k y x k k ,与2360x y 联立,解得26432k x k k ,2281896k y k k.264(32k M k k,2281896k k k .2228182296464332MN k k k k k k k k,23CD k,//MN CD .22.(2021•新高考Ⅱ)已知椭圆C 的方程为22221(0)x y a b a b,右焦点为F ,0).(Ⅰ)求椭圆C 的方程;(Ⅱ)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x 相切.证明:M ,N ,F 三点共线的充要条件是||MN .【解析】(Ⅰ)由题意可得,椭圆的离心率3c a,又c所以a 2221b a c ,故椭圆的标准方程为2213x y ;(Ⅱ)证明:先证明充分性,当||MN 时,设直线MN 的方程为x ty s ,此时圆心(0,0)O 到直线MN的距离1d ,则221s t ,联立方程组2213x ty s x y ,可得222(3)230t y tsy s ,则△22222244(3)(3)12(3)24t s t s t s ,因为2||3MN t ,所以21t ,22s ,因为直线MN 与曲线222(0)x y b x 相切,所以0s,则s ,则直线MN的方程为x ty恒过焦点F ,故M ,N ,F 三点共线,所以充分性得证.若M ,N ,F 三点共线时,设直线MN的方程为x my ,则圆心(0,0)O 到直线MN的距离为1d ,解得21m ,联立方程组2213x my x y,可得22(3)10m y ,即2410y ,所以||44MN所以必要性成立;综上所述,M,N,F三点共线的充要条件是||MN.23.(2021•天津)已知椭圆22221(0)x y a ba b的右焦点为F,上顶点为B,离心率为,且||BF.(1)求椭圆的标准方程;(2)直线l与椭圆有唯一的公共点M,与y轴的正半轴交于点N,过N与BF垂直的直线交x轴于点P.若//MP BF,求直线l的方程.【解析】(1)因为离心率5e,||BF所以222caaa b c,解得a ,2c ,1b ,所以椭圆的方程为2215x y .(2)先证明椭圆22221x ya b上过点(M x,)y的椭圆的切线方程为:00221xx yya b.由于椭圆过点0(x,0)y,则2200221x ya b①,对椭圆求导得22b xya y,即切线的斜率22b xka y,故切线的方程2002()b xy y x xa y,将①代入得00221xx yya b.则切线MN 的方程为0015x x y y ,令0x ,得01N y y,因为PN BF ,所以1PN BF k k ,所以1(12PN k ,解得2NP k ,设1(P x ,0),则01120NPy k x ,即1012x y ,因为//MP BF ,所以MP BF k k ,所以0001122y x y ,即000122y x y ,所以000122x y y,又因为220015x y ,所以22002042115520y y y ,解得06y ,因为0N y ,所以00y ,所以06y,036x ,所以6156y,即0x y .24.(2021•甲卷(文))抛物线C 的顶点为坐标原点O ,焦点在x 轴上,直线:1l x 交C 于P ,Q 两点,且OP OQ .已知点(2,0)M ,且M 与l 相切.(1)求C ,M 的方程;(2)设1A ,2A ,3A 是C 上的三个点,直线12A A ,13A A 均与M 相切.判断直线23A A 与M 的位置关系,并说明理由.【解析】(1)因为1x 与抛物线有两个不同的交点,故可设抛物线C 的方程为:22(0)y px p ,令1x ,则2y p ,根据抛物线的对称性,不妨设P 在x 轴上方,Q 在x 轴下方,故2),(1,2P p Q p ,因为OP OQ ,故112(202p p p,抛物线C 的方程为:2y x ,因为M 与l 相切,故其半径为1,故22:(2)1M x y .另(1)根据抛物线的对称性,由题意可得45POx QOx ,因此点P ,Q 的坐标为(1,1) ,由题意可设抛物线C 的方程为:22(0)y px p ,可得12p ,因此抛物线C 的方程为2y x .而圆M 的半径为圆心M 到直线l 的距离为1,可得M 的方程为22(2)1x y .(2)很明显,对于12A A 或者13A A 斜率不存在的情况以及23A A 斜率为0的情况满足题意.否则:设11(A x ,1)y ,22(A x ,2)y ,33(A x ,3)y .当1A ,2A ,3A 其中某一个为坐标原点时(假设1A 为坐标原点时),设直线12A A 方程为0kx y ,根据点(2,0)M 到直线距离为11,解得k 联立直线12A A 与抛物线方程可得3x ,此时直线23A A 与M 的位置关系为相切,当1A ,2A ,3A 都不是坐标原点时,即123x x x ,直线12A A 的方程为1212()0x y y y y y ,1 ,即22212121(1)230y y y y y ,同理,由对称性可得,22213131(1)230y y y y y ,所以2y ,3y 是方程222111(1)230y t y t y 的两根,则2112323221123,11y y y y y y y y ,依题意有,直线23A A 的方程为2323()0x y y y y y ,令M 到直线23A A 的距离为d ,则有22122223122123213(2)(2)1121()1()1y y y y d y y y y ,此时直线23A A 与M 的位置关系也为相切,综上,直线23A A 与M 相切.(2)另设2(i i A y ,)i y ,1i ,2,3,由直线的两点式可知,直线12A A 的方程为222122122()()()()y y y y y y x y ,化简可得1212()0x y y y y y ,因为直线12A A 与圆M2212121(2)1()y y y y ,整理得22212121(1)230y y y y y ,同理有22213131(1)230y y y y y ,所以2y ,3y 是关于y 的方程222111(1)230y y y y y 的两个根,则2112323221123,11y y y y y y y y ,依题意有,直线23A A 的方程为2323()0x y y y y y ,令M 到直线23A A 的距离为d ,则有22122223122123213(2)(2)1121()1()1y y y y d y y y y ,此时直线23A A 与M 的位置关系也为相切,综上,直线23A A 与M 相切.25.(2023•乙卷(文))已知椭圆2222:1(0)y x C a b a b的离心率为3,点(2,0)A 在C 上.(1)求C 的方程;(2)过点(2,3) 的直线交C 于点P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【解析】(1)由题意,22232c a b a b c,解得32a b c . 椭圆C 的方程为22194y x ;证明:(2)如图,要使过点(2,3) 的直线交C 于点P ,Q 两点,则PQ 的斜率存在且小于0,设:3(2)PQ y k x ,即23y kx k ,0k ,1(P x ,1)y ,2(Q x ,2)y ,联立2223194y kx k y x ,得22(49)8(23)16(3)0k x k k x k k .△22[8(23)]4(49)16(3)17280k k k k k k .1228(23)49k k x x k ,12216(3)49k k x x k ,直线11:(2)2y AP y x x,取0x ,得112(0,)2y M x ;直线22:(2)2y AQ y x x,取0x ,得222(0,2y N x . 1212211212222(2)2(2)22(2)(2)y y y x y x x x x x 12211212(23)(2)(23)(2)22()4kx k x kx k x x x x x 121212122(43)()4(23)22()4kx x k x x k x x x x 222216(3)8(23)2(43)4(23)4949216(3)8(23)244949k k k k k k k k k k k k k k k 32322322223296649648723272481082164832481636k k k k k k k k k k k k k k 1082636.MN 的中点为(0,3),为定点.。
平面解析几何 经典题(含答案)

平面解析几何一、直线的倾斜角与斜率 1、直线的倾斜角与斜率(1)倾斜角α的范围000180α≤<(2)经过两点的直线的斜率公式是(3)每条直线都有倾斜角,但并不是每条直线都有斜率 2.两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//l l k k ⇔=。
特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行。
(2)两条直线垂直如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ⊥⇔=-注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。
如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直。
二、直线的方程 1、直线方程的几种形式 名称 方程的形式已知条件局限性点斜式为直线上一定点,k 为斜率不包括垂直于x 轴的直线 斜截式k 为斜率,b 是直线在y 轴上的截距不包括垂直于x 轴的直线两点式是直线上两定点 不包括垂直于x轴和y 轴的直线截距式a 是直线在x 轴上的非零截距,b 是直线在y 轴上的非零截距不包括垂直于x 轴和y 轴或过原点的直线一般式A ,B ,C 为系数无限制,可表示任何位置的直线三、直线的交点坐标与距离公式 三、直线的交点坐标与距离公式 1.两条直线的交点 设两条直线的方程是,两条直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。
2.几种距离(1)两点间的距离平面上的两点间的距离公式(2)点到直线的距离点到直线的距离;(3)两条平行线间的距离 两条平行线间的距离注:(1)求点到直线的距离时,直线方程要化为一般式;(2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算(二)直线的斜率及应用利用斜率证明三点共线的方法:已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线。
三年高考(2019-2021)数学(理)试题分项汇编——专题08 平面解析几何(解答题)(教师版)

专题08 平面解析几何(解答题)1.【2021·北京高考真题】已知椭圆2222:1(0)x y E a b a b+=>>过点(0,2)A -,以四个顶点围成的四边形面积为45. (1)求椭圆E 的标准方程;(2)过点P (0,-3)的直线l 斜率为k ,交椭圆E 于不同的两点B ,C ,直线AB ,AC 交y =-3于点M 、N ,直线AC 交y =-3于点N ,若|PM |+|PN |≤15,求k 的取值范围.【答案】(1)22154x y +=;(2)[3,1)(1,3]--⋃. 【分析】(1)根据椭圆所过的点及四个顶点围成的四边形的面积可求,a b ,从而可求椭圆的标准方程.(2)设()()1122,,,B x y C x y ,求出直线,AB AC 的方程后可得,M N 的横坐标,从而可得PM PN +,联立直线BC 的方程和椭圆的方程,结合韦达定理化简PM PN +,从而可求k 的范围,注意判别式的要求.【详解】(1)因为椭圆过()0,2A -,故2b =, 因为四个顶点围成的四边形的面积为45,故122452a b ⨯⨯=,即5a =, 故椭圆的标准方程为:22154x y +=.(2)设()()1122,,,B x y C x y ,因为直线BC 的斜率存在,故120x x ≠, 故直线112:2y AB y x x +=-,令3y =-,则112M x x y =-+,同理222N xx y =-+. 直线:3BC y kx =-,由2234520y kx x y =-⎧⎨+=⎩可得()224530250k x kx +-+=, 故()22900100450k k ∆=-+>,解得1k <-或1k >.又1212223025,4545k x x x x k k +==++,故120x x >,所以0M N x x > 又1212=22M N x xPM PN x x y y +=++++ ()()2212121222212121222503024545=5253011114545k kkx x x x x x k k k k k kx kx k x x k x x k k --++++===---++-+++故515k ≤即3k ≤,综上,31k -≤<-或13k <≤.2.【2021·全国高考真题】在平面直角坐标系xOy 中,已知点()1F、)2122F MF MF -=,,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)()221116y x x -=≥;(2)0. 【分析】(1)利用双曲线的定义可知轨迹C 是以点1F 、2F 为左、右焦点双曲线的右支,求出a 、b 的值,即可得出轨迹C 的方程;(2)设点1,2T t ⎛⎫⎪⎝⎭,设直线AB 的方程为112y t k x ⎛⎫-=-⎪⎝⎭,设点()11,A x y 、()22,B x y ,联立直线AB 与曲线C 的方程,列出韦达定理,求出TA TB ⋅的表达式,设直线PQ 的斜率为2k ,同理可得出TP TQ ⋅的表达式,由TA TB TP TQ ⋅=⋅化简可得12k k +的值.