高中数学集合典型例题

合集下载

高中数学集合习题及详解

高中数学集合习题及详解

高中数学集合习题及详解一、单选题1.已知集合(){}ln 2A x y x ==-,集合1,32xB y y x ⎧⎫⎪⎪⎛⎫==>-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( ) A .∅B .()2,8C .()3,8D .()8,+∞2.设集合{}{lg 1},2A xx B x x =<=≤∣∣,则A B ⋃=( ) A .{02}xx <≤∣ B .{}2xx ≤∣ C .{10}x x <∣ D .R3.已知集合{}1A xy x ==-∣,{}0,1,2,3B =,则A B =( ) A .{3} B .{2,3} C .{1,2,3} D .{0,1,2,3}4.集合{}06A x Z x =∈<<,集合{}ln 1B x x =>,求A B ( ) A .{}6x e x << B .{}1,2,3e e e +++ C .{}3,4,5D .{}2,3,4,55.已知集合{}24A x N x =∈≤,{}1,B a =,B A ⊆,则实数a 的取值集合为( )A .{}0,1,2B .{}1,2C .{}0,2D .{}26.设R U =,1{|2}2x A x =<,{|1}B x x =>,则()U B A ⋂=( )A .{|0}x x <B .{}|1x x >C .{}|01x x <<D .{}|01x x <≤7.已知全集,集合{|(2)0}A x x x =+<,{|||1}B x x ,则如图所示的阴影部分表示的集合是( )A .(2,1)-B .[1,0)[1,2)-⋃C .(2,1)[0,1]--D .[0,1]8.设集合{}22M x Z x =∈-<,则集合M 的真子集个数为( ) A .16B .15C .8D .79.已知函数()2ln 3y x x =-的定义域为A ,集合{}14B x x =≤≤,则()A B =R ( )A .{0,1,2,3,4}B .{1,2,3}C .[0,4]D .[1,3] 10.已知集合{|13,N}A x x x =-<<∈,则A 的子集共有( )A .3个B .4个C .8个D .16个11.若集合(){}ln 10A x x =-≤,{}2B x x =≥,则()RA B =( )A .(2,2)-B .(1,2)C .[)1,2D .(1,2] 12.已知集合{1,5,},{2,}A a B b ==,若{2,5}A B ⋂=,则a b +的值是( ) A .10B .9C .7D .413.设全集{}{}{}10,2,3,5,0,3,5,9U n N n A B =∈≤==,则()U A B =( ) A .{2,6}B .{0,9}C .{1,9}D .∅14.已知集合{}{}|14,|04U x x A x x =-<≤=≤≤,则UA =( )A .[-1,0)B .[-1,0]C .(-1,0)D .(-1,0]15.设集合{}2Z20A x x x =∈--≤∣,{0,1,2,3}B =,则A B =( ) A .{0,1}B .{0,1,2}C .{1,0,1,2,3}-D .{2,1,0,1,2,3}--二、填空题16.从集合{}123,,,,n U a a a a =⋅⋅⋅的子集中选出4个不同的子集,需同时满足以下两个条件:①∅、U 都要选出;②对选出的任意两个子集A 和B ,必有A B ⊆或A B ⊇.则选法有___________种.17.集合{}{}23,12,1A B m m ==+,,且A B =,则实数m =________.18.已知集合(){}2,M x y y x ==∣,(){},0N x y y ==,则M N =______.19.已知T 是方程()22040x px q p q ++=->的解集,1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,,则p q +=_____.20.若“x a >”是“39x >”的必要条件,则a 的取值范围是________.21.已知集合{}4194,A x x n n *==-+∈N ,{}6206,B y y n n *==-+∈N ,将A B 中的所有元素按从大到小的顺序排列构成一个数列{}n a ,则数列{}n a 的前n 项和的最大值为___________.22.设集合(),5P =-∞,[),Q m =+∞,若P Q =∅,则实数m 的取值范围是______. 23.设集合21|,|32A x m x m B x n x n ⎧⎫⎧⎫=≤≤+=-≤≤⎨⎬⎨⎬⎩⎭⎩⎭,且,A B 都是集合{}|01x x ≤≤的子集,如果把b a -叫作集合{}|≤≤x a x b 的“长度”,那么集合A B 的“长度”的最小值是___________.24.已知集合{}()216,xA xB a ∞=≤=-,,若A B ⊆则实数a 的取值范围是____.25.若集合M 满足{}1,2,3,4M,则这样的集合M 有______个.三、解答题26.函数()()sin 22sin cos 1a x f x a x x +=+-.(1)若1a =,,02x π⎡⎫∈-⎪⎢⎣⎭,求函数()f x 的值域;(2)当,02x ⎡⎤∈-⎢⎥⎣⎦π,且()f x 有意义时,①若(){}0y y f x ∈=,求正数a 的取值范围; ②当12a <<时,求()f x 的最小值N .27.已知集合A ={x |24x >},B ={x ||x -a |<2},其中a >0且a ≠1. (1)当a =2时,求A ∪B 及A ∩B ;(2)若集合C ={x |log ax <0}且C ⊆B ,求a 的取值范围.28.设全集U R =,已知集合{}1,2A =,{|03}B x x =≤≤,集合C 为不等式组10240x x +≥⎧⎨-≤⎩的解集.(1)写出集合A 的所有子集; (2)求UB 和BC ⋃.29.设集合{}22,3,42A a a =++,集合{}20,7,42,2B a a a =+--,这里a 是某个正数,且7A ∈,求集合B .30.已知集合A ={}123x m x m -≤≤+, . (1)当m =1时,求A B ,(RA )B ;(2)若A B =A ,求实数m 的取值范围.试从以下两个条件中任选一个补充在上面的问题中,并完成解答.① 函数()f x B ;② 不等式2x ≤的解集为B . 注:如果选择多个条件分别解答,按第一个解答计分.【参考答案】一、单选题 1.B 【解析】 【分析】先求出集合,A B ,然后直接求A B 即可. 【详解】集合(){}{}ln 22A x y x x x ==-=>,集合{}1,3082xB y y x y y ⎧⎫⎪⎪⎛⎫==>-=<<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,()2,8A B =,故选:B . 2.C 【解析】 【分析】先化简集合A ,再求A B 【详解】lg 1lg lg10010x x x <⇔<⇔<<,即{}010|A x x =<<,所以{}|10A B x x =< 故选:C 3.C 【解析】 【分析】先由y =A ,再根据集合交集的原则即可求解. 【详解】对于集合A ,10x -≥,即1≥x ,则{}1A x x =≥, 所以{}1,2,3A B =, 故选:C 4.C 【解析】【分析】先化简出结合,A B ,然后再求交集. 【详解】由{}1,2,3,4,5A =,ln 1x > 则x e >,所以集合(),B e =+∞ 所以{}3,4,5A B = 故选:C 5.C 【解析】 【分析】化简集合A ,根据B A ⊆求实数a 的可能取值,由此可得结果. 【详解】因为集合{}24A x N x =∈≤化简可得{0,1,2}A =又{}1,B a =,B A ⊆, 所以0a =或2a =,故实数a 的取值集合为{0,2}, 故选:C. 6.B 【解析】 【分析】解不等式求得集合A 、B ,由此求得()U B A ⋂. 【详解】 11222x -<=,由于2x y =在R 上递增,所以1x <-, 即{}|1A x x =<-,{}|1UA x x =≥-,11x >⇒>,所以{}|1B x x =>,所以(){}|1UB A x x =>.