信源信道编码
数字通信中的信源编码和信道编码

数字通信中的信源编码和信道编码摘要:如今社会已经步入信息时代,在各种信息技术中,信息的传输及通信起着支撑作用。
而对于信息的传输,数字通信已经成为重要的手段。
本论文根据当今现代通信技术的发展,对信源编码和信道编码进行了概述性的介绍.关键词:数字通信;通信系统;信源编码;信道编码Abstract:Now it is an information society. In the all of information technologies, transmission and communication of information take an important effect. For the transmission of information, Digital communication has been an important means. In this thesis we will present an overview of source coding and channel coding depending on the development of today’s communication technologies.Key Words:digital communication; communication system; source coding; channel coding1.前言通常所谓的“编码”包括信源编码和信道编码。
编码是数字通信的必要手段。
使用数字信号进行传输有许多优点, 如不易受噪声干扰, 容易进行各种复杂处理, 便于存贮, 易集成化等。
编码的目的就是为了优化通信系统。
一般通信系统的性能指标主要是有效性和可靠性。
所谓优化,就是使这些指标达到最佳。
除了经济性外,这些指标正是信息论研究的对象。
按照不同的编码目的,编码可主要分为信源编码和信道编码。
在本文中对此做一个简单的介绍。
第5章无失真信源编码定理

如果我们要对信源的N次扩展信源进行编码,也必须满足
qN rl , 两边取对数得: l log q
l
N log r
N 表示平均每个信源符号所需的码符号个数。
5.2 等长码
例:对英文电报得32个符号进行二元编码,根据上述关系:
l log 32 5 log 2
我们继续讨论上面得例子,我们已经知道英文的极限 熵是1.4bit,远小于5bit,也就是说,5个二元码符号只携带 1.4bit的信息量,实际上,5个二元符号最多可以携带5bit 信息量。我们可以做到让平均码长缩短,提高信息传输率
0.8112
0.4715
若采用等长二元编码,要求编码效率 0.96 ,允许错误率
105 ,则: N 4.13107
也就是长度要达到4130万以上。
5.5 变长码
1、唯一可译变长码与及时码
信源符号 出现概率 码1
码2
码3
码4
s1
1/2
0
0
1
1
s2
1/4
11
10
10
01
s3
1/8
00
00
密码:是以提高通信系统的安全性为目的的编码。通常通过加 密和解密来实现。从信息论的观点出发,“加密”可视为增熵 的过程,“解密”可视为减熵的过程。
5.1 编码器
信源编码理论是信息论的一个重要分支,其理论基础是信源编 码的两个定理。 无失真信源编码定理:是离散信源/数字信号编码的基础; 限失真信源编码定理:是连续信源/模拟信号编码的基础。
5.1 编码器
信源编码:以提高通信有效性为目的的编码。通常通过压缩信 源的冗余度来实现。采用的一般方法是压缩每个信源符号的平 均比特数或信源的码率。即同样多的信息用较少的码率传送, 使单位时间内传送的平均信息量增加,从而提高通信的有效性。
信源编码与信道编码

信源编码与信道编码⼀.信源编码和信道编码的发展历程信源编码:最原始的信院编码就是莫尔斯电码,另外还有ASCII码和电报码都是信源编码。
但现代通信应⽤中常见的信源编码⽅式有:Huffman编码、算术编码、L-Z编码,这三种都是⽆损编码,另外还有⼀些有损的编码⽅式。
信源编码的⽬标就是使信源减少冗余,更加有效、经济地传输,最常见的应⽤形式就是压缩。
相对地,信道编码是为了对抗信道中的噪⾳和衰减,通过增加冗余,如校验码等,来提⾼抗⼲扰能⼒以及纠错能⼒。
信道编码:1948年Shannon极限理论→1950年Hamming码→1955年Elias卷积码→1960年 BCH码、RS码、PGZ译码算法→1962年Gallager LDPC(Low Density Parity Check,低密度奇偶校验)码→1965年B-M译码算法→1967年RRNS码、Viterbi算法→1972年Chase⽒译码算法→1974年Bahl MAP算法→1977年IMaiBCM分组编码调制→1978年Wolf 格状分组码→1986年Padovani恒包络相位/频率编码调制→1987年Ungerboeck TCM格状编码调制、SiMonMTCM多重格状编码调制、WeiL.F.多维星座TCM→1989年Hagenauer SOVA算法→1990年Koch Max-Lg-MAP算法→1993年Berrou Turbo码→1994年Pyndiah 乘积码准最佳译码→1995年 Robertson Log-MAP算法→1996年 Hagenauer TurboBCH码→1996MACKay-Neal重新发掘出LDPC码→1997年 Nick Turbo Hamming码→1998年Tarokh 空-时卷格状码、AlaMouti空-时分组码→1999年删除型Turbo码虽然经过这些创新努⼒,已很接近Shannon极限,例如1997年Nickle的TurboHamming码对⾼斯信道传输时已与Shannon极限仅有0.27dB相差,但⼈们依然不会满意,因为时延、装备复杂性与可⾏性都是实际应⽤的严峻要求,⽽如果不考虑时延因素及复杂性本来就没有意义,因为50多年前的Shannon理论本⾝就已预⽰以接近⽆限的时延总容易找到⼀些⽅法逼近Shannon 极限。
信源编码和信道编码的区别