【详解】因为12122MF MF F F -=<=所以,轨迹C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b -=>>,则22a =,可得1a =,4b ==,所以,轨迹C 的方程为()221116y x x -=≥;(2)设点1,2T t ⎛⎫ ⎪⎝⎭,若过点T 的直线的斜率不存在,此时该直线与曲线C 无公共点, 不妨直线AB 的方程为112y t k x ⎛⎫-=-⎪⎝⎭,即1112y k x t k =+-, 联立1122121616y k x t k x y ⎧=+-⎪⎨⎪-=⎩,消去y 并整理可得()()222111111621602k x k t k x t k ⎛⎫-+-+-+=⎪⎝⎭, 设点()11,A x y 、()22,B x y ,则112x >且212x >. 由韦达定理可得2111221216k k t x x k -+=-,211221116216t k x x k ⎛⎫-+ ⎪⎝⎭=-, 所以,()()()()22122121121122112111*********t k x x TA TB k x x k x x k +++⎛⎫⋅=+⋅-⋅-=+⋅-+= ⎪-⎝⎭, 设直线PQ 的斜率为2k ,同理可得()()2222212116t k TP TQ k ++⋅=-,因为TA TB TP TQ ⋅=⋅,即()()()()22221222121211211616t k t k k k ++++=--,整理可得2212k k =,即()()12120k k k k -+=,显然120k k -≠,故120k k +=. 因此,直线AB 与直线PQ 的斜率之和为0.【点睛】方法点睛:求定值问题常见的方法有两种: (1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.3.【2021·浙江高考真题】如图,已知F 是抛物线()220y px p =>的焦点,M 是抛物线的准线与x 轴的交点,且2MF =,(1)求抛物线的方程;(2)设过点F 的直线交抛物线与A 、B 两点,斜率为2的直线l 与直线,,MA MB AB ,x 轴依次交于点P ,Q ,R ,N ,且2RNPN QN =⋅,求直线l 在x 轴上截距的范围.【答案】(1)24y x =;(2)()(),743743,11,⎡-∞---++∞⎣.【分析】(1)求出p 的值后可求抛物线的方程.(2)设:1AB x ty =+,()()1122,,,A x y B x y ,(),0N n ,联立直线AB 的方程和抛物线的方程后可得12124,4y y y y t =-+=,求出直线,MA MB 的方程,联立各直线方程可求出,,P Q R y y y ,根据题设条件可得()222134121n t n t ++⎛⎫= ⎪-⎝⎭-,从而可求n 的范围.【详解】(1)因为2MF =,故2p =,故抛物线的方程为:24y x =.(2)设:1AB x ty =+,()()1122,,,A x y B x y ,(),0N n , 所以直线:2y l x n =+,由题设可得1n ≠且12t ≠.由214x ty y x=+⎧⎨=⎩可得2440y ty --=,故12124,4y y y y t =-+=, 因为2RN PN QN =⋅,故2R P Q y ⎫=⎪⎪⎭,故2R P Q y y y =⋅. 又()11:11y MA y x x =++,由()11112y y x x y x n⎧=+⎪+⎪⎨⎪=+⎪⎩可得()1112122P n y y x y +=+-,同理()2222122Q n y y x y +=+-,由12x ty yx n =+⎧⎪⎨=+⎪⎩可得()2121R n y t -=-, 所以()()()2212211212121=212222n n y n y t x y x y -++⎡⎤⨯⎢⎥-+-+-⎣⎦, 整理得到()()()2212221112112222y y n t n x y x y -⎛⎫=- ⎪++-+-⎝⎭, ()22221214212222t y y y y -=⎛⎫⎛⎫+-+- ⎪⎪⎝⎭⎝⎭()()()()2222222121212112214212134+++2+442t t t y y y y y y y y y y y y --==+--⨯-+故()222134121n t n t ++⎛⎫= ⎪-⎝⎭-,令21s t =-,则12s t +=且0s ≠,故()22222234242411331+444421t s s s s s s t +++⎛⎫==+=++≥ ⎪⎝⎭-, 故213141n n n ⎧+⎛⎫≥⎪ ⎪-⎨⎝⎭⎪≠⎩即214101n n n ⎧++≥⎨≠⎩,解得7n ≤--71n -+≤<或1n >.故直线l 在x轴上的截距的范围为7n ≤--71n -+≤<或1n >.【点睛】方法点睛:直线与抛物线中的位置关系中的最值问题,往往需要根据问题的特征合理假设直线方程的形式,从而便于代数量的计算,对于构建出的函数关系式,注意利用换元法等把复杂函数的范围问题转化为常见函数的范围问题. 4.【2021·全国高考真题(理)】在直角坐标系xOy 中,C 的圆心为()2,1C ,半径为1.(1)写出C 的一个参数方程;(2)过点()4,1F 作C 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程. 【答案】(1)2cos 1sin x y αα=+⎧⎨=+⎩,(α为参数);(2)2cos()43πρθ+=-2cos()43πρθ-=+【分析】(1)直接利用圆心及半径可得的圆的参数方程;(2)先求得过(4,1)的圆的切线方程,再利用极坐标与直角坐标互化公式化简即可. 【详解】(1)由题意,C 的普通方程为22(2)(1)1x y -+-=,所以C 的参数方程为2cos 1sin x y αα=+⎧⎨=+⎩,(α为参数)(2)由题意,切线的斜率一定存在,设切线方程为1(4)y k x -=-,即140kx y k -+-=,由圆心到直线的距离等于11=,解得k =330y -+-=330y +--=,将cos x ρθ=,sin y ρθ=代入化简得2cos()43πρθ+=-2cos()43πρθ-=【点晴】本题主要考查直角坐标方程与极坐标方程的互化,涉及到直线与圆的位置关系,考查学生的数学运算能力,是一道基础题.5.【2021·全国高考真题(理)】已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB △面积的最大值. 【答案】(1)2p =;(2)【分析】(1)根据圆的几何性质可得出关于p 的等式,即可解出p 的值;(2)设点()11,A x y 、()22,B x y 、()00,P x y ,利用导数求出直线PA 、PB ,进一步可求得直线AB 的方程,将直线AB 的方程与抛物线的方程联立,求出AB 以及点P 到直线AB 的距离,利用三角形的面积公式结合二次函数的基本性质可求得PAB △面积的最大值. 【详解】(1)抛物线C 的焦点为0,2p F ⎛⎫ ⎪⎝⎭,42pFM =+, 所以,F 与圆22:(4)1M x y ++=上点的距离的最小值为4142p+-=,解得2p =; (2)抛物线C 的方程为24x y =,即24x y =,对该函数求导得2x y '=,设点()11,A x y 、()22,B x y 、()00,P x y , 直线PA 的方程为()1112x y y x x -=-,即112x xy y =-,即11220x x y y --=, 同理可知,直线PB 的方程为22220x x y y --=,由于点P 为这两条直线的公共点,则10102020220220x x y y x x y y --=⎧⎨--=⎩,所以,点A 、B 的坐标满足方程00220x x y y --=,所以,直线AB 的方程为00220x x y y --=,联立0022204x x y y x y --=⎧⎪⎨=⎪⎩,可得200240x x x y -+=, 由韦达定理可得1202x x x +=,1204x x y =,所以,AB ===,点P 到直线AB的距离为d =所以,()3220011422PABS AB d x y =⋅==-△, ()()2222000000041441215621x y y y y y y -=-+-=---=-++,由已知可得053y -≤≤-,所以,当05y =-时,PAB△的面积取最大值321202⨯=【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种: 一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.6.【2020年高考全国Ⅰ卷理数】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.【解析】(1)由题设得A (–a ,0),B (a ,0),G (0,1). 则(,1)AG a =,GB =(a ,–1).由AG GB ⋅=8得a 2–1=8,即a =3.所以E 的方程为29x +y 2=1.(2)设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知–3<n <3. 由于直线PA 的方程为y =9t (x +3),所以y 1=9t (x 1+3).直线PB 的方程为y =3t (x –3),所以y 2=3t(x 2–3).可得3y 1(x 2–3)=y 2(x 1+3).由于222219x y +=,故2222(3)(3)9x x y +-=-,可得121227(3)(3)y y x x =-++, 即221212(27)(3)()(3)0.m y y m n y y n ++++++=①将x my n =+代入2219xy +=得222(9)290.m y mny n +++-=所以12229mn y y m +=-+,212299n y y m -=+.代入①式得2222(27)(9)2(3)(3)(9)0.m n m n mn n m +--++++= 解得n =–3(含去),n =32.故直线CD 的方程为3=2x my +,即直线CD 过定点(32,0). 若t =0,则直线CD 的方程为y =0,过点(32,0).综上,直线CD 过定点(32,0).【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.7.【2020年高考全国Ⅱ卷理数】已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且43CD AB =. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【解析】(1)由已知可设2C 的方程为24y cx =,其中c不妨设,A C 在第一象限,由题设得,A B 的纵坐标分别为2b a ,2b a -;,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =.由4||||3CD AB =得2843b c a=,即2322()c c a a ⨯=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12. (2)由(1)知2a c =,b =,故22122:143x y C c c+=,设00(,)M x y ,则220022143x y c c +=,2004y cx =,故20024143x x c c+=.①由于2C 的准线为x c =-,所以0||MF x c =+,而||5MF =,故05x c =-,代入①得22(5)4(5)143c c c c --+=,即2230c c --=,解得1c =-(舍去),3c =. 所以1C 的标准方程为2213627x y +=,2C 的标准方程为212y x =.8.【2020年高考全国Ⅲ卷理数】已知椭圆222:1(05)25x y C m m +=<<,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.【解析】(1=22516m =, 所以C 的方程为221252516x y +=. (2)设(,),(6,)P P Q P x y Q y ,根据对称性可设0Q y >,由题意知0P y >, 由已知可得(5,0)B ,直线BP 的方程为1(5)Qy x y =--,所以||BP y =,||BQ =, 因为||||BP BQ =,所以1P y =,将1P y =代入C 的方程,解得3P x =或3-. 由直线BP 的方程得2Q y =或8.所以点,P Q 的坐标分别为1122(3,1),(6,2);(3,1),(6,8)P Q P Q -.11||PQ 11PQ 的方程为13y x =,点(5,0)A -到直线11PQ的距离为2,故11APQ △的面积为15222⨯=. 22||PQ =22P Q 的方程为71093y x =+,点A 到直线22P Q故22AP Q △的面积为1522=. 综上,APQ △的面积为52. 【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.9.【2020年高考北京】已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值. 