故选:B 7.C【解析】 【分析】首先解一元二次不等式求出集合A ,再解绝对值不等式求出集合B ,阴影部分表示的集合为()A BAB ⋃,根据交集、并集、补集的定义计算可得;【详解】解:由(2)0x x +<,解得20x -<<,所以}{|(2)0{|20}A x x x x x <-=<<+=, 又{|||1}{|11}B x x x x =-≤≤=≤,所以(2,1]A B =-,[1,0)A B =-, 所以阴影部分表示的集合为()(2,1)[0,1]A BA B ⋃=--,故选:C.8.D 【解析】 【分析】求出集合M 中的元素,再由子集的定义求解. 【详解】由题意{|04}{1,2,3}M x Z x =∈<<=, 因此其真子集个数为3217-=. 故选:D . 9.D 【解析】 【分析】根据对数函数的性质,可知230x x ->,由此即可求出集合A ,进而求出A R,再根据交集运算即可求出结果. 【详解】由题意可知,230x x ->,所以0x <或3x >, 所以{}{}03A x x x x =<>,故{}03A x x =≤≤R,所以()[]1,3R A B =. 故选:D. 10.C 【解析】 【分析】根据题意先求得集合{0,1,2}A =,再求子集的个数即可. 【详解】由{|13,N}A x x x =-<<∈,得集合{0,1,2}A = 所以集合A 的子集有32=8个, 故选: C 11.B 【解析】 【分析】分别解出集合A 和B ,再根据集合补集和交集计算方法计算即可. 【详解】(){}{}(]ln 10|0111,2A x x x x =-≤=<-≤=,{}(][)2,22,B xx ∞∞=≥=--⋃+,()2,2B =-R,∴()RAB =(1,2).故选:B. 12.C 【解析】利用交集的运算求解. 【详解】解:因为集合{1,5,},{2,}A a B b ==,且{2,5}A B ⋂=, 所以a =2,b =5, 所以a b +=7, 故选:C 13.B 【解析】 【分析】根据集合的交运算和补运算求解即可. 【详解】因为{}{}100,1,2,3,4,5,6,7,8,9,10U n N n =∈≤=,{2,3,5}A , 则{0,1,4,6,7,8,9,10},{0,3,5,9}UA B ==,故(){0,9}U A B =.故选:B .14.C 【解析】 【分析】根据已知集合,应用集合的补运算求UA 即可.【详解】因为{}{}|14,|04U x x A x x =-<≤=≤≤, 所以{|10.} UA x x =-<<故选:C 15.B 【解析】 【分析】解一元二次不等式,得到集合A ,根据集合的交集运算,求得答案. 【详解】解不等式220x x --≤得:12x -≤≤ ,故{}2Z20{1,0,1,2}A x x x =∈--≤=-∣, 故{0,1,2}A B ⋂=, 故选:B二、填空题16.3323n n -⋅+【解析】分析出当一个子集只含有m 个元素时,另外一个子集可以包含()1m +,()2m +,(),1n -个元素,所以共有()()121C C C C C 22n mm n m m n n m n m n m n ------⨯+++=⨯-种选法;再进行求和即可. 【详解】因为∅、U 都要选出;故再选出两个不同的子集,即为M ,N , 因为选出的任意两个子集A 和B ,必有A B ⊆或A B ⊇,故各个子集所包含的元素个数必须依次增加,且元素个数多的子集包含元素个数少的子集,当一个子集只含有1个元素时,另外一个子集可以包含2,3,4()1n -个元素,所以共有()()111221111C C C C C 22n n n n n n n -----⨯+++=⨯-种选法; 当一个子集只含有2个元素时,另外一个子集可以包含3,4,()1n -个元素,所以共有()()221232222C C C C C 22n n n n n n n -----⨯+++=⨯-种选法;当一个子集只含有3个元素时,另外一个子集包含4,5,()1n -个元素,所以共有()()331243333C C C C C 22n n n n n n n -----⨯+++=⨯-种选法;……当一个子集只含有m 个元素时,另外一个子集可以包含()1m +,()2m +,(),1n -个元素,所以共有()()121C C C C C 22n mm n m m n n m n m n m n ------⨯+++=⨯-种选法;……当一个子集有()2n -个元素时,另外一个子集包含()1n -个元素,所以共有()22C 22n n -⨯-种选法;当一个子集有()1n -个元素时,另外一个子集包含有n 个元素,即为U ,不合题意,舍去;故共有()()()()122122C 22C 22C 22C 22n n n mm n n n n n ----⨯-+⨯-++⨯-++⨯-()1122122C 2C 22C C C n n n n n n n n ---=⋅++⋅-+++()()122212223323nn n n n n n =+------=-⋅+. 故答案为:3323n n -⋅+ 【点睛】对于集合与排列组合相结合的题目,要能通过分析,求出通项公式,再结合排列或组合的常用公式进行化简求解. 17.1或3-##3-或1 【解析】 【分析】由题意可得223m m +=,求出m ,因为{}{}23,12,1A B m m ==+,,且A B =,所以223m m +=,由223m m +=,得2230m m +-=,解得1m =或3- 故答案为:1或3-18.(){}0,0【解析】 【分析】根据题意,得到两集合均为点集,联立20y x y ⎧=⎨=⎩求解,即可得出结果.【详解】因为集合(){}2,M x y y x ==∣表示直线2y x 上所有点的坐标,集合(){},0N x y y ==,表示直线0y =上所有点的坐标,联立20y x y ⎧=⎨=⎩,解得00x y =⎧⎨=⎩则(){}0,0MN =.故答案为:(){}0,0.19.26【解析】 【分析】由题知{}4,10T =,再结合韦达定理求解即可. 【详解】解:因为240p q ->,所以方程()22040x px q p q ++=->的解集有两个不相等的实数根,因为1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,, 所以{}4,10T =所以由韦达定理得14p =-,40q = 所以26p q += 故答案为:2620.2a ≤【解析】 【分析】根据题意39x >解得:2x >,得出()()2,,a +∞⊆+∞,由此可得出实数a 的取值范围. 【详解】根据题意39x >解得:2x >,由于“x a >”是“39x >”的必要条件,则()()2,,a +∞⊆+∞,2a ∴≤. 因此,实数a 的取值范围是:2a ≤. 故答案为:2a ≤.21.1472【解析】 【分析】由题意设4194n b n =-+,6206m c m =-+,根据n m b c =可得326m n -=,从而312194n n a b n ==-+,即可得出答案.【详解】设4194n b n =-+,由41940n b n =-+>,得48n ≤ 6206m c m =-+,由62060m c m =-+>,得34m ≤A B 中的元素满足n m b c =,即41946206n m -+=-+,可得326m n -=所以223m n =+,由,*m n N ∈,所以3,*n k k N =∈ 所以312194n n a b n ==-+,要使得数列{}n a 的前n 项和的最大值,即求出数列{}n a 中所以满足0n a ≥的项的和即可. 即121940n a n =-+≥,得16n ≤,则116182,2a a == 所以数列{}n a 的前n 项和的最大值为121618221614722a a a ++++=⨯= 故答案为:147222.5m ≥【解析】 【分析】由交集和空集的定义解之即可. 【详解】(),5P =-∞,[),Q m =+∞ 由P Q =∅可知,5m ≥ 故答案为:5m ≥23.16【解析】 【分析】根据“长度”定义确定集合,A B 的“长度”,由A B “长度”最小时,两集合位于集合[]0,1左右两端即可确定结果. 