信源编码和信道编码的区别信源编码和信道编码是数字通信领域中两个重要的概念。
尽管这两个概念有时会被混淆使用,但它们在通信系统中的作用和目标是不同的。
信源编码主要关注的是如何将源信息进行有效的压缩和表示,以减少传输所需的带宽和存储空间。
而信道编码则专注于在传输过程中,如何通过添加冗余信息来提高通信系统对噪声和干扰的容忍度。
下面将从定义、目标和应用等方面说明信源编码和信道编码的区别。
首先,信源编码是指对信号源进行编码,即将源数据转换为一系列编码符号的过程。
信源编码的目标是通过增加数据的冗余性,以便减少数据的存储和传输所需的比特数。
通过信源编码,我们可以压缩和表示原始数据,以便更有效地传输和存储。
常见的信源编码技术包括霍夫曼编码、算术编码、字典编码等。
例如,在图像和音频压缩中,我们通常使用信源编码来减少文件的大小,而不丢失太多信息。
相比之下,信道编码是指通过在信道上添加冗余信息,以提高通信系统对噪声、干扰和误码的容忍度。
信道编码的目标是在不增加传输时间的情况下,提高传输的可靠性和健壮性。
常见的信道编码技术包括海明码、卷积码、低密度奇偶校验码等。
通常,信道编码采用纠错码的方式来检测和纠正传输中的错误,从而可以提高数据的可靠性。
信道编码在很多通信系统中都得到了广泛应用,例如无线通信、卫星通信等。
信源编码和信道编码的主要区别在于它们的应用领域和目标。
信源编码主要关注如何有效地对源数据进行压缩和表示,以提高存储和传输的效率。
而信道编码主要关注如何在传输过程中提高数据的可靠性和健壮性,以应对信道噪声和干扰的影响。
信源编码和信道编码是数字通信中两个独立但密切相关的概念,它们通常结合使用,以提高通信系统的性能和效果。
此外,信源编码和信道编码还在某种程度上是相互依赖的。
良好的信源编码可以提供更好的信道编码性能。
因为信源编码可以减少数据的冗余性,减小信道编码的冗余部分,从而提高传输效率。
而信道编码可以弥补信源编码在传输过程中的失真或丢失,从而提高信号的质量和可靠性。
《数字通信原理》习题库