【解析】 (1)设椭圆方程为:()222210x y a b a b+=>>,由题意可得:224112a ba b⎧+=⎪⎨⎪=⎩,解得:2282a b ⎧=⎨=⎩, 故椭圆方程为:22182x y +=.(2)设()11,M x y ,()22,N x y ,直线MN 的方程为:()4y k x =+,与椭圆方程22182x y +=联立可得:()222448x k x ++=,即:()()222241326480k x k x k +++-=,则:2212122232648,4141k k x x x x k k --+==++. 直线MA 的方程为:()111122y y x x ++=++, 令4x =-可得:()()()1111111141214122122222P k x k x y x y x x x x ++-++++=-⨯-=-⨯-=++++, 同理可得:()()222142Q k x y x -++=+.很明显0P Q y y <,且:PQPB y PQy =,注意到: ()()()()()()()()122112121242424421212222P Q x x x x x x y y k k x x x x +++++⎛⎫+++=-++=-+⨯ ⎪++++⎝⎭,而:()()()()()122112124242238x x x x x x x x +++++=+++⎡⎤⎣⎦2222648322384141k k k k ⎡⎤⎛⎫--=+⨯+⎢⎥ ⎪++⎝⎭⎣⎦()()()22226483328412041k k k k -+⨯-++=⨯=+,故0,P Q P Q y y y y +==-.从而1PQPB y PQy ==. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.10.【2020年高考浙江】如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于点M (B ,M 不同于A ). (Ⅰ)若116p =,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.【解析】(Ⅰ)由116p =得2C 的焦点坐标是1(,0)32.(Ⅱ)由题意可设直线:(0,0)l x my t m t =+≠≠,点00(,)A x y .将直线l 的方程代入椭圆221:12x C y +=得222(2)220m y mty t +++-=,所以点M 的纵坐标22M mty m =-+.将直线l 的方程代入抛物线22:2C y px =得2220y pmy pt --=,所以02M y y pt =-,解得202(2)p m y m+=,因此22022(2)p m x m +=.由220012x y +=得2421224()2()160m m p m m =+++≥,所以当2m ,10t =时,p 10. 【点晴】本题主要考查直线与圆锥曲线的位置关系的综合应用,涉及到求函数的最值,考查学生的数学运算能力,是一道有一定难度的题.11.【2020年高考江苏】在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值;(3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标.【解析】(1)椭圆22:143x y E +=的长轴长为2a ,短轴长为2b ,焦距为2c ,则2224,3,1a b c ===.所以12AF F △的周长为226a c +=. (2)椭圆E 的右准线为4x =. 设(,0),(4,)P x Q y ,则(,0),(4,)OP x QP x y ==--, 2(4)(2)44,OP QP x x x ⋅=-=--≥-在2x =时取等号.所以OP QP ⋅的最小值为4-.(3)因为椭圆22:143x y E +=的左、右焦点分别为12,F F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥,则123(1,0),(1,0),(1,)2F F A -.所以直线:3430.AB x y -+=设(,)M x y ,因为213S S =,所以点M 到直线AB 距离等于点O 到直线AB 距离的3倍. 由此得|343||30403|355x y -+⨯-⨯+=⨯, 则34120x y -+=或3460x y --=.由2234120,143x y x y -+=⎧⎪⎨+=⎪⎩得2724320x x ++=,此方程无解;由223460,143x y x y --=⎧⎪⎨+=⎪⎩得271240x x --=,所以2x =或27x =-.代入直线:3460l x y --=,对应分别得0y =或127y =-. 因此点M 的坐标为(2,0)或212(,)77--.【点睛】本题考查了椭圆的定义,直线与椭圆相交问题、点到直线距离公式的运用,熟悉运用公式以及根据213S S =推出95d =是解答本题的关键. 12.【2020年新高考全国Ⅰ卷】已知椭圆C :22221(0)x y a b a b +=>>,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【解析】(1)由题设得22411a b +=,22212a b a -=,解得26a =,23b =. 所以C 的方程为22163x y +=. (2)设11(,)M x y ,22(,)N x y .若直线MN 与x 轴不垂直,设直线MN 的方程为y kx m =+,代入22163x y +=得222(12)4260k x kmx m +++-=. 于是2121222426,1212km m x x x x k k-+=-=++.① 由AM AN ⊥知0AM AN ⋅=,故1212(2)(2)(1)(1)0x x y y --+--=, 可得221212(1)(2)()(1)40k x x km k x x m ++--++-+=.将①代入上式可得22222264(1)(2)(1)401212m kmk km k m k k-+---+-+=++. 整理得(231)(21)0k m k m +++-=.因为(2,1)A 不在直线MN 上,所以210k m +-≠,故2310k m ++=,1k ≠. 于是MN 的方程为21()(1)33y k x k =--≠.所以直线MN 过点21(,)33P -.若直线MN 与x 轴垂直,可得11(,)N x y -.由0AM AN ⋅=得1111(2)(2)(1)(1)0x x y y --+---=.又2211163x y +=,可得2113840x x -+=.解得12x =(舍去),123x =. 此时直线MN 过点21(,)33P -.令Q 为AP 的中点,即41(,)33Q .若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故1||||2DQ AP ==. 若D 与P 重合,则1||||2DQ AP =. 综上,存在点41(,)33Q ,使得||DQ 为定值.【点睛】本题考查椭圆的标准方程和性质,圆锥曲线中的定点定值问题,关键是第二问中证明直线MN 经过定点,并求得定点的坐标,属综合题,难度较大.13.【2020年新高考全国Ⅱ卷】已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A为其左顶点,且AM 的斜率为12, (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【解析】(1)由题意可知直线AM 的方程为:13(2)2y x -=-,即24-=-x y . 当y =0时,解得4x =-,所以a =4,椭圆()2222:10x y C a b a b+=>>过点M (2,3),可得249116b +=, 解得b 2=12.所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y +=,可得:()2232448m y y ++=,化简可得:2216123480y my m ++-=,所以()221444163480m m ∆=-⨯-=,即m 2=64,解得m =±8, 与AM 距离比较远的直线方程:28x y -=, 直线AM 方程为:24-=-x y ,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d==由两点之间距离公式可得||AM==.所以△AMN的面积的最大值:1182⨯=.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.14.【2019年高考全国Ⅰ卷理数】已知抛物线C:y2=3x的焦点为F,斜率为32的直线l与C 的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若3AP PB=,求|AB|.【答案】(1)3728y x=-;(2)3.【解析】设直线()()11223:,,,,2l y x t A x y B x y=+.(1)由题设得3,04F⎛⎫⎪⎝⎭,故123||||2AF BF x x+=++,由题设可得1252x x+=.由2323y x ty x⎧=+⎪⎨⎪=⎩,可得22912(1)40x t x t+-+=,则1212(1)9tx x-+=-.从而12(1)592t--=,得78t=-.所以l的方程为3728y x=-.(2)由3AP PB=可得123y y=-.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得2220y y t -+=. 所以122y y +=.从而2232y y -+=,故211,3y y =-=. 代入C 的方程得1213,3x x ==.故||3AB =. 【名师点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及平面向量、弦长的求解方法,解题关键是能够通过直线与抛物线方程的联立,利用根与系数的关系构造等量关系.15.【2019年高考全国Ⅱ卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.【答案】(1)见解析;(2)(i )见解析;(ii )169. 【解析】(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点. (2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.由22142y kxx y =⎧⎪⎨+=⎪⎩得x =记u =,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-. 由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得 22222(2)280k x uk x k u +-+-=.①设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uky k=+. 从而直线PG 的斜率为322212(32)2uk uk k u k kuk -+=-+-+.所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i)得||2PQ =||PG =△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k++===++++‖. 设t =k +1k,则由k >0得t ≥2,当且仅当k =1时取等号. 因为2812tS t=+在[2,+∞)单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为169. 因此,△PQG 面积的最大值为169. 【名师点睛】本题考查了求椭圆的标准方程,以及利用直线与椭圆的位置关系,判断三角形形状以及三角形面积最大值问题,考查了数学运算能力,考查了求函数最大值问题.16.【2019年高考全国Ⅲ卷理数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.【答案】(1)见详解;(2)3或【解析】(1)设()111,,,2D t A x y ⎛⎫- ⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=- .整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -. 故直线AB 的方程为2210tx y -+=. 所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()2121212122,1,121x x t x x y y t x x t +==-+=++=+,()212||21AB x t =-==+.设12,d d 分别为点D ,E 到直线AB的距离,则12d d ==因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭. 由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,S =3;当1t =±时,S =因此,四边形ADBE 的面积为3或【名师点睛】此题第一问是圆锥曲线中的定点问题,第二问是求面积类型,属于常规题型,按部就班地求解就可以,思路较为清晰,但计算量不小.17.【2019年高考北京卷理数】已知抛物线C :x 2=−2py 经过点(2,−1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.【答案】(1)抛物线C 的方程为24x y =-,准线方程为1y =;(2)见解析.