【详解】由题可知,A 的长度为23,B 的长度为12, ,A B 都是集合{|01}x x ≤≤的子集, 当A B 的长度的最小值时,m 与n 应分别在区间[]0,1的左右两端,即0,1m n ==,则|0,213|12A x x B x x ⎧⎫⎧⎫=≤≤=≤≤⎨⎬⎨⎬⎩⎭⎩⎭, 故此时1223A B x x ⎧⎫⋂=≤≤⎨⎬⎩⎭的长度的最小值是:211326-=. 故答案为:1624.4a >【解析】 【分析】根据指数函数的单调性求出集合A ,再根据A B ⊆列出不等式,即可的解. 【详解】解:{}(]216,4xA x ∞=≤=-,因为A B ⊆, 所以4a >. 故答案为:4a >. 25.15 【解析】 【分析】结合真子集公式可直接求解. 【详解】 因为{}1,2,3,4M,故集合M 有42115-=个.故答案为:15三、解答题26.(1)(,2-∞-(2)①2a ≥;②)21N a=【解析】 【分析】(1)当1a =时,求得()sin 22sin cos 1x f x x x +=+-,令[)sin cos 1,1t x x =+∈-,令[)12,0m t =-∈-,()()22h m f x m m==++,利用双勾函数的单调性可得出函数()h m 在[)2,0-上的值域,即可得解;(2)①分析可知210a a --≤≤,可得出2a ≥,分1a =、1a ≠两种情况讨论,化简函数()221at ap t at +-=-的函数解析式或求出函数()f x 的最小值,综合可得出正实数a 的取值范围;②令[]11,1n at a a =-∈---,则1n t a +=,可得出()()21122a a p t n n a n ϕ⎡⎤+-=++=⎢⎥⎣⎦,分析可得出101a a --<<-<法可求得N . (1)解:当1a =时,()sin 22sin cos 1x f x x x +=+-,因为,02x π⎡⎫∈-⎪⎢⎣⎭,则,444x πππ⎡⎫+∈-⎪⎢⎣⎭,令[)sin cos 1,14t x x x π⎛⎫=+=+∈- ⎪⎝⎭,则212sin cos 1sin 2t x x x =+=+,可得2sin 21x t =-, 设()()211t g t f x t +==-,其中11t -≤<,令1m t =-,则()22111221m t m t m m+++==++-, 令()22h m m m=++,其中20m -≤<,下面证明函数()h m在2,⎡-⎣上单调递增,在()上单调递减,任取1m 、[)22,0m ∈-且12m m <,则()()1212122222h m h m m m m m ⎛⎫⎛⎫-=++-++ ⎪ ⎪⎝⎭⎝⎭()()()()12121212121222m m m m m m m m m m m m ---=--=,当122m m -≤<<122m m >,此时()()12h m h m <,当120m m <<,则1202m m <<,此时()()12h m h m >, 所以,函数()h m在2,⎡-⎣上单调递增,在()上单调递减,则()(max 2h m h ==-因此,函数()f x 在,02π⎡⎫-⎪⎢⎣⎭上的值域为(,2-∞-. (2)解:因为,02x ⎡⎤∈-⎢⎥⎣⎦π,则,444x πππ⎡⎤+∈-⎢⎥⎣⎦,令[]sin cos 1,14t x x x π⎛⎫=+=+∈- ⎪⎝⎭,设()()222211a a t at a a f x p t at at -⎛⎫+ ⎪+-⎝⎭===--, ①若(){}0y y f x ∈=,必有210aa--≤≤,因为0a >,则2a ≥,当1a =时,即当1a =()110p t t t a =+==,可得1t =,合乎题意;当1a ≠2a ≥且1a ≠()min 0p t =,合乎题意. 综上所述,2a ≥;②令[]11,1n at a a =-∈---,则1n t a+=, 则()()22121122n a a a a a a p t n n n a n ϕ⎡⎤+-⎛⎫+⎢⎥ ⎪⎝⎭⎡⎤+-⎢⎥⎣⎦==++=⎢⎥⎣⎦, 令()()20qs x x q x=++>,下面证明函数()s x在(上单调递减,在)+∞上为增函数,任取1x、(2x ∈且12x x <,则120x x -<,120x x q <<, 所以,()()()()()()121212121212121212220q x x x x x x q q qs x s x x x x x x x x x x x ---⎛⎫⎛⎫-=++-++=--=> ⎪ ⎪⎝⎭⎝⎭,所以,()()12s x s x >,故函数()s x在(上单调递减, 同理可证函数()s x在)+∞上为增函数,在(,-∞上为增函数,在()上为减函数,因为12a <<,则()()2212121,2a a a +-=--+∈,且()()22121220a a a a a +---=->10a >->, 又()22212120a a a a +----=-<,1a ∴--<,101a a ∴--<<-由双勾函数的单调性可知,函数()n ϕ在1,a ⎡--⎣上为增函数,在()上为减函数,在(]0,1a -上为减函数,当[)1,0x a ∈--时,()((max 120n aϕϕ==-<, ()2101a a ϕ-=>-,()((22111a a a ϕϕ⎡⎤---=+⎢⎥⎣⎦- (())())()21142214210111a a a a a a a a a a +------=≥=>---,由双勾函数性质可得()()min 21f x a ϕ=-=,综上所述())min 21f x N a==.【点睛】关键点点睛:在求解本题第二问第2小问中,要通过不断地换元,将问题转化为双勾函数的最值,结合比较法可得出结果.27.(1)A ∪B ={x |x >0},A ∩B ={x |2<x <4}; (2){a |1<a ≤2}, 【解析】 【分析】(1)化简集合A ,B ,利用并集及交集的概念运算即得; (2)分a >1,0<a <1讨论,利用条件列出不等式即得. (1)∵A ={x |2x >4}={x |x >2},B ={x ||x -a |<2}={x |a -2<x <a +2}, ∴当a =2时,B ={x |0<x <4},所以A ∪B ={x | x >0},A ∩B ={x |2<x <4}; (2)当a >1时,C ={x |log ax <0}={x |0<x <1},因为C ⊆B ,所以2021a a -≤⎧⎨+≥⎩,解得-1≤ a ≤2,因为a >1,此时1<a ≤2,当0<a <1时,C ={x |log ax <0}={x |x >1},此时不满足C ⊆B , 综上,a 的取值范围为{a |1<a ≤2}. 28.(1)∅,{1},{2},{1,2}; (2)UB {|0x x =<或3}x >,{|13}BC x x ⋃=-≤≤.【解析】 【分析】(1)直接写出集合A 的所有子集即可; (2)直接写出UB ,求得C ,再求B C ⋃即可.(1)因为{}1,2A =,故A 的所有子集为∅,{}{}{}1,2,1,2. (2)因为{}|12C x x =-≤≤,UB ={|0,x x <或3}x >,{|13}B C x x ⋃=-≤≤.29.B ={0,7,3,1}. 【解析】 【分析】解方程2427a a ++=即得解. 【详解】解:由题得2427a a ++=, 解得1a =或5a =-. 因为0a >,所以1a =. 当1a =时, B ={0,7,3,1}. 故集合B ={0,7,3,1}.30.(1){}|25=-≤≤A B x x ;(){}|20R A B x x =-≤< (2)1|4,12m m m ⎧⎫<--≤≤-⎨⎬⎩⎭或【解析】 【分析】(1)利用集合的运算求解即可.(2)通过A B =A 得出A B ⊆,计算时注意讨论A 为空集的情况. (1) 选条件①:(1)当1m =时,{}|05A x x =≤≤,{}2B x x =|-2≤≤{}|25A B x x ∴=-≤≤{}|0,5RA x x x =<>或(){}|20R A B x x ∴⋂=-≤<选条件②:此时集合{}2B x x =|-2≤≤与①相同,其余答案与①一致; (2)若A B A =,则A B ⊆当A =∅时,123m m ->+,解得4m <-当A ≠∅时,21123232m m m m -≤-⎧⎪-≤+⎨⎪+≤⎩,即1412m m m ⎧⎪≥-⎪≥-⎨⎪⎪≤-⎩,解得112m -≤≤-综上,实数m 的取值范围为1|412m m m ⎧⎫<--≤≤-⎨⎬⎩⎭或。