《数字通信原理》例题讲解1、信源编码和信道编码有什么区别?为什么要进行信道编码? 解:信源编码是完成A/D 转换。
信道编码是将信源编码器输出的机内码转换成适合于在信道上传输的线路码,完成码型变换。
2、模拟信号与数字信号的主要区别是什么?解:模拟信号在时间上可连续可离散,在幅度上必须连续,数字信号在时间,幅度上都必须离散。
3、某数字通信系统用正弦载波的四个相位0、2π、π、23π来传输信息,这四个相位是互相独立的.(1) 每秒钟内0、2π、π、23π出现的次数分别为500、125、125、250,求此通信系统的码速率和信息速率;(2) 每秒钟内这四个相位出现的次数都为250,求此通信系统的码速率和信息速率。
解: (1) 每秒钟传输1000个相位,即每秒钟传输1000个符号,故 R B =1000 Bd每个符号出现的概率分别为P(0)=21,P ⎪⎭⎫ ⎝⎛2π=81,P (π)=81,P ⎪⎭⎫ ⎝⎛23π=41,每个符号所含的平均信息量为H (X )=(21×1+82×3+41×2)bit/符号=143bit/符号信息速率R b =(1000×143)bit/s=1750 bit/s(2) 每秒钟传输的相位数仍为1000,故 R B =1000 Bd此时四个符号出现的概率相等,故 H (X )=2 bit/符号R b =(1000×2)bit/s=2000 bit/s4、已知等概独立的二进制数字信号的信息速率为2400 bit/s 。
(1) 求此信号的码速率和码元宽度;(2) 将此信号变为四进制信号,求此四进制信号的码速率、码元宽度和信息速率。
解:(1) R B =R b /log 2M =(2400/log 22)Bd=2400 Bd T =B R 1=24001 s=0.42 ms(2) R B =(2400/log 24)Bd=1200 BdT=B R 1=12001 s=0.83 ms R b =2400 b/s5、黑白电视图像每帧含有3×105个像素,每个像素有16个等概出现的亮度等级。
通信原理课件第5讲 信源编码:CCITT编码,相关信源的编码,信道编码

若产生错码(“0”错成“1”或“1”错成“0”)收端无法发现, 该编码无检错纠错能力
增加一位冗余后具有 检出一位错码的能力
编码二:
消息A----“00”;消息B----“11”
若一位产生错码,变成“01”或“10”,因“01”“10”为禁用码组, 收端可发现有错,但无法确定错码位置,不能纠正,
编码三:
消息A----“000”;消息B----“111” 传输中产生一位或是两位错码,都将变成禁用码组,具有检出 两位错码的能力 在产生一位错码情况下,收端可根据“大数”法则进行正确判 决,能够纠正这一位错码,该编码具有纠正一位错码的能力 在产生两位错码情况下,只具有检错能力 这表明增加两位冗余码元后码具有检出两位错码及纠正一位错 码的能力
6V 6V
2)计算归一化的抽样值具有多少个量化单位,即看它落在哪一个线段内:
0 .4 4 0 9 6 1 6 3 8 .4
则x落在编号为“110”的线段内,该线段被分成16小段,每小段含64个量化单位。
则可计算该抽样值落在哪一个小段上:
1638.41024614.49.6
64
64
即落在第10小段上,则其CCITT标准的编码为:1 110 1001
预测数据为误差信
号和预测器的输出
o
xl xˆl ul
预测数据为误差信
号和预测器的输出
o
xl xˆl ul
线性预测器的系数确定
因为ul是el的量化值,两者之间存在量化误差e。若不考虑量化误差, 即ul = el ,则接收端的线性预测器的输入和重建电平为:
o
xl xˆl ul xˆl el xl
第5章 信源编码 第1讲 无失真信源编码 定长编码定理 2016

00 01 10 11
0 01 001 111
12/62
余 映 云南大学
5.1 编码的定义
• 采用分组编码方法,需要分组码具有某些属性, 以保证在接收端能够迅速准确地将码译出。 • 下面讨论分组码的属性:
余 映 云南大学
13/62
5.1 编码的定义
• (1) 奇异码和非奇异码
– 若信源符号和码字是一一对应的,则该码为非奇异码; 反之为奇异码。 – 例如表中码1是奇异码,其他是非奇异码。
信源符号 出现概率 码1 码2 码3 码4
A B C D
1/2 1/4 1/8 1/8
0 11 00 11
余 映 云南大学
0 10 00 01
1 10 100 1000
1 01 001 0001
18/62
5.1 编码的定义
• (3) 即时码和非即时码
– 唯一可译码又分为非即时码和即时码。 – 即时码是一种没有一个码字构成另一码字前缀的码。 在译码时没有延迟,收到一个完整码字后就能立即译 码。 – 如果收到一个完整码字后,不能立即译码,还需等下 一个码字开始接收后才能判断是否可以译码,这样的 码叫做非即时码。
信源符号
出现概率
码1
码2
码3
码4
a1 a2 a3 a4
1/2 1/4 1/8 1/8
0 11 00 11
余 映 云南大学
0 10 00 01
1 10 100 1000
1 01 001 0001
14/62
5.1 编码的定义
• (2) 唯一可译码和非唯一可译码
– 若任意有限长的码元序列,只能被唯一地分割成一个 个的码字,则称为唯一可译码。 – 例如{0, 10, 11}是一种唯一可译码。 – 因为任意一串有限长码序列, – 如100111000
第三章 数据压缩和信源编码