【解析】(1)由抛物线2:2C x py =-经过点(2,1)-,得2p =.所以抛物线C 的方程为24x y =-,其准线方程为1y =. (2)抛物线C 的焦点为(0,1)F -. 设直线l 的方程为1(0)y kx k =-≠.由21,4y kx x y=-⎧⎨=-⎩得2440x kx +-=. 设()()1122,,,M x y N x y ,则124x x =-. 直线OM 的方程为11y y x x =. 令1y =-,得点A 的横坐标11A x x y =-. 同理得点B 的横坐标22B x x y =-. 设点(0, )D n ,则1212,1,,1x x DA n DB n y y ⎛⎫⎛⎫=---=--- ⎪ ⎪⎝⎭⎝⎭, 21212(1)x x DA DB n y y ⋅=++2122212(1)44x x n x x =++⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭ 21216(1)n x x =++ 24(1)n =-++.令0DA DB ⋅=,即24(1)0n -++=,则1n =或3n =-. 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,3)-.【名师点睛】本题主要考查抛物线方程的求解与准线方程的确定,直线与抛物线的位置关系,圆的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.18.【2019年高考天津卷理数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4(1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.【答案】(1)22154x y +=;(2或. 【解析】(1)设椭圆的半焦距为c,依题意,24,c b a ==222a b c =+,可得a =2,b =1c =.所以,椭圆的方程为22154x y +=.(2)由题意,设()()()0,,0P P p M P x y x M x ≠,.设直线PB 的斜率为()0k k ≠, 又()0,2B ,则直线PB 的方程为2y kx =+,与椭圆方程联立222,1,54y kx x y =+⎧⎪⎨+=⎪⎩整理得()2245200k x kx ++=,可得22045P k x k =-+,代入2y kx =+得2281045P k y k-=+, 进而直线OP 的斜率24510P p y k x k-=-. 在2y kx =+中,令0y =,得2M x k=-. 由题意得()0,1N -,所以直线MN 的斜率为2k -. 由OP MN ⊥,得2451102k k k-⎛⎫⋅-=- ⎪-⎝⎭,化简得2245k =,从而k =所以,直线PB或. 【名师点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.19.【2019年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.【答案】(1)22143x y +=;(2)3(1,)2E --. 【解析】(1)设椭圆C 的焦距为2c . 因为F 1(−1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥x 轴,所以DF 2222211253()222DF F F -=-=, 因此2a =DF 1+DF 2=4,从而a =2. 由b 2=a 2−c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1. 将x =1代入圆F 2的方程(x −1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(−1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=,解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-. 因此3(1,)2E --.解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(−1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.【名师点睛】本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.20.【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S . (1)求p 的值及抛物线的准线方程;(2)求12S S 的最小值及此时点G 的坐标.【答案】(1)p =2,准线方程为x =−1;(2)最小值为31,此时G (2,0). 【解析】(1)由题意得12p=,即p =2. 所以,抛物线的准线方程为x =−1.(2)设()()(),,,,,A A B B c c A x y B x y C x y ,重心(),G G G x y .令2,0A y t t =≠,则2A x t =.由于直线AB 过F ,故直线AB 方程为2112t x y t-=+,代入24y x =,得()222140t y y t---=,故24B ty =-,即2B y t =-,所以212,B tt ⎛⎫- ⎪⎝⎭.又由于()()11,33G A B c G A B c x x x x y y y y =++=++及重心G 在x 轴上,故220c t y t -+=,得242211222,2,,03t t C t t G t t t ⎛⎫⎛⎫-+⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 所以,直线AC 方程为()222y t t x t-=-,得()21,0Q t-.由于Q 在焦点F 的右侧,故22t >.从而4224221244242222211|2|||322221222211|||1||2|23A ct t t FG y t S t t t t t S t t QG y t t t t-+-⋅⋅--====--+--⋅--⋅-.令22m t =-,则m >0,1221222134342S m S m m m m m=-=--=+++++当m =时,12S S 取得最小值1G (2,0). 【名师点睛】本题主要考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.。
高考数学压轴专题新备战高考《平面解析几何》解析含答案

数学《平面解析几何》复习知识要点一、选择题1.已知抛物线24x y =的焦点为F ,准线为l ,抛物线的对称轴与准线交于点Q ,P 为抛物线上的动点,PF m PQ =,当m 最小时,点P 恰好在以,F Q 为焦点的椭圆上,则椭圆的离心率为( )A .3-B .2-CD 1【答案】D 【解析】由已知,(01)(01)F Q ,,,-,过点P 作PM 垂直于准线,则PM PF =.记PQM α∠=,则sin PF PM m PQPQα===,当α最小时,m 有最小值,此时直线PQ与抛物线相切于点P .设204x P x ⎛⎫ ⎪⎝⎭,,可得(21)P ,±,所以2PQ PF ,==,则2PF PQ a +=,∴1a =,1c =,∴1ce a==,故选D .2.已知双曲线22x a-22y b =1(a >0,b >0)的左顶点与抛物线y 2=2px (p >0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )A .B .C .D .【答案】A 【解析】 【分析】 【详解】解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1), 即点(-2,-1)在抛物线的准线上,又由抛物线y 2=2px 的准线方程为2px =-,则p=4, 则抛物线的焦点为(2,0);则双曲线的左顶点为(-2,0),即a=2;点(-2,-1)在双曲线的渐近线上,则其渐近线方程为12y x =±, 由双曲线的性质,可得b=1;则c =故选A .3.已知椭圆C :2212x y +=的右焦点为F ,直线l :2x =,点∈A l ,线段AF 交椭圆C 于点B ,若3FA FB =u u u v u u u v,则AF u u u v =( )A .2B .2C .3D .3【答案】A 【解析】 【分析】设点()2,A n ,()00,B x y ,易知F (1,0),根据3FA FB =u u u v u u u v,得043x =,013y n =,根据点B 在椭圆上,求得n=1,进而可求得2AF =u u u v【详解】 根据题意作图:设点()2,A n ,()00,B x y .由椭圆C :2212x y += ,知22a =,21b =,21c =,即1c =,所以右焦点F (1,0).由3FA FB =u u u v u u u v,得()()001,31,n x y =-. 所以()0131x =-,且03n y =. 所以043x =,013y n =. 将x 0,y 0代入2212x y +=,得221411233n ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =, 所以()2212112AF n u u u v =-+=+=故选A【点睛】本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.4.设D 为椭圆2215y x +=上任意一点,A (0,-2),B (0,2),延长AD 至点P ,使得|PD|=|BD|,则点P 的轨迹方程为( ) A .x 2+(y -2)2=20 B .x 2+(y -2)2=5 C .x 2+(y +2)2=20 D .x 2+(y +2)2=5 【答案】C 【解析】 【分析】由题意得PA PD DA DB DA =+=+=,从而得到点P 的轨迹是以点A 为圆心,半径为 【详解】由题意得PA PD DA DB DA =+=+,又点D 为椭圆2215y x +=上任意一点,且()()0,2,0,2A B -为椭圆的两个焦点,∴DB DA +=,∴PA =∴点P 的轨迹是以点A 为圆心,半径为 ∴点P 的轨迹方程为()22220x y ++=. 故选C . 【点睛】本题考查圆的方程的求法和椭圆的定义,解题的关键是根据椭圆的定义得到PA =然后再根据圆的定义得到所求轨迹,进而求出其方程.考查对基础知识的理解和运用,属于基础题.5.设抛物线()2:20C y px p =>的焦点为F ,抛物线C 与圆22525:()416C x y +-='于,A B 两点,且AB =C 的焦点的弦MN 的长为8,则弦MN 的中点到直线2x =-的距离为( )A .2B .5C .7D .9【答案】B 【解析】 【分析】易得圆C '过原点,抛物线22y px =也过原点,联立圆和抛物线方程由AB 求得交点坐标,从而解出抛物线方程,根据抛物线定义即可求得弦MN 的中点到直线2x =-的距离. 【详解】圆:22525:,416C x y ⎛⎫+-= ⎪⎝⎭'即为2252x y y +=,可得圆经过原点.抛物线22y px =也过原点. 设()()0,0,,,0A B m n m >. 由5AB =可得225m n +=, 又2252m n n +=联立可解得2,1n m ==. 把()1,2B 代人22y px =,解得2p =,故抛物线方程为24y x =,焦点为()1,0F ,准线l 的方程为1x =-.如图,过,M N 分别作ME l ⊥于E ,NK l ⊥于K ,可得,MF ME NK NF ==,即有MN MF NF ME KN =+=+|. 设MN 的中点为0P ,则0P 到准线l 的距离11(|)422EM KNI MN +==, 则MN 的中点0P ,到直线2x =-的距离是415+=. 故选:B 【点睛】本题考查抛物线的几何性质,考查学生的分析问题,解决问题的能力,数形结合思想.属于一般性题目.6.已知直线()()():21110l k x k y k R ++++=∈与圆()()221225x y -+-=交于A ,B 两点,则弦长AB 的取值范围是( )A .[]4,10B .[]3,5C .[]8,10D .[]6,10【答案】D 【解析】 【分析】由直线()()21110k x k y ++++=,得出直线恒过定点()1,2P -,再结合直线与圆的位置关系,即可求解. 【详解】由直线()()():21110l k x k y k R ++++=∈,可得()210k x y x y ++++=, 又由2010x y x y +=⎧⎨++=⎩,解得12x y =⎧⎨=-⎩,即直线恒过定点()1,2P -,圆心()1,2C ,当CP l ⊥时弦长最短,此时2222AB CP r ⎛⎫+= ⎪⎝⎭,解得min 6AB =,再由l 经过圆心时弦长最长为直径210r =, 所以弦长AB 的取值范围是[]6,10. 故选:D. 【点睛】本题主要考查了直线系方程的应用,以及直线与圆的位置关系的应用,其中解答中熟练利用直线的方程,得出直线恒过定点,再结合直线与圆的位置关系求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.7.已知抛物线24y x =上有三点,,A B C ,,,AB BC CA 的斜率分别为3,6,2-,则ABC ∆的重心坐标为( )A .14,19⎛⎫⎪⎝⎭B .14,09⎛⎫⎪⎝⎭C .14,027⎛⎫⎪⎝⎭D .14,127⎛⎫⎪⎝⎭【答案】C 【解析】 【分析】设()()()112233,,,,,A x y B x y C x y ,进而用坐标表示斜率即可解得各点的纵坐标,进一步可求横坐标,利用重心坐标公式即可得解. 