高中数学高考总复习集合习题及详解

高中数学高考总复习集合习题及详解

高中数学高考总复习集合习题及详解一、选择题1.(09·全国Ⅱ)已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},则∁U (M ∪N )=( )A .{5,7}B .{2,4}C .{2,4,8}D .{1,3,5,6,7}[答案] C[解析] M ∪N ={1,3,5,6,7}, ∴∁U (M ∪N )={2,4,8},故选C.2.(2010·烟台二中)已知集合M ={y |y =x 2},N ={y |y 2=x ,x ≥0},则M ∩N =( ) A .{(0,0),(1,1)} B .{0,1} C .[0,+∞)D .[0,1][答案] C[解析] M ={y |y ≥0},N =R ,则M ∩N =[0,+∞),选C.[点评] 本题极易出现的错误是:误以为M ∩N 中的元素是两抛物线y 2=x 与y =x 2的交点,错选A .避免此类错误的关键是,先看集合M ,N 的代表元素是什么以确定集合M ∩N 中元素的属性.若代表元素为(x ,y ),则应选A.3.设集合P ={x |x =k 3+16,k ∈Z },Q ={x |x =k 6+13,k ∈Z },则( )A .P =QB .P QC .P QD .P ∩Q =∅[答案] B[解析] P :x =k 3+16=2k +16,k ∈Z ;Q :x =k 6+13=k +26,k ∈Z ,从而P 表示16的奇数倍数组成的集合,而Q 表示16的所有整数倍数组成的集合,故P Q .选B.[点评] 函数值域构成的集合关系的讨论,一般应先求出其值域.如果值域与整数有关,可将两集合中的元素找出它们共同的表达形式,利用整数的性质求解或用列举法讨论.4.(文)满足M ⊆{a 1,a 2,a 3,a 4},且M ∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( ) A .1 B .2C .3D .4[答案] B[解析] 集合M 必须含有元素a 1,a 2,并且不能含有元素a 3,故M ={a 1,a 2}或{a 1,a 2,a 4}.(理)(2010·湖北理,2)设集合A ={(x ,y )|x 24+y 216=1},B ={(x ,y )|y =3x },则A ∩B 的子集的个数是( )A .4B .3C .2D .1[答案] A[解析] 结合椭圆x 24+y 216=1的图形及指数函数y =3x 的图象可知,共有两个交点,故A ∩B 的子集的个数为4.5.(2010·辽宁理,1)已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A ∩B ={3},(∁U B )∩A ={9},则A =( )A .{1,3}B .{3,7,9}C .{3,5,9}D .{3,9}[答案] D[解析] 由题意知,A 中有3和9,若A 中有7(或5),则∁U B 中无7(或5),即B 中有7(或5),则与A ∩B ={3}矛盾,故选D.6.(文)(2010·合肥市)集合M ={x |x 2-1=0},集合N ={x |x 2-3x +2=0},全集为U ,则图中阴影部分表示的集合是( )A .{-1,1}B .{-1}C .{1}D .∅[答案] B[解析] ∵M ={1,-1},N ={1,2},∴M ∩N ={1}, 故阴影部分表示的集合为{-1}.(理)(2010·山东省实验中学)如图,I 是全集,A 、B 、C 是它的子集,则阴影部分所表示的集合是( )A .(∁I A ∩B )∩C B .(∁I B ∪A )∩C C .(A ∩B )∩∁I CD .(A ∩∁I B )∩C[答案] D[解析] 阴影部分在A 中,在C 中,不在B 中,故在∁I B 中,因此是A 、C 、∁I B 的交集,故选D.高考总复习含详解答案[点评] 解决这类题的要点是逐个集合考察,看阴影部分在哪些集合中,不在哪些集合中,注意不在集合M 中时,必在集合M 的补集中.7.已知钝角△ABC 的最长边长为2,其余两边长为a ,b ,则集合P ={(x ,y )|x =a ,y =b }所表示的平面图形的面积是( )A .2B .4C .π-2D .4π-2[答案] C[解析] 由题中三角形为钝角三角形可得①a 2+b 2<22;②a +b >2;③0<a <2,0<b <2,于是集合P 中的点组成由条件①②③构成的图形,如图所示,则其面积为S =π×224-12×2×2=π-2,故选C.8.(文)(2010·山东滨州)集合A ={-1,0,1},B ={y |y =cos x ,x ∈A },则A ∩B =( ) A .{0}B .{1}C .{0,1}D .{-1,0,1}[答案] B[解析] ∵cos0=1,cos(-1)=cos1,∴B ={1,cos1}, ∴A ∩B ={1}.(理)P ={α|α=(-1,1)+m (1,2),m ∈R },Q ={β|β=(1,-2)+n (2,3),n ∈R }是两个向量集合,则P ∩Q =( )A .{(1,-2)}B .{(-13,-23)}C .{(1,-2)}D .{(-23,-13)}[答案] B[解析] α=(m -1,2m +1),β=(2n +1,3n -2),令a =β,得⎩⎪⎨⎪⎧ m -1=2n +12m +1=3n -2 ∴⎩⎪⎨⎪⎧m =-12n =-7∴P ∩Q ={(-13,-23)}.9.若集合M ={0,1,2},N ={(x ,y )|x -2y +1≥0且x -2y -1≤0,x 、y ∈M },则N 中元素的个数为( )A .9B .6C .4D .2[答案] C[解析] N ={(0,0),(1,0),(1,1),(2,1)},按x 、y ∈M ,逐个验证得出N .10.(文)已知集合{1,2,3,…,100}的两个子集A 、B 满足:A 与B 的元素个数相同,且A ∩B 为空集.若n ∈A 时,总有2n +2∈B ,则集合A ∪B 的元素个数最多为( )A .62B .66C .68D .74[答案] B[解析] 若24到49属于A ,则50至100的偶数属于B 满足要求,此时A ∪B 已有52个元素;集合A 取1到10的数时,集合B 取4到22的偶数,由于A ∩B =∅,∴4,6,8∉A ,此时A ∪B 中将增加14个元素,∴A ∪B 中元素个数最多有52+14=66个.(理)设⊕是R 上的一个运算,A 是R 的非空子集.若对任意a 、b ∈A ,有a ⊕b ∈A ,则称A 对运算⊕封闭.下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是( )A .自然数集B .整数集C .有理数集D .