终端节(结)点上就可以得到即时码。
10:20
30
码 树
每个中间节点都正好有r 个分枝的树称为整树(满树)。
所有终端节点的阶数都相等的树为完全树。
10:20
31
码 树
• 码树
– 表示各码字的构成
0 0 0 0 1 0 10 1 0 1 0 1 0
树根—码字的起点 分成r个树枝—码的进制数
1 0 0 1 1 0 0 1 2 0
§3.1 §3.2 §3.3 §3.4
等长码 变长编码 哈夫曼码 香农码和费诺玛
10:20
1
数据压缩和信源编码
为了实现高质量、高效率的通信,引入了信 源编码和信道编码。信源编码和信道编码主要需 要解决以下两个问题。
提高传输效率
增强通信的可靠性
10:20 2
编码、信源编码、信道编码
• 编码:将一定的符号,数字或字母按一定的要求编 成不同的序列,表示出一定的意义称为编码。 • 编码分为信源编码和信道编码,其中信源编码又 分为无失真信源编码和限失真信源编码。 无失真信源编码:适用于离散信源或数字信号。 限失真信源编码:主要用于连续信源或模拟信号, 如语音、图像等信号的数字处理。
10:20 7
信源编码
编码定理证明: (1)必存在一种编码方法,使代码的平均长度可 任意接近但不能低于符号熵 (2)达到这目标的途径,就是使概率与码长匹配。 说明: (1)无失真编码或可逆编码只适用于离散信源。 (2)对于连续信源,编成代码后就无法无失真地 恢复原来的连续值,因为后者的取值可有无限多 个。此时只能根据限失真编码定理进行限失真编 码 。
12
信源编码的分类
• 冗余度压缩编码: 是可逆压缩,经编译码后可以无失真地恢复。 基本途径:压缩信源的冗余度,即 1) 去除码符号间的相关性; 2) 使码符号等概分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青岛农业大学
本科生课程论文
论文题目联合信源信道编码的原理及其在通信中的应用学生专业班级信息与计算科学09级1班
学生姓名(学号)董晨晨(20093991)
指导教师吴慧
完成时间 2012年6月27日
2012 年 6 月 27 日
课程论文任务书
学生姓名董晨晨指导教师吴慧
论文题目联合信源信道编码的原理及其在通信中的应用
论文内容(需明确列出研究的问题):由于通信的根本目的是将消息有效而可靠地从信源传到信宿,信源编码的目的在于提高系统的有效性,信道编码理论核心是提高系统的可靠性,因此在编码时应在一定的传信率条件下,通过有规律的增加冗余度保证信息以尽可能小的差错概率从信源传到信宿,并且充分利用系统资源。
基于这种情况下,提出了信源信道联合编码,可以跟随信道的变化充分利用通信系统的资源,达到最好的端对端的通信效果。
本文主要研究了以下几个方面的问题:(1)信源信道联合编码的原理;(2)信源信道联合编码的研究方向;(3)信源信道联合编码的关键技术;(4)联合编码在通信系统方面的应用。
资料、数据、技术水平等方面的要求:通过书籍报刊杂志、网络等各种渠道广泛搜集资料,充分利用现有文献,借鉴他人的学术成果,做到了资料翔实,数据准确,引用规范,论证充分。
论文符合一般学术论文的写作规范,具备学术性、科学性和一定的创造性。
文字流畅、语言准确、要点清楚,有独立的观点和见解。
内容理论联系实际,计算数据准确,涉及到他人的观点、统计数据或计算公式标明出处,结论写的概括简短。
发出任务书日期2012.6.20完成论文日期2012.6.27
教研室意见(签字)
院长意见(签字)
课程论文成绩评定表。