【详解】设()()()112233,,,,,,A x y B x y C x y 则1212221212124344AB y y y y k y y x x y y --====-+-,得1243y y +=, 同理234263y y +==,31422y y +==--,三式相加得1230y y y ++=, 故与前三式联立,得211231241,2,,3349y y y y x =-==-==,22214y x ==,233449y x ==,则12314327x x x ++=.故所求重心的坐标为14,027⎛⎫⎪⎝⎭,故选C. 【点睛】本题主要考查了解析几何中常用的数学方法,集合问题坐标化,进而转化为代数运算,对学生的能力有一定的要求,属于中档题.8.已知直线()0y kx k =≠与双曲线()222210,0x y a b a b-=>>交于,A B 两点,以AB 为直径的圆恰好经过双曲线的右焦点F ,若ABF ∆的面积为24a ,则双曲线的离心率为 A .2 B .3C .2D .5【答案】D 【解析】 【分析】通过双曲线和圆的对称性,将ABF ∆的面积转化为FBF ∆'的面积;利用焦点三角形面积公式可以建立a 与b 的关系,从而推导出离心率. 【详解】由题意可得图像如下图所示:F '为双曲线的左焦点AB Q 为圆的直径 90AFB ∴∠=o根据双曲线、圆的对称性可知:四边形AFBF '为矩形12ABF AFBF FBF S S S ''∆∆∴== 又2224tan 45FBF b S b a ∆'===o,可得:225c a = 25e ∴= 5e ⇒=本题正确选项:D 【点睛】本题考查双曲线的离心率求解,离心率问题的求解关键在于构造出关于,a c 的齐次方程,从而配凑出离心率的形式.9.已知点P 在抛物线24y x =上,那么点P 到点(2,1)Q 的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A .(1,14) B .1(,1)4-C .(1,2)D .(1,2)-【答案】A 【解析】 【分析】 【详解】试题分析:抛物线24y x =焦点为F (1,0),准线为1x =-,作PQ 垂直于准线,垂足为M 根据抛物线定义: ,PQ PF PQ PM +=+,根据三角形两边距离之和大于第三边,直角三角形斜边大于直角边知:PQ PM +的最小值是点Q 到抛物线准线1x =-的距离;所以点P 纵坐标为1,则横坐标为14,即(1,14),故选A 考点:抛物线的定义及几何性质的运用.10.过双曲线()2222100x y a b a b-=>>,的右焦点且垂直于x 轴的直线与双曲线交于A B ,两点,OAB ∆的面积为3,则双曲线的离心率为( )A .2B .3 C .2D .3【答案】D 【解析】 【分析】令x c =,代入双曲线方程可得2by a=±,由三角形的面积公式,可得,a b 的关系,由离心率公式计算可得所求值. 【详解】右焦点设为F ,其坐标为(),0c令x c =,代入双曲线方程可得2by a=±=±OAB V 的面积为2122b c a ⋅⋅= b a ⇒=可得3c e a ==== 本题正确选项:D 【点睛】本题考查双曲线的对称性、考查双曲线的离心率和渐近线方程,属于中档题.11.双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,焦点到渐近线的距离为3,则C 的焦距等于( ). A .2 B .22C .4D .42【答案】C 【解析】试题分析:设双曲线的焦距为2c ,双曲线的渐进线方程为,由条件可知,,又,解得,故答案选C .考点:双曲线的方程与几何性质12.已知曲线()2222:100x y C a b a b-=>,>的左、右焦点分别为12,,F F O 为坐标原点,P是双曲线在第一象限上的点,MO OP =u u u u v u u u v,直线2PF 交双曲线C 于另一点N ,若122PF PF =,且2120MF N ∠=︒则双曲线C 的离心率为( )A 23B 7C 3D 2【答案】B 【解析】 【分析】由题意结合双曲线的定义可得124,2PF a PF a == ,在三角形12PF F 中,由余弦定理可得2224208c a a =+,据此计算双曲线的离心率即可. 【详解】由题意,122PF PF =,由双曲线的定义可得,122PF PF a -= ,可得124,2PF a PF a == ,由四边形12PF MF 为平行四边形,又2120MF N ∠=︒,可得12120F PF ∠=︒, 在三角形12PF F 中,由余弦定理可得2224164242cos120c a a a a =+-⋅⋅⋅︒ , 即有2224208c a a =+,即227c a =,可得7c a =,即7ce a==【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).13.已知点M 是抛物线24x y =上的一动点,F 为抛物线的焦点,A 是圆C :22(1)(4)1x y -+-=上一动点,则||||MA MF +的最小值为( )A .3B .4C .5D .6【答案】B 【解析】 【分析】根据抛物线定义和三角形三边关系可知当,,M A P 三点共线时,MA MF +的值最小,根据圆的性质可知最小值为CP r -;根据抛物线方程和圆的方程可求得CP ,从而得到所求的最值. 【详解】如图所示,利用抛物线的定义知:MP MF =当,,M A P 三点共线时,MA MF +的值最小,且最小值为1CP r CP -=-Q 抛物线的准线方程:1y =-,()1,4C415CP ∴=+= ()min 514MA MF ∴+=-=本题正确选项:B 【点睛】本题考查线段距离之和的最值的求解,涉及到抛物线定义、圆的性质的应用,关键是能够找到取得最值时的点的位置,从而利用抛物线和圆的性质来进行求解.14.点为椭圆的一个焦点,若椭圆上存在点使(为坐标原点)为正三角形,则椭圆的离心率为( ) A .B .C .D .【答案】B 【解析】 【分析】为正三角形,点在椭圆上,代入椭圆方程,计算得到.【详解】由题意,可设椭圆的焦点坐标为, 因为为正三角形,则点在椭圆上,代入得,即,得,解得,故选B . 【点睛】本题考查了椭圆离心率的计算,意在考查学生的计算能力.15.已知抛物线22(0)y px p =>交双曲线22221(0,0)x y a b a b-=>>的渐近线于A ,B 两点(异于坐标原点O 5AOB ∆的面积为32,则抛物线的焦点为( ) A .(2,0) B .(4,0)C .(6,0)D .(8,0)【答案】B 【解析】 【分析】由题意可得2ba=,设点A 位于第一象限,且(),A m n ,结合图形的对称性列出方程组确定p 的值即可确定焦点坐标. 【详解】2222222215c a b b e a aa +===+=,∴2b a =, 设点A 位于第一象限,且(),A m n ,结合图形的对称性可得:22322n m mn n pm ⎧=⎪⎪=⎨⎪=⎪⎩,解得:8p =,∴抛物线的焦点为()4,0,故选B .【点睛】 本题主要考查圆锥曲线的对称性,双曲线的渐近线,抛物线焦点坐标的求解等知识,意在考查学生的转化能力和计算求解能力.16.过双曲线22134x y -=的左焦点1F 引圆223x y +=的切线,切点为T ,延长1F T 交双曲线右支于P 点,M 为线段1F P 的中点,O 为坐标原点,则MO MT -=( ) A .1B .23-C .13+D .2【答案】B【解析】【分析】根据三角形的中位线性质,双曲线的定义,及圆的切线性质,即可得到结论.【详解】由图象可得()1111||MO MT MO MF TF MO MF TF -=--=-+=()(22211112322322PF PF OF OT -+-=⋅-+= 故选:B.【点睛】 本题考查圆与双曲线的综合,解题的关键是正确运用双曲线的定义,三角形的中位线性质.17.已知12F F 分别为双曲线()222210,0x y a b a b -=>>的左、右焦点,P 为双曲线上一点,2PF 与x 轴垂直,1230PF F ∠=︒,且焦距为23,则双曲线的渐近线方程为( ) A .3y x =±B .2y x =±C .2y x =±D .3y x =±【答案】B【解析】【分析】先求出c 的值,再求出点P 的坐标,可得22b PF a =,再由已知求得1PF ,然后根据双曲线的定义可得b a的值,则答案可求. 【详解】 解:由题意,223c =,解得3c =,∵()2,0F c ,设(),P c y ,∴22221x y a b-=,解得2b y a =±, ∴22b PF a=, ∵1230PF F ∠=︒,∴21222b PF PF a==, 由双曲线定义可得:2122b PF PF a a-==, 则222a b =,即2b a=. ∴双曲线的渐近线方程为2y x =±.故选:B .【点睛】本题考查双曲线渐近线方程的求解,难度一般.求解双曲线的渐近线方程,可通过找到,,a b c 中任意两个量的倍数关系进行求解.18.已知点1F ,2F 分别是椭圆1C 和双曲线2C 的公共焦点,1e ,2e 分别是1C 和2C 的离心率,点P 为1C 和2C 的一个公共点,且1223F PF π∠=,若22e =,则1e 的值是( ) AB.4 CD【答案】D【解析】【分析】利用椭圆和双曲线的定义以及余弦定理可得到方程2221243c a a =+,由此得到关于离心率的方程求得结果.【详解】设椭圆长半轴长为1a ,双曲线实半轴长为2a ,焦点坐标为()1,0F c -,()2,0F c , 不妨设P 为第一象限内的点,则1212+=PF PF a ,1222-=PF PF a , 则221212PF PF a a =-, 由余弦定理得:2222212121212242cos 3c PF PF PF PF PF PF PF PF π=+-=++, ()22222211212443c a a a a a ∴=--=+,2212314e e ∴+=,又22e =,2145e ∴=,1e ∴= 故选:D .【点睛】本题考查共焦点的椭圆与双曲线问题的求解,关键是能够熟练应用椭圆和双曲线的定义,利用余弦定理构造等量关系,配凑出关于椭圆和双曲线离心率的方程.19.过坐标轴上的点M 且倾斜角为60°的直线被圆2240x y y +-=所截得的弦长为M 的个数为( )A .1B .2C .3D .4【答案】C【解析】【分析】设出直线方程,根据弦长公式,转化为圆心到直线的距离建立等量关系求解.【详解】由直线的斜率为tan 603k ︒==,设直线的方程为3y x b =-+. 圆2240x y y +-=可化为22(2)4x y +-=,圆心为(0,2),半径为2r =, 则由弦长公式得: 圆心(0,2)到直线3y x b =+的距离为2222232122r d l ⎛⎫⎛⎫-=-= ⎪ ⎪⎭⎝⎭=⎪⎝, 即|2|12b -+=,解得0b =,4b =,故直线的方程为3y x =或34y x =+. 直线3y x =过坐标轴上的点(0,0),直线34y x =+过坐标轴上的点()0,4与43,0⎛⎫- ⎪ ⎪⎝⎭,故点M 的个数为3. 故选:C.【点睛】此题考查直线与圆的位置关系,根据弦长公式将弦长问题转化为圆心到直线的距离求解.20.如图,12,F F 是双曲线221:13y C x -=与椭圆2C 的公共焦点,点A 是1C ,2C 在第一象限的公共点,若112F A F F =,则2C 的离心率是( )A .13B .15C .23D .25【答案】C【解析】由221:13y C x -=知2c =,1124F A F F == ∵122F A F A -=∴22F A =∵由椭圆得定义知1226a F A F A =+=∴23,3c a e a === 故选C。
专题08 平面解析几何(解答题)(解析版)