无理数集[答案] C[解析] A :自然数集对减法,除法运算不封闭, 如1-2=-1∉N,1÷2=12∉N .B :整数集对除法运算不封闭,如1÷2=12∉Z .C :有理数集对四则运算是封闭的.D :无理数集对加法、减法、乘法、除法运算都不封闭. 如(2+1)+(1-2)=2,2-2=0,2×2=2,2÷2=1, 其运算结果都不属于无理数集. 二、填空题11.(文)已知集合A ={x |log 12x ≥3},B ={x |x ≥a },若A ⊆B ,则实数a 的取值范围是(-∞,c ],其中的c =______.[答案] 0[解析] A ={x |0<x ≤18},∵A ⊆B ,∴a ≤0,∴c =0.(理)(2010·江苏苏北四市、南京市调研)已知集合A ={0,2,a 2},B ={1,a },若A ∪B ={0,1,2,4},则实数a 的值为________.[答案] 2[解析] ∵A ∪B ={0,1,2,4},∴a =4或a 2=4,若a =4,则a 2=16,但16∉A ∪B ,∴a 2=4,∴a =±2,又-2∉A ∪B ,∴a =2.高考总复习含详解答案12.(2010·浙江萧山中学)在集合M ={0,12,1,2,3}的所有非空子集中任取一个集合,该集合恰满足条件“对∀x ∈A ,则1x∈A ”的概率是________.[答案]331[解析] 集合M 的非空子集有25-1=31个,而满足条件“对∀x ∈A ,则1x ∈A ”的集合A 中的元素为1,2或12,且12,2要同时出现,故这样的集合有3个:{1},{12,2},{1,12,2}.因此,所求的概率为331.13.(文)(2010·江苏,1)设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =________.[答案] 1[解析] ∵A ∩B ={3},∴3∈B , ∵a 2+4≥4,∴a +2=3,∴a =1.(理)A ={(x ,y )|x 2=y 2} B ={(x ,y )|x =y 2},则A ∩B =________. [答案] {(0,0),(1,1),(1,-1)}.[解析] A ∩B =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ x 2=y2x =y 2={(0,0),(1,1),(1,-1)}. 14.若A ={x |22x -1≤14},B ={x |log 116x ≥12},实数集R 为全集,则(∁R A )∩B =________.[答案] {x |0<x ≤14}[解析] 由22x -1≤14得,x ≤-12,由log 116x ≥12得,0<x ≤14,∴(∁R A )∩B ={x |x >-12}∩{x |0<x ≤14}={x |0<x ≤14}.三、解答题15.设集合A ={x |x 2-3x +2=0},B ={x |x 2+2(a +1)x +(a 2-5)=0}. (1)若A ∩B ={2},求实数a 的值; (2)若A ∪B =A ,求实数a 的取值范围. [解析] (1)A ={1,2},∵A ∩B ={2},∴2∈B , ∴4+4(a +1)+(a 2-5)=0,∴a =-1或-3. (2)∵A ∪B =A ,∴B ⊆A ,由Δ=4(a +1)2-4(a 2-5)=8(a +3)=0得,a =-3. 当a =-3时,B ={2},符合题意;当a <-3时,Δ<0,B =∅,满足题意; 当a >-3时,∵B ⊆A ,∴B =A ,故⎩⎪⎨⎪⎧2(a +1)=-3a 2-5=2,无解. 综上知,a ≤-3.16.(2010·广东佛山顺德区质检)已知全集U =R ,集合A ={x |x 2-x -6<0},B ={x |x 2+2x -8>0},C ={x |x 2-4ax +3a 2<0},若∁U (A ∪B )⊆C ,求实数a 的取值范围.[解析] A ={x |-2<x <3},B ={x |x <-4,或x >2},A ∪B ={x |x <-4,或x >-2}, ∁U (A ∪B )={x |-4≤x ≤-2},而C ={x |(x -a )(x -3a )<0} (1)当a >0时,C ={x |a <x <3a },显然不成立. (2)当a =0时,C =∅,不成立.(3)当a <0时,C ={x |3a <x <a },要使∁U (A ∪B )⊆C ,只需⎩⎪⎨⎪⎧3a <-4a >-2,即-2<a <-43.综上知实数a 的取值范围是⎝⎛⎭⎫-2,-43. 17.(文)设集合A ={(x ,y )|y =2x -1,x ∈N *},B ={(x ,y )|y =ax 2-ax +a ,x ∈N *},问是否存在非零整数a ,使A ∩B ≠∅?若存在,请求出a 的值;若不存在,说明理由.[解析] 假设A ∩B ≠∅,则方程组⎩⎪⎨⎪⎧y =2x -1y =ax 2-ax +a 有正整数解,消去y 得, ax 2-(a +2)x +a +1=0(*)由Δ≥0,有(a +2)2-4a (a +1)≥0, 解得-233≤a ≤233.因a 为非零整数,∴a =±1,当a =-1时,代入(*),解得x =0或x =-1, 而x ∈N *.故a ≠-1.当a =1时,代入(*),解得x =1或x =2,符合题意. 故存在a =1,使得A ∩B ≠∅, 此时A ∩B ={(1,1),(2,3)}.(理)(2010·厦门三中)已知数列{a n }的前n 项和为S n ,且(a -1)S n =a (a n -1)(a >0,n ∈N *). (1)求证数列{a n }是等比数列,并求a n ;(2)已知集合A ={x |x 2+a ≤(a +1)x },问是否存在实数a ,使得对于任意的n ∈N *,都有S n ∈A ?若存在,求出a 的取值范围;若不存在,说明理由.[解析] (1)①当n =1时,∵(a -1)S 1=a (a 1-1),∴a 1=a (a >0)高考总复习含详解答案②当n ≥2时,由(a -1)S n =a (a n -1)(a >0)得, (a -1)S n -1=a (a n -1-1)∴(a -1)a n =a (a n -a n -1),变形得:a na n -1=a (n ≥2),故{a n }是以a 1=a 为首项,公比为a 的等比数列, ∴a n =a n .(2)①当a ≥1时,A ={x |1≤x ≤a },S 2=a +a 2>a ,∴S 2∉A , 即当a ≥1时,不存在满足条件的实数a . ②0<a <1时,A ={x |a ≤x ≤1} ∵S n =a +a 2+…+a n =a1-a (1-a n ),∴S n ∈[a ,a1-a),因此对任意的n ∈N *,要使S n ∈A ,只需⎩⎪⎨⎪⎧0<a <1a 1-a ≤1,解得0<a ≤12,综上得实数a 的取值范围是(0,12].。

高中集合题型和例题大全

高中集合题型和例题大全

高中集合的题型和例题有很多种,以下是一些常见的类型和示例:
1. 集合的表示方法
例题:用列举法表示下列集合:
(1){x|x是小于10的正整数}
(2){y|y是5的正整数倍}
(3){x|x是4除以3的余数}
(4){y|y是9的平方数}
2. 集合之间的关系
例题:已知集合A={x|x=2k+1,k∈Z},B={x|x=4k+1,k∈Z},求证:A∩B=
{x|x=8k+1,k∈Z}。

3. 集合的运算
例题:已知集合A={1,2,3,4},B={3,4,5,6},求:
(1)A∪B;
(2)A∩B;
(3)A-B;
(4)B-A。

4. 集合的元素与集合的关系
例题:已知集合A={a,b,c,d},B={e,f},且集合C满足A∩C≠∅,B∩C≠∅,求C的可能情况。

5. 集合的子集与真子集
例题:已知集合A={1,2,3},求A的所有子集和真子集。

6. 集合的交集、并集、补集运算
例题:已知集合A={1,2,3},集合B={2,3,4},求:
(1)A∩B;
(2)A∪B;
(3)C∪A;
(4)C∪B。

7. 含参数的集合问题
例题:已知集合A={x|ax+b=0},若A=∅时a、b应满足什么条件?如果A≠∅时a、b 应满足什么条件?。

高中数学第一章集合1.1集合与集合的表示方法1.1.2集合的表示方法课堂探究新人教B版必修1

高中数学第一章集合1.1集合与集合的表示方法1.1.2集合的表示方法课堂探究新人教B版必修1

集合表示方法课堂探究探究一用列举法表示集合1.用列举法表示集合时,一般不必考虑元素间前后顺序,如{a,b}与{b,a}表示同一个集合.2.元素与元素之间必须用“,〞隔开.3.集合中元素不能重复.4.列举法也可以表示无限集.【典型例题1】用列举法表示以下集合:(1)36与60公约数构成集合;(2)方程(x-4)2(x-2)=0根构成集合;(3)一次函数y=x-1与y=-23x+43图象交点构成集合.思路分析:(1)要明确公约数含义;(2)注意4是重根;(3)要写成点集形式.解:(1)36与60公约数有1,2,3,4,6,12,所求集合可表示为{1,2,3,4,6,12};(2)方程(x-4)2(x-2)=0根是4,2,所求集合可表示为{2,4};(3)方程y=x-1与y=-23x+43可分别化为x-y=1与2x+3y=4,那么方程组解是所求集合可表示为.探究二用描述法表示集合1.使用描述法表示集合时要注意以下几点:(1)写清元素符号;(2)说明该集合中元素性质;(3)不能出现未被说明字母;(4)多层描述时,应当准确使用“且〞“或〞;(5)所有描述内容都要写在集合符号内;(6)用于描述语句力求简明、准确.2.集合A={x|y=x2+1},B={y|y=x2+1}与C={(x,y)|y=x2+1}不是一样集合.这是因为集合A代表元素是x,且x∈R;集合B代表元素是y,且y≥1;集合C代表元素是(x,y),且(x,y)表示平面直角坐标系内抛物线y=x2+1上点,所以它们是互不一样集合.3.{三角形}实际上是{x|x是三角形}简写,千万别理解成是由三个汉字组成集合,三角形构成集合不要写成{所有三角形},因为{ }本身就有“所有〞含义.【典型例题2】用描述法表示以下集合:(1)小于10所有非负整数构成集合;(2)数轴上与原点距离大于3点构成集合;(3)平面直角坐标系中第二、四象限内点构成集合;(4)方程组解构成集合;(5)集合{1,3,5,7,…}.思路分析:(1)“0≤x<10,x∈Z〞可作为集合一个特征性质;(2)要利用数轴上距离公式来表示,即|x|>3;(3),(4)注意代表元素为点坐标;(5)“x=2k-1,k∈N+〞可作为集合一个特征性质.解:(1)小于10所有非负整数构成集合,用描述法可表示为{x|0≤x<10,x∈Z};(2)数轴上与原点距离大于3点构成集合,用描述法可表示为{x||x|>3};(3)平面直角坐标系中第二、四象限内点构成集合,用描述法可表示为{(x,y)|xy<0};(4)方程组解构成集合,用描述法表示为或;(5){1,3,5,7,…}用描述法可表示为{x|x=2k-1,k∈N+}.反思用描述法表示集合之前,应先通过代表元素确定集合是“点集〞还是“数集〞.另外,二元一次方程组解,因为含有两个未知数,所以在表示时,可看成“点集〞形式进展描述.探究三含参数问题1.对于集合表示方法中含参数问题一定要注意弄清集合含义,也要清楚参数在集合中地位.2.含参数问题常用分类讨论思想来解决,在讨论参数时要做到不重不漏.【典型例题3】集合M={x|(x-a)(x2-ax+a-1)=0}中各元素之和等于3,求实数a 值,并用列举法表示集合M.解:根据集合中元素互异性知,当方程(x-a)(x2-ax+a-1)=0有重根时,重根只能算作集合一个元素,又M={x|(x-a)(x-1)[x-(a-1)]=0}.当a=1时,M={1,0},不符合题意;当a-1=1,即a=2时,M={1,2},符合题意;当a≠1,且a≠2时,a+1+a-1=3,那么a=32,M=,符合题意.综上所述,实数a值为2或32,当a=2时,M={1,2};当a=32时,M=.探究四易错辨析易错点1 认为集合中a具有一致性而致误【典型例题4】集合A={x|x=2a,a∈Z},B={x|x=2a+1,a∈Z},C={x|x=4a+1,a∈Z}.假设m∈A,n∈B,那么有( )A.m+n∈AB.m+n∈BC.m+n∈CD.m+n不属于A,B,C中任意一个错解:C错因分析:不能正确利用集合中元素特征性质,认为三个集合中a是一致,从而由m∈A,得m=2a,a∈Z.由n∈B,得n=2a+1,a∈Z.所以得到m+n=4a+1,a∈Z.进而错误判断m+n∈C.而实际上,三个集合中a是不一致.应由m∈A,设m=2a1,a1∈Z.由n∈B,设n =2a2+1,a2∈Z.所以得到m+n=2(a1+a2)+1,且a1+a2∈Z,所以m+n∈B,故正确答案为B.正解:B反思在分析集合中元素关系时,一定要注意字母各自取值独立性,并要注意用不同字母来区分,否那么会引起错误.易错点2 混淆集合中代表元素而致误【典型例题5】判断命题=真假,并说明理由.错解:此命题是真命题.理由如下:∵x与61x+范围一致,∴题中命题是真命题.错因分析:误认为两个集合代表元素一样而导致错误.实际上,代表元素是x,而代表元素是61x+,因而构成两个集合元素不同.正解:此命题是假命题.理由如下:∵x∈N,且61x+∈Z,∴1+x=1,2,3,6.∴x=0,1,2,5.∴={0,1,2,5}.而={6,3,2,1},∴题中命题是假命题.反思化简集合时一定要注意该集合代表元素是什么,看清楚是数集、点集,还是其他形式,还要注意充分利用特征性质求解,两者相互兼顾,缺一不可.。

高一数学集合典型例题、经典例题

高一数学集合典型例题、经典例题

高一数学集合典型例题、经典例题例1.1.给定集合A和B,其中A={x|x-2≤2},B={y|y=-x^2,-1≤x≤2},求A∩B。

解:将B中的条件用x表示出来,得到B={y|y=-(x-1)^2-1.-1≤x≤2}。

因为A和B都是关于x的条件,所以A∩B也是关于x的条件。

将A和B的条件合并,得到A∩B={x|-x^2≤x-2≤2.-1≤x≤2},即A∩B={x|1≤x≤2}。

例1.2.给定集合A和B,其中A={2,4,a^3-2a^2-a+7},B={1,a+3,a^2-2a+2,a^3+a^2+3a+7},且A∩B={2,5},求A∪B。

解:由A∩B={2,5}可得5∈A。

将5代入a^3-2a^2-a+7=5中解得a=±1或a=2.若a=-1,则B={1,2,5,4},与已知矛盾,舍去。

若a=1,则B={1,4,1,12},也与已知矛盾,舍去。

若a=2,则B={1,5,2,25}符合题意。

因此,A∪B={1,2,4,5,25}。

例2.1.给定集合A和B,其中A={x-2<x≤5},B={x-m+1≤x≤2m-1},且B⊆A,求实数m的取值范围。

解:因为XXX,所以B的最大值不大于A的最大值,即2m-1≤5,解得m≤3.又因为B的最小值不小于A的最小值,即m-1≥-2,解得m≥-1.综上所述,实数m的取值范围为-1≤m≤3.例2.2.给定集合A和B,其中A={x|x^2+x+1=0,x∈R},B={x|x≥0},且A∩B=∅,求实数a的取值范围。

解:由A∩B=∅可知,方程x^2+x+1=0没有实数解。

根据判别式Δ=b^2-4ac,得到Δ<0,即4a<1.因为a≠0,所以a<1/4.又因为当a=0时,方程x^2+x+1=0有实数解,所以a≥0.综上所述,实数a的取值范围为0≤a<1/4.例3.1.给定集合S和T,其中S={x|x>5或x<-1},T={x|a<x<a+8},且S∪T=ℝ,求实数a的取值范围。

集合典型例题(含解析)

集合典型例题(含解析)