专题08 平面解析几何(解答题)1.【2021·北京高考真题】已知椭圆2222:1(0)x y E a b a b+=>>过点(0,2)A -,以四个顶点围成的四边形面积为(1)求椭圆E 的标准方程;(2)过点P (0,-3)的直线l 斜率为k ,交椭圆E 于不同的两点B ,C ,直线AB ,AC 交y =-3于点M 、N ,直线AC 交y =-3于点N ,若|PM |+|PN |≤15,求k 的取值范围.【答案】(1)22154x y +=;(2)[3,1)(1,3]--⋃. 【分析】(1)根据椭圆所过的点及四个顶点围成的四边形的面积可求,a b ,从而可求椭圆的标准方程. (2)设()()1122,,,B x y C x y ,求出直线,AB AC 的方程后可得,M N 的横坐标,从而可得PM PN +,联立直线BC 的方程和椭圆的方程,结合韦达定理化简PM PN +,从而可求k 的范围,注意判别式的要求.【详解】(1)因为椭圆过()0,2A -,故2b =,因为四个顶点围成的四边形的面积为1222a b ⨯⨯=,即a = 故椭圆的标准方程为:22154x y +=.(2)设()()1122,,,B x y C x y ,因为直线BC 的斜率存在,故120x x ≠, 故直线112:2y AB y x x +=-,令3y =-,则112M x x y =-+,同理222N xx y =-+. 直线:3BC y kx =-,由2234520y kx x y =-⎧⎨+=⎩可得()224530250k x kx +-+=, 故()22900100450k k ∆=-+>,解得1k <-或1k >.又1212223025,4545k x x x x k k +==++,故120x x >,所以0M N x x > 又1212=22M N x xPM PN x x y y +=++++ ()()2212121222212121222503024545=5253011114545k kkx x x x x x k k k k k kx kx k x x k x x k k --++++===---++-+++故515k ≤即3k ≤,综上,31k -≤<-或13k <≤.2.【2021·全国高考真题】在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M 的轨迹为C . (1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)()221116y x x -=≥;(2)0. 【分析】(1)利用双曲线的定义可知轨迹C 是以点1F 、2F 为左、右焦点双曲线的右支,求出a 、b 的值,即可得出轨迹C 的方程;(2)设点1,2T t ⎛⎫⎪⎝⎭,设直线AB 的方程为112y t k x ⎛⎫-=-⎪⎝⎭,设点()11,A x y 、()22,B x y ,联立直线AB 与曲线C 的方程,列出韦达定理,求出TA TB ⋅的表达式,设直线PQ 的斜率为2k ,同理可得出TP TQ ⋅的表达式,由TA TB TP TQ ⋅=⋅化简可得12k k +的值.【详解】因为12122MF MF F F -=<=所以,轨迹C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b -=>>,则22a =,可得1a =,4b =,所以,轨迹C 的方程为()221116y x x -=≥;(2)设点1,2T t ⎛⎫ ⎪⎝⎭,若过点T 的直线的斜率不存在,此时该直线与曲线C 无公共点,不妨直线AB 的方程为112y t k x ⎛⎫-=-⎪⎝⎭,即1112y k x t k =+-, 联立1122121616y k x t k x y ⎧=+-⎪⎨⎪-=⎩,消去y 并整理可得()()222111111621602k x k t k x t k ⎛⎫-+-+-+= ⎪⎝⎭,设点()11,A x y 、()22,B x y ,则112x >且212x >. 由韦达定理可得2111221216k k t x x k -+=-,211221116216t k x x k ⎛⎫-+ ⎪⎝⎭=-, 所以,()()()()22122121121122112111*********t k x x TA TB k x x k x x k +++⎛⎫⋅=+⋅-⋅-=+⋅-+= ⎪-⎝⎭, 设直线PQ 的斜率为2k ,同理可得()()2222212116t k TP TQ k ++⋅=-,因为TA TB TP TQ ⋅=⋅,即()()()()22221222121211211616tk t k k k ++++=--,整理可得2212k k =,即()()12120k k k k -+=,显然120k k -≠,故120k k +=. 因此,直线AB 与直线PQ 的斜率之和为0.【点睛】方法点睛:求定值问题常见的方法有两种: (1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.3.【2021·浙江高考真题】如图,已知F 是抛物线()220y px p =>的焦点,M 是抛物线的准线与x 轴的交点,且2MF =,(1)求抛物线的方程;(2)设过点F 的直线交抛物线与A 、B 两点,斜率为2的直线l 与直线,,MA MB AB ,x 轴依次交于点P ,Q ,R ,N ,且2RNPN QN =⋅,求直线l 在x 轴上截距的范围.【答案】(1)24y x =;(2)()(),7743,11,⎡-∞---++∞⎣.【分析】(1)求出p 的值后可求抛物线的方程.(2)设:1AB x ty =+,()()1122,,,A x y B x y ,(),0N n ,联立直线AB 的方程和抛物线的方程后可得12124,4y y y y t =-+=,求出直线,MA MB 的方程,联立各直线方程可求出,,P Q R y y y ,根据题设条件可得()222134121n t n t ++⎛⎫= ⎪-⎝⎭-,从而可求n 的范围.【详解】(1)因为2MF =,故2p =,故抛物线的方程为:24y x =.(2)设:1AB x ty =+,()()1122,,,A x y B x y ,(),0N n , 所以直线:2y l x n =+,由题设可得1n ≠且12t ≠.由214x ty y x=+⎧⎨=⎩可得2440y ty --=,故12124,4y y y y t =-+=,因为2RN PN QN =⋅,故2R P Q y ⎫=⎪⎪⎭,故2R P Q y y y =⋅.又()11:11y MA y x x =++,由()11112y y x x y x n⎧=+⎪+⎪⎨⎪=+⎪⎩可得()1112122P n y y x y +=+-,同理()2222122Q n y y x y +=+-,由12x ty yx n =+⎧⎪⎨=+⎪⎩可得()2121R n y t -=-, 所以()()()2212211212121=212222n n y n y t x y x y -++⎡⎤⨯⎢⎥-+-+-⎣⎦, 整理得到()()()2212221112112222y y n t n x y x y -⎛⎫=- ⎪++-+-⎝⎭, ()22221214212222t y y y y -=⎛⎫⎛⎫+-+- ⎪⎪⎝⎭⎝⎭()()()()2222222121212112214212134+++2+442t t t y y y y y y y y y y y y --==+--⨯-+故()222134121n t n t ++⎛⎫= ⎪-⎝⎭-, 令21s t =-,则12s t +=且0s ≠, 故()22222234242411331+444421t s s s s s s t +++⎛⎫==+=++≥ ⎪⎝⎭-,故213141n n n ⎧+⎛⎫≥⎪ ⎪-⎨⎝⎭⎪≠⎩即214101n n n ⎧++≥⎨≠⎩, 解得7n ≤--71n -+≤<或1n >.故直线l 在x 轴上的截距的范围为7n ≤--71n -+≤<或1n >.【点睛】方法点睛:直线与抛物线中的位置关系中的最值问题,往往需要根据问题的特征合理假设直线方程的形式,从而便于代数量的计算,对于构建出的函数关系式,注意利用换元法等把复杂函数的范围问题转化为常见函数的范围问题.4.【2021·全国高考真题(理)】在直角坐标系xOy 中,C 的圆心为()2,1C ,半径为1.(1)写出C 的一个参数方程;(2)过点()4,1F 作C 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.【答案】(1)2cos 1sin x y αα=+⎧⎨=+⎩,(α为参数);(2)2cos()43πρθ+=-2cos()43πρθ-=【分析】(1)直接利用圆心及半径可得的圆的参数方程;(2)先求得过(4,1)的圆的切线方程,再利用极坐标与直角坐标互化公式化简即可. 【详解】(1)由题意,C 的普通方程为22(2)(1)1x y -+-=,所以C 的参数方程为2cos 1sin x y αα=+⎧⎨=+⎩,(α为参数)(2)由题意,切线的斜率一定存在,设切线方程为1(4)y k x -=-,即140kx y k -+-=,由圆心到直线的距离等于11=,解得k =330y -+-=330y +--=, 将cos x ρθ=,sin y ρθ=代入化简得2cos()43πρθ+=2cos()43πρθ-=【点晴】本题主要考查直角坐标方程与极坐标方程的互化,涉及到直线与圆的位置关系,考查学生的数学运算能力,是一道基础题.5.【2021·全国高考真题(理)】已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4. (1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB △面积的最大值.【答案】(1)2p =;(2)【分析】(1)根据圆的几何性质可得出关于p 的等式,即可解出p 的值;(2)设点()11,A x y 、()22,B x y 、()00,P x y ,利用导数求出直线PA 、PB ,进一步可求得直线AB 的方程,将直线AB 的方程与抛物线的方程联立,求出AB 以及点P 到直线AB 的距离,利用三角形的面积公式结合二次函数的基本性质可求得PAB △面积的最大值. 【详解】(1)抛物线C 的焦点为0,2p F ⎛⎫ ⎪⎝⎭,42pFM =+, 所以,F 与圆22:(4)1M x y ++=上点的距离的最小值为4142p+-=,解得2p =; (2)抛物线C 的方程为24x y =,即24x y =,对该函数求导得2x y '=,设点()11,A x y 、()22,B x y 、()00,P x y , 直线PA 的方程为()1112x y y x x -=-,即112x xy y =-,即11220x x y y --=, 同理可知,直线PB 的方程为22220x x y y --=,由于点P 为这两条直线的公共点,则10102020220220x x y y x x y y --=⎧⎨--=⎩,所以,点A 、B 的坐标满足方程00220x x y y --=, 所以,直线AB 的方程为00220x x y y --=,联立0022204x x y y x y --=⎧⎪⎨=⎪⎩,可得200240x x x y -+=, 由韦达定理可得1202x x x +=,1204x x y =,所以,AB ===,点P 到直线AB的距离为d =所以,()3220011422PABS AB d x y =⋅==-△, ()()2222000000041441215621x y y y y y y -=-+-=---=-++,由已知可得053y -≤≤-,所以,当05y =-时,PAB △的面积取最大值321202⨯=【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种: 一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.6.【2020年高考全国Ⅰ卷理数】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.【解析】(1)由题设得A (–a ,0),B (a ,0),G (0,1). 则(,1)AG a =,GB =(a ,–1).由AG GB ⋅=8得a 2–1=8,即a =3.所以E 的方程为29x +y 2=1.(2)设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知–3<n <3. 由于直线P A 的方程为y =9t (x +3),所以y 1=9t (x 1+3).直线PB 的方程为y =3t (x –3),所以y 2=3t(x 2–3).可得3y 1(x 2–3)=y 2(x 1+3).由于222219x y +=,故2222(3)(3)9x x y +-=-,可得121227(3)(3)y y x x =-++, 即221212(27)(3)()(3)0.m y y m n y y n ++++++=①将x my n =+代入2219xy +=得222(9)290.m y mny n +++-=所以12229mn y y m +=-+,212299n y y m -=+.代入①式得2222(27)(9)2(3)(3)(9)0.m n m n mn n m +--++++=解得n =–3(含去),n =32.故直线CD 的方程为3=2x my +,即直线CD 过定点(32,0). 若t =0,则直线CD 的方程为y =0,过点(32,0).综上,直线CD 过定点(32,0).【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.7.【2020年高考全国Ⅰ卷理数】已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且43CD AB =.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【解析】(1)由已知可设2C 的方程为24y cx =,其中c =不妨设,A C 在第一象限,由题设得,A B 的纵坐标分别为2b a ,2b a -;,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =.由4||||3CD AB =得2843b c a=,即2322()c c a a ⨯=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2a c =,b =,故22122:143x y C c c+=,设00(,)M x y ,则220022143x y c c +=,2004y cx =,故20024143x x c c+=.①由于2C 的准线为x c =-,所以0||MF x c =+,而||5MF =,故05x c =-,代入①得22(5)4(5)143c c c c--+=,即2230c c --=,解得1c =-(舍去),3c =.所以1C 的标准方程为2213627x y +=,2C 的标准方程为212y x =.8.【2020年高考全国Ⅰ卷理数】已知椭圆222:1(05)25x y C m m +=<<A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.