第一章集合一、选择题1.(2012·湖南高考理科·T1)设集合M={-1,0,1},N={x|x2≤x},则M∩N=( )(A){0} (B){0,1} (C){-1,1} (D){-1,0,1}【解题指南】求出集合N中所含有的元素,再与集合M求交集.【解析】选B. 由…2x x,得…2x x0-,…x(x1)0-,剟0x1,所以N=剟{x0x1},所以M I N={0,1},故选B.2.(2012·浙江高考理科·T1)设集合A={x|1<x<4},集合B ={x|x2-2x-3≤0}, 则A∩(C R B)=()(A)(1,4) (B)(3,4) (C)(1,3) (D)(1,2)∪(3,4)【解题指南】考查集合的基本运算.【解析】选B.集合B ={x|x2-2x-3≤0}={}13x x-≤≤,{}1,3RB x x x=<->或ð,∴A∩(C R B)=(3,4)3.(2012·江西高考理科·T1)若集合{}{}1,1,0,2A B=-=,则集合{}|,,z z x y x A y B=+∈∈中的元素的个数为()(A)5 (B)4 (C)3 (D)2【解题指南】将x y+的可能取值一一列出,根据元素的互异性重复元素只计一次,可得元素个数.【解析】选C.由已知得,{}|,,z z x y x A y B=+∈∈{}1,1,3=-,所以集合{}|,,z z x y x A y B=+∈∈中的元素的个数为3.4.(2012·新课标全国高考理科·T1)已知集合{}1,2,3,4,5A=,(){},|,,,B x y x A y A x y A =∈∈-∈则B 中所含元素的个数为( )(A)3 (B)6 (C)8 (D)10【解题指南】将x y -可能取的值列举出来,然后与集合A 合到一起,根据元素的互异性确定元素的个数.【解析】选D.由,x A y A ∈∈得0x y -=或1x y -=±或2x y -=±或3x y -=±或4x y -=±,故集合B 中所含元素的个数为10个.5. (2012·广东高考理科·T2)设集合U={1,2,3,4,5,6},M={1,2,4 },则=ðU M ( )(A)U (B){1,3,5} (C){3,5,6} (D){2,4,6}【解题指南】掌握补集的定义:{|,}U M x x U x M =∈∉且ð,本题易解.【解析】选C. {3,5,6}U M =ð.6.(2012·山东高考文科·T2)与(2012·山东高考理科·T2)相同 已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U (A)B ð为( ) (A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4【解题指南】 先求集合A 关于全集U 的补集,再求它与集合B 的并集即可.【解析】选C.{}{}{}U (A)B 0,42,40,2,4==ð. 7.(2012·广东高考文科·T2)设集合U={1,2,3,4,5,6},M={1,3,5},则U M ð=( )(A){2,4,6} (B){1,3,5} (C){1,2,4} (D)U【解题指南】根据补集的定义:{|,}U M x x U x M =∈∉且ð求解即可.【解析】选A. {2,4,6}U M =ð.8.(2012·辽宁高考文科·T2)与(2012·辽宁高考理科·T1)相同 已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则()()U U A B ⋂=痧(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6}【解题指南】据集合的补集概念,分别求出,痧U U A B ,然后求交集.【解析】选B. 由已知C U A={2,4,6,7,9},U B ð={0,1,3,7,9},则(U A ð)⋂(U B ð)={2,4,6,7,9}⋂{0,1,3,7,9}={7,9}.9.(2012·新课标全国高考文科·T1)已知集合A={x|x 2-x -2<0},B={x|-1<x<1},则( )(A )A B Ü (B )B A Ü (C )A=B (D )A ∩B=∅【解题指南】解不等式x 2-x -2<0得集合A ,借助数轴理清集合A 与集合B 的关系.【解析】选B. 本题考查了简单的一元二次不等式的解法和集合之间的关系,由题意可得{}|12A x x =-<<,而{}|11B x x =-<<,故B A Ü.10.(2012·安徽高考文科·T2)设集合A={3123|≤-≤-x x },集合B 为函数)1lg(-=x y 的定义域,则A ⋂B=( )(A )(1,2) (B )[1,2] (C )[ 1,2) (D )(1,2 ]【解题指南】先求出集合,A B ,再求交集.【解析】选D .∵{3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]=+∞=B A B ,∴.11.(2012·福建高考文科·T2)已知集合{1,2,3,4}M =,{2,2}N =-,下列结论成立的是( )(A)N M ⊆ (B)M N M = (C)M N N = (D){2}M N =【解题指南】通过观察找出公共元素,即得交集,结合子集,交、并、补各种概念进行判断和计算.【解析】选D .N 中元素-2不在M 中,因此,A 错,B 错; {2}M N N =≠,因此C错,故选D .12.(2012·浙江高考文科·T1)设全集U={1,2,3,4,5,6} ,集合P={1,2,3,4} ,Q={3,4,5},则P∩(ðU Q)=()(A){1,2,3,4,6} (B){1,2,3,4,5}(C){1,2,5} (D){1,2}【解题指南】考查集合的基本运算.【解析】选D. C U Q={}1,2,6,则P∩(CU Q)={}1,2.13.(2012·北京高考文科·T1)与(2012·北京高考理科·T1)相同已知集合A={x∈R|3x+2>0},B={x∈R|(x+1)(x-3)>0},则A∩B=()(A)(-∞,-1)(B)(-1,-23)(C)(-23,3)(D)(3,+∞)【解题指南】通过解不等式先求出A,B两个集合,再取交集.【解析】选D.集合A=2{|}3x x>-,{|13}B x x x=<->或,所以{|3}A B x x=>.14.(2012·湖南高考文科·T1)设集合M={-1,0,1},N={x|x2=x},则M∩N=()(A){-1,0,1} (B){0,1} (C){1} (D){0}【解题指南】先求出集合N中的元素,再求集合M,N的交集.【解析】选B. N={0,1},∴M∩N={0,1},故选B.15. (2012·江西高考文科·T2)若全集U={x∈R|x2≤4},则集合 A={x∈R||x+1|≤1}的补集C u A为( )(A){x∈R |0<x<2} (B){x∈R |0≤x<2}(C){x∈R |0<x≤2} (D){x∈R |0≤x≤2}【解题指南】解不等式得集合U和A,在U中对A取补集.【解析】选C.{|22}U x x =-≤≤,{|20}A x x =-≤≤,则ðU A={|02}U C A x x =<≤. 16.(2012·湖北高考文科·T1)已知集合A={x|2x -3x +2=0,x ∈R } , B={x|0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为(A) 1 (B)2 (C) 3 (D)4【解题指南】根据集合的性质,先化简集合A,B.再结合集合之间的关系求解.【解析】选D. 由题意知:A= {1,2} ,B={1,2,3,4}.又A C B ⊆⊆,则集合C 可能为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. 二、填空题17.(2012·上海高考理科·T2)若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A .【解题指南】本题考查集合的交集运算知识,此类题的易错点是临界点的大小比较. 【解析】集合1{2+10}{|}2A x x x x =>=>-,集合{}{12}{|212}13B x x x x x x =-<=-<-<=-<<,所以1{|3}2A B x x =-<<. 【答案】1{|3}2x x -<< 18.(2012·江苏高考·T1)已知集合{}{}1,2,4,2,4,6A B ==,则A B = .【解题指南】从集合的并集的概念角度处理.【解析】{1,2,4,6}=A B .【答案】{1,2,4,6}。