【解析】(1)由题设可得54=,得22516m =, 所以C 的方程为221252516x y +=. (2)设(,),(6,)P P Q P x y Q y ,根据对称性可设0Q y >,由题意知0P y >, 由已知可得(5,0)B ,直线BP 的方程为1(5)Qy x y =--,所以||BP y =||BQ =, 因为||||BP BQ =,所以1P y =,将1P y =代入C 的方程,解得3P x =或3-. 由直线BP 的方程得2Q y =或8.所以点,P Q 的坐标分别为1122(3,1),(6,2);(3,1),(6,8)P Q P Q -.11||PQ =11PQ 的方程为13y x =,点(5,0)A -到直线11PQ,故11APQ △的面积为1522=.22||PQ 22P Q 的方程为71093y x =+,点A 到直线22P Q的距离为26,故22AP Q △的面积为152262⨯=. 综上,APQ △的面积为52. 【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.9.【2020年高考北京】已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅰ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.【解析】 (1)设椭圆方程为:()222210x y a b a b+=>>,由题意可得:224112a ba b⎧+=⎪⎨⎪=⎩,解得:2282a b ⎧=⎨=⎩, 故椭圆方程为:22182x y +=.(2)设()11,M x y ,()22,N x y ,直线MN 的方程为:()4y k x =+,与椭圆方程22182x y +=联立可得:()222448x k x ++=,即:()()222241326480k x k x k +++-=,则:2212122232648,4141k k x x x x k k --+==++. 直线MA 的方程为:()111122y y x x ++=++, 令4x =-可得:()()()1111111141214122122222P k x k x y x y x x x x ++-++++=-⨯-=-⨯-=++++, 同理可得:()()222142Q k x y x -++=+.很明显0P Q y y <,且:PQPB y PQy =,注意到: ()()()()()()()()122112121242424421212222P Q x x x x x x y y k k x x x x +++++⎛⎫+++=-++=-+⨯ ⎪++++⎝⎭,而:()()()()()122112124242238x x x x x x x x +++++=+++⎡⎤⎣⎦2222648322384141k k k k ⎡⎤⎛⎫--=+⨯+⎢⎥ ⎪++⎝⎭⎣⎦()()()22226483328412041k k k k -+⨯-++=⨯=+,故0,P Q P Q y y y y +==-.从而1PQPB y PQy ==. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.10.【2020年高考浙江】如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于点M (B ,M 不同于A ). (Ⅰ)若116p =,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.【解析】(Ⅰ)由116p =得2C 的焦点坐标是1(,0)32.(Ⅰ)由题意可设直线:(0,0)l x my t m t =+≠≠,点00(,)A x y .将直线l 的方程代入椭圆221:12x C y +=得222(2)220m y mty t +++-=,所以点M 的纵坐标22M mty m =-+.将直线l 的方程代入抛物线22:2C y px =得2220y pmy pt --=,所以02M y y pt =-,解得202(2)p m y m +=,因此22022(2)p m x m +=.由220012x y +=得2421224()2()160m m p m m =+++≥,所以当m =t =时,p . 【点晴】本题主要考查直线与圆锥曲线的位置关系的综合应用,涉及到求函数的最值,考查学生的数学运算能力,是一道有一定难度的题.11.【2020年高考江苏】在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值; (3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标.【解析】(1)椭圆22:143x y E +=的长轴长为2a ,短轴长为2b ,焦距为2c ,则2224,3,1a b c ===.所以12AF F △的周长为226a c +=. (2)椭圆E 的右准线为4x =. 设(,0),(4,)P x Q y ,则(,0),(4,)OP x QP x y ==--, 2(4)(2)44,OP QP x x x ⋅=-=--≥-在2x =时取等号.所以OP QP ⋅的最小值为4-.(3)因为椭圆22:143x yE +=的左、右焦点分别为12,F F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥, 则123(1,0),(1,0),(1,)2F F A -.所以直线:3430.AB x y -+=设(,)M x y ,因为213S S =,所以点M 到直线AB 距离等于点O 到直线AB 距离的3倍. 由此得|343||30403|355x y -+⨯-⨯+=⨯, 则34120x y -+=或3460x y --=.由2234120,143x y x y -+=⎧⎪⎨+=⎪⎩得2724320x x ++=,此方程无解;由223460,143x y x y --=⎧⎪⎨+=⎪⎩得271240x x --=,所以2x =或27x =-.代入直线:3460l x y --=,对应分别得0y =或127y =-. 因此点M 的坐标为(2,0)或212(,)77--.【点睛】本题考查了椭圆的定义,直线与椭圆相交问题、点到直线距离公式的运用,熟悉运用公式以及根据213S S =推出95d =是解答本题的关键. 12.【2020年新高考全国Ⅰ卷】已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【解析】(1)由题设得22411a b +=,22212a b a -=,解得26a =,23b =. 所以C 的方程为22163x y +=. (2)设11(,)M x y ,22(,)N x y .若直线MN 与x 轴不垂直,设直线MN 的方程为y kx m =+,代入22163x y +=得222(12)4260k x kmx m +++-=. 于是2121222426,1212km m x x x x k k -+=-=++.①由AM AN ⊥知0AM AN ⋅=,故1212(2)(2)(1)(1)0x x y y --+--=, 可得221212(1)(2)()(1)40k x x km k x x m ++--++-+=.将①代入上式可得22222264(1)(2)(1)401212m kmk km k m k k-+---+-+=++. 整理得(231)(21)0k m k m +++-=.因为(2,1)A 不在直线MN 上,所以210k m +-≠,故2310k m ++=,1k ≠. 于是MN 的方程为21()(1)33y k x k =--≠.所以直线MN 过点21(,)33P -.若直线MN 与x 轴垂直,可得11(,)N x y -.由0AM AN ⋅=得1111(2)(2)(1)(1)0x x y y --+---=.又2211163x y +=,可得2113840x x -+=.解得12x =(舍去),123x =. 此时直线MN 过点21(,)33P -.令Q 为AP 的中点,即41(,)33Q .若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故1||||2DQ AP ==. 若D 与P 重合,则1||||2DQ AP =. 综上,存在点41(,)33Q ,使得||DQ 为定值.【点睛】本题考查椭圆的标准方程和性质,圆锥曲线中的定点定值问题,关键是第二问中证明直线MN 经过定点,并求得定点的坐标,属综合题,难度较大.13.【2020年新高考全国Ⅰ卷】已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12, (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值. 【解析】(1)由题意可知直线AM 的方程为:13(2)2y x -=-,即24-=-x y . 当y =0时,解得4x =-,所以a =4,椭圆()2222:10x y C a b a b+=>>过点M (2,3),可得249116b +=, 解得b 2=12.所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y +=,可得:()2232448m y y ++=,化简可得:2216123480y my m ++-=,所以()221444163480m m ∆=-⨯-=,即m 2=64,解得m =±8, 与AM 距离比较远的直线方程:28x y -=, 直线AM 方程为:24-=-x y ,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d ==,由两点之间距离公式可得||AM ==. 所以△AMN的面积的最大值:1182⨯=. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.14.【2019年高考全国Ⅰ卷理数】已知抛物线C :y 2=3x 的焦点为F ,斜率为的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若,求|AB |. 【答案】(1)3728y x =-;(2【解析】设直线()()11223:,,,,2l y x t A x y B x y =+. (1)由题设得3,04F ⎛⎫⎪⎝⎭,故123||||2AF BF x x +=++,由题设可得1252x x +=.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得22912(1)40x t x t +-+=,则1212(1)9t x x -+=-.323AP PB =从而12(1)592t --=,得78t =-. 所以l 的方程为3728y x =-. (2)由3AP PB =可得123y y =-.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得2220y y t -+=. 所以122y y +=.从而2232y y -+=,故211,3y y =-=. 代入C 的方程得1213,3x x ==.故||AB =. 【名师点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及平面向量、弦长的求解方法,解题关键是能够通过直线与抛物线方程的联立,利用根与系数的关系构造等量关系. 15.【2019年高考全国Ⅰ卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.【答案】(1)见解析;(2)(i )见解析;(ii )169. 【解析】(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.由22142y kxx y =⎧⎪⎨+=⎪⎩得x =.记u =,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-. 由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得 22222(2)280k x uk x k u +-+-=.①设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uky k=+. 从而直线PG 的斜率为322212(32)2uk uk k u k kuk -+=-+-+. 所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i)得||2PQ =||PG =△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k++===++++‖. 设t =k +1k,则由k >0得t ≥2,当且仅当k =1时取等号. 因为2812t S t =+在[2,+∞)单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为169. 因此,△PQG 面积的最大值为169. 【名师点睛】本题考查了求椭圆的标准方程,以及利用直线与椭圆的位置关系,判断三角形形状以及三角形面积最大值问题,考查了数学运算能力,考查了求函数最大值问题.16.【2019年高考全国Ⅰ卷理数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积. 【答案】(1)见详解;(2)3或 【解析】(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=- .整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -. 故直线AB 的方程为2210tx y -+=. 所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()2121212122,1,121x x t x x y y t x x t +==-+=++=+,()212||21AB x t =-==+.设12,d d 分别为点D ,E 到直线AB的距离,则12d d ==因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭.由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±. 当t =0时,S =3;当1t =±时,S =因此,四边形ADBE 的面积为3或【名师点睛】此题第一问是圆锥曲线中的定点问题,第二问是求面积类型,属于常规题型,按部就班地求解就可以,思路较为清晰,但计算量不小.17.【2019年高考北京卷理数】已知抛物线C :x 2=−2py 经过点(2,−1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点. 【答案】(1)抛物线C 的方程为24x y =-,准线方程为1y =;(2)见解析.【解析】(1)由抛物线2:2C x py =-经过点(2,1)-,得2p =.所以抛物线C 的方程为24x y =-,其准线方程为1y =. (2)抛物线C 的焦点为(0,1)F -. 设直线l 的方程为1(0)y kx k =-≠.由21,4y kx x y=-⎧⎨=-⎩得2440x kx +-=. 设()()1122,,,M x y N x y ,则124x x =-. 直线OM 的方程为11y y x x =. 令1y =-,得点A 的横坐标11A x x y =-. 同理得点B 的横坐标22B x x y =-. 设点(0, )D n ,则1212,1,,1x x DA n DB n y y ⎛⎫⎛⎫=---=--- ⎪ ⎪⎝⎭⎝⎭, 21212(1)x x DA DB n y y ⋅=++2122212(1)44x x n x x =++⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭ 21216(1)n x x =++ 24(1)n =-++.令0DA DB ⋅=,即24(1)0n -++=,则1n =或3n =-. 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,3)-.【名师点睛】本题主要考查抛物线方程的求解与准线方程的确定,直线与抛物线的位置关系,圆的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.18.【2019年高考天津卷理数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4(1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.【答案】(1)22154x y +=;(2或. 【解析】(1)设椭圆的半焦距为c ,依题意,24,5c b a ==,又222a b c =+,可得a =2,b =1c =.所以,椭圆的方程为22154x y +=.(2)由题意,设()()()0,,0P P p M P x y x M x ≠,.设直线PB 的斜率为()0k k ≠, 又()0,2B ,则直线PB 的方程为2y kx =+,与椭圆方程联立222,1,54y kx x y =+⎧⎪⎨+=⎪⎩整理得()2245200k x kx ++=,可得22045P k x k =-+,代入2y kx =+得2281045P k y k -=+, 进而直线OP 的斜率24510P p y k x k-=-. 在2y kx =+中,令0y =,得2M x k=-. 由题意得()0,1N -,所以直线MN 的斜率为2k -. 由OP MN ⊥,得2451102k k k-⎛⎫⋅-=- ⎪-⎝⎭,化简得2245k =,从而k =±所以,直线PB或. 【名师点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.19.【2019年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.【答案】(1)22143x y +=;(2)3(1,)2E --. 【解析】(1)设椭圆C 的焦距为2c .因为F 1(−1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥x 轴,所以DF 232==, 因此2a =DF 1+DF 2=4,从而a =2. 由b 2=a 2−c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1. 将x =1代入圆F 2的方程(x −1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(−1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=,解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-. 因此3(1,)2E --.解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(−1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.【名师点睛】本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.20.【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S . (1)求p 的值及抛物线的准线方程; (2)求12S S 的最小值及此时点G 的坐标.【答案】(1)p =2,准线方程为x =−1;(2)最小值为12+,此时G (2,0). 【解析】(1)由题意得12p=,即p =2. 所以,抛物线的准线方程为x =−1.(2)设()()(),,,,,A A B B c c A x y B x y C x y ,重心(),G G G x y .令2,0A y t t =≠,则2A x t =.由于直线AB 过F ,故直线AB 方程为2112t x y t-=+,代入24y x =,得()222140t y y t---=,故24B ty =-,即2B y t =-,所以212,B tt ⎛⎫- ⎪⎝⎭.又由于()()11,33G A B c G A B c x x x x y y y y =++=++及重心G 在x 轴上,故220c t y t-+=,得242211222,2,,03t t C t t G t t t ⎛⎫⎛⎫-+⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.所以,直线AC 方程为()222y t t x t-=-,得()21,0Q t-.由于Q 在焦点F 的右侧,故22t >.从而4224221244242222211|2|||322221222211|||1||2|23Ac t t t FG y t S t t t t t S t t QG y t t t t-+-⋅⋅--====--+--⋅--⋅-.令22m t =-,则m >0,12212221343242S m S m m m m m=-=--=+++++. 当m =时,12S S 取得最小值12+,此时G (2,0). 【名师点睛】本题主要考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
A.
3
1
B.
2
1
C.
3
1
D.
4
8.(2020 届山东省烟台市高三模拟)已知圆
截直线
所得线段的长度
是 ,则圆 与圆
的位置关系是( )
A.内切
B.相交
C.外切
D.相离
9.(2020·2020 届山东省淄博市高三二模)已知点 F1 是抛物线 C : x2 2 py 的焦点,点 F2 为抛物线 C 的对
专题 8 平面解析几何
纵观近几年的高考试题,考查圆锥曲线的题目有小有大,其中小题以考查圆、椭圆、双曲线、 抛物线的方程及几何性质为主,难度在中等或以上;大题则主要考查直线与椭圆、直线与抛 物线的位置关系问题;命题的主要特点有:一是以过特殊点的直线与圆锥曲线相交为基础设 计“连环题”,结合曲线的定义及几何性质,利用待定系数法先行确定曲线的标准方程,进一 步研究弦长、图形面积、最值、取值范围等;二是以不同曲线(圆、椭圆、抛物线)的位置 关系为基础设计“连环题”,结合曲线的定义及几何性质,利用待定系数法先行确定曲线的标 准方程,进一步研究弦长、图形面积、最值、取值范围等;三是直线与圆锥曲线的位置关系 问题,综合性较强,往往与向量(共线、垂直、数量积)结合,涉及方程组联立,根的判别 式、根与系数的关系、弦长问题等.
线 C 的焦点的距离是( )
A.4
B.3
C.2
D.1
2.(2020·山东高三模拟)已知曲线 x2 4 y ,动点 P 在直线 y 3 上,过点 P 作曲线的两条切线 l1, l2 ,切
点分别为 A, B ,则直线 AB 截圆 x2 y2 6y 5 0 所得弦长为( )
A. 3
B.2
C.4
ax y 1 0 垂直,则实数 a 的值为( )
A.0
B. 4 3
4
C.0 或
3
4
D.
3
5.(2020 届山东省高考模拟)已知双曲线
x2 a2
y2 b2
1a 0,b
0 的左、右焦点分别为 F1、F2 ,圆
x2 y2 b2 与双曲线在第一象限内的交点为 M,若 MF1 3 MF2 .则该双曲线的离心率为(
D. 2 3
3.(2020 届山东省济宁市高三 3 月月考)过点 2, 3 的直线将圆 x 32 y2 25 分成两段圆弧,当两
段圆弧中的劣弧所对圆心角最小时,该直线的斜率为( )
A. 3
B. 3
C. 3 3
D. 3 3
1
4.(2020 届山东省济宁市第一中学高三一轮检测)过点 P 1, 2 的直线与圆 x2 y2 1 相切,且与直线
2
平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛
物线 y2 4x 的焦点为 F ,一条平行于 x 轴的光线从点 M 3,1 射出,经过抛物线上的点 A 反射后,再经抛
物线上的另一点 B 射出,则 ABM 的周长为( )
A. 71 26 12
B. 9 10
C 的渐近线方程为( )
A. y 1 x 2
B. y 2 x 2
C. y x
D. y 2x
12.(2020·山东高三下学期开学)已知抛物线 C : y2 12x 的焦点为 F ,A 为 C 上一点且在第一象限,以 F
为圆心, FA 为半径的圆交 C 的准线于 B , D 两点,且 A, F , B 三点共线,则 | AF | ( )
C. 83 26 12
D. 9 26
11.(2020
届山东省菏泽一中高三
2
月月考)已知双曲线
C:
x2 a2
y2 b2
1 ,( a
0 , b 0 )的左、右焦点分别为
F1 , F2 , O 为坐标原点,P 是双曲线在第一象限上的点, PF1 2 PF2 2m ,( m 0 ), PF1 PF2 m2 ,则双曲线
称轴与其准线的交点,过 F2 作抛物线 C 的切线,切点为 A ,若点 A 恰好在以 F1 , F2 为焦点的双曲线上,
则双曲线的离心率为( )
A. 6 2 2
B. 2 1
C. 6 2 2
D. 2 1
10.(2020 届山东省潍坊市高三模拟二)抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线
A.12
B.10
C.6
D.8
13.(2020 届山东省淄博市部分学校高三 3 月检测)直线 x y 2 0 分别与 x 轴, y 轴交于 A , B 两点,
点 P 在圆 x 22 y2 2 上,则 △ABP 面积的取值范围是
A. 2 ,6
B. 4 ,8
C. 2 ,3 2
D. 2 2 ,3 2
)
A.2
B.3
C. 2
D. 3
6.(2020
届山东省济宁市第一中学高三一轮检测)双曲线
x2 a2
y2 b2
1(a
0,b
0) 的两顶点为
A1 ,
A2 ,
虚轴两端点为 B1 , B2 ,两焦点为 F1 , F2 ,若以 A1A2 为直径的圆内切于菱形 F1B1F2B2 ,则双曲线的离心率
是( )
A. 5 1
圆弧中的劣弧所对圆心角最小时,该直线的斜率为( )
A. 3
B. 3
C. 3 3
D. 3 3
16.(2020 届山东省济宁市第一中学高三二轮检测)双曲线 C: x2 y2 =1 的右焦点为 F,点 P 在 C 的一 42
预测 2021 年将保持稳定,一大二小.其中客观题考查圆、椭圆、双曲线、抛物线问题,难度在中等或以下. 主观题考查或直线与椭圆的位置关系、直线与抛物线的位置关系,相关各种综合问题应有充分准备.
一、单选题
1.(2020 届山东省菏泽一中高三 2 月月考)已知点 M 2, 4 在抛物线 C: y2 2 px ( p 0 )上,点 M 到抛物
B. 3 5 2
C. 5 1 2
D. 3 1
7.(2020
届山东省潍坊市高三模拟一)已知
F1
,
F2
是椭圆
C:x a
2 2
y2 b2
1 (a
b
0) 的左,右焦点, A 是 C
的左顶点,点 P 在过 A 且斜率为 3 的直线上,△PF1F2 为等腰三角形, F1F2P 120 ,则 C 的离心率为 6
14.(2020 届山东省青岛市高三上期末)已知点 M 2, 4 在抛物线 C: y2 2 px ( p 0 )上,点 M 到抛物线 C
的焦2
D.1
15.(2020·山东曲阜一中高三 3 月月考)过点 2, 3 的直线将圆 x 32 y2 25 分成两段圆弧,当两段