高中数学集合练习题及答案

高中数学集合练习题及答案

高中数学集合练习题及答案一、单选题1.集合{}06A x Z x =∈<<,集合{}ln 1B x x =>,求A B ( )A .{}6x e x <<B .{}1,2,3e e e +++C .{}3,4,5D .{}2,3,4,52.已知集合{}22A x x =-≤,{}1,2,3,4,5B =,则A B =( )A .{}1,2,3,4B .{}2,3,4,5C .{}1,2,3D .{}2,3,4 3.已知集合{}11A x Z x =∈-≤≤,{}1,2B =,则A B ⋃=( )A .{}1B .{}0,1,2C .1,0,1,2D .{}1,1,2-4.已知集合{}lg 0A x x =≤,{}22320B x x x =+-≤,则A B ⋃=( ) A .122x x ⎧⎫-≤≤⎨⎬⎩⎭ B .{}21x x -≤≤ C .102x x ⎧⎫-≤≤⎨⎬⎩⎭ D .102x x ⎧⎫<≤⎨⎬⎩⎭ 5.设{}13A x x =-<≤,{}B x x a =>,若A B ⊆,则a 的取值范围是( ) A .{}3a a ≥ B .{}1a a ≤- C .{}3a a > D .{}1a a <- 6.已知集合22{(,)|3,Z,Z}A x y x y x y =+≤∈∈,则A 中元素的个数为( ) A .9 B .8 C .5 D .47.已知集合{}14A x x =-≤≤,{}260B x N x x =∈--≤ ,则A B =( ) A .[]1,3- B .[]2,4- C .{}1,2,3 D .{}0,1,2,3 8.已知集合{|12}A x x =-≤≤,{}0B x x =>,则A B ⋃=( )A .{|2}x x ≤B .{|1}x x ≥-C .{}|1x x >D .{}0x x 9.若集合2{|60}A x x x =--+>,5{|1}3B x x =≤--,则A B 等于( ) A .()3,3- B .[2,3)- C .(2,2)- D .[2,2)- 10.已知集{}23A x x =+≥合,{}3,1,1,3B =--,则A B =( )A .{}3B .{}1,3C .{}3,1--D .{}1,1,3-11.已知集合{}2log 1M x x =<,{}21N x x =≤,则M N ⋃=( ) A .(],1-∞B .(),2-∞C .[)1,2-D .(]0,112.记2{|log (1)3}A x x =-<,N A B =,则B 的元素个数为( )A .6B .7C .8D .9 13.集合A ={x |y =log 2(x +12)},B ={y |y =x 2-2x ,x ∈[0,2]}.则A ∩B =( )A .1,02⎡⎤-⎢⎥⎣⎦B .1,02⎛⎤- ⎥⎝⎦C .1,02⎡⎫-⎪⎢⎣⎭D .(102-,) 14.设全集{}0,1,2,3,4U =,集合{}1,2,4A =,{}2,3B =,则()U A B ⋂=( ) A .{}2B .{}2,3C .{}0,3D .{}3 15.已知集合A ={1,2,3,4,5},集合B ={1,2},若集合C 满足:B C A ⊆,则集合C的个数为( )A .6个B .7个C .8个D .9个 二、填空题16.已知集合(){}ln 2|A x y x ==-,{}2430|B x x x ≤=-+,则A B ⋃=____________ 17.若全集U =R ,集合{}31A x x =-≤≤,{}32A B x x ⋃=-≤≤,则U B A =___________.18.已知{}21,,3A a =,{}22,1,1B a a =+-.若A B =,则=a ______.19.已知集合{}2,1,2A =-,}1,B a =,且B A ⊆,则实数a 的值是___________. 20.若集合(){}2381x A x ==,集合(){}23log 1B x x ==,则A B =_________. 21.已知集合A ={2,log 2m },B ={m ,n }(m ,n ∈R),且{}1A B ⋂=-,则A ∪B =___________.22.已知T 是方程()22040x px q p q ++=->的解集,1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,,则p q +=_____.23.若{}231,13a a ∈--,则=a ______.24.若全集{}22,4,1U a a =-+,且{}1,2A a =+,7A =,则实数=a ______. 25.若集合234|0A x x x ,{}|10B x ax =-=,且“x B ∈”是“x A ∈”的充分非必要条件,则实数a 组成的集合是______.三、解答题26.已知集合*N M ⊆,且M 中的元素个数n 大于等于5.若集合M 中存在四个不同的元素a ,b ,c ,d ,使得a b c d +=+,则称集合M 是“关联的”,并称集合{,,,}a b c d 是集合M 的“关联子集”;若集合M 不存在“关联子集”,则称集合M 是“独立的”.(1)分别判断集合{2,4,6,8,10}与{1,2,3,5,8}是“关联的”还是“独立的”?(2)写出(1)中“关联的”集合的所有的“关联子集”;(3)已知集合{}12345,,,,M a a a a a =是“关联的”,且任取集合{},i j a a M ⊆,总存在M 的“关联子集”A ,使得{},i j a a A ⊆.若12345a a a a a <<<<,求证:1a ,2a ,3a ,4a ,5a 是等差数列.27.设集合{}53A x x =-≤≤,{2B x x =<-或}4x >.(1)求A B ;(2)求R R ()()A B ⋃.28.集合{}30?180120?180,Z A k k k αα︒︒=︒+<<+︒∈,集合{}45?360135?360,Z B k k k ββ=-+<<+∈. (1)求A B ;(2)若全集为U ,求U ()A B ⋂.29.记E 为平面上所有点组成的集合并且A E ∈,B E ∈,说明下列集合的几何意义: (1){}5P E PA ∈<; (2){}P E PA PB ∈=.30.已知集合6|32M x x ⎧⎫=>⎨⎬+⎩⎭,{|53}N x t x t =<<+. (1)当1t =-时,求M N ⋂;(2)若M N ⊆,求实数t 的取值范围.【参考答案】一、单选题1.C【解析】【分析】先化简出结合,A B ,然后再求交集.【详解】由{}1,2,3,4,5A =,ln 1x > 则x e >,所以集合(),B e =+∞所以{}3,4,5A B =故选:C2.A【解析】【分析】首先解绝对值不等式求出集合A ,再根据交集的定义计算可得;【详解】 解:由22x -≤,即222x -≤-≤,解得04x ≤≤,所以{}[]220,4A x x =-≤=, 又{}1,2,3,4,5B =,所以{}1,2,3,4A B =.故选:A3.C【解析】【分析】首先用列举法表示集合A ,再根据并集的定义计算可得;【详解】 解:因为{}{}111,0,1A x Z x =∈-≤≤=-,{}1,2B =,所以{}1,0,1,2A B ⋃=-; 故选:C4.B【解析】【分析】解对数不等式以及一元二次不等式,求出集合A,B ,根据集合的并集运算求得答案.【详解】解22320x x +-≤ 可得122x -≤≤ , 故{}{}lg 001A x x x x =≤=<≤,122B x x ⎧⎫=-≤≤⎨⎬⎩⎭, 所以{}21A B x x ⋃=-≤≤,故选:B .5.B【解析】【分析】根据集合的包含关系,列不等关系,解不等式即可.【详解】由题:(,)B a =+∞,A B ⊆,则1a ≤-.故选:B6.A【解析】【分析】根据x ,y 满足的关系式求得x ,y 的可能值,从而求得集合元素个数.【详解】由223x y +≤,得x ≤≤y ≤又Z x ∈,Z y ∈,所以{1,0,1}x ∈-,{1,0,1}∈-y ,易知x 与y 的任意组合均满足条件,所以A 中元素的个数为339⨯=.故选:A.7.D【解析】【分析】由题知{}0,1,2,3B =,再根据集合交集运算求解即可.【详解】解:解不等式260x x --≤得23x -≤≤,所以{}{}2600,1,2,3B x N x x =∈--≤=, 因为{}14A x x =-≤≤所以A B ={}0,1,2,3故选:D8.B【解析】【分析】进行并集的运算即可.【详解】{|12}A x x =-≤≤,{}0B x x =>,{|1}A B x x ∴⋃=≥-.故选:B .9.D【解析】【分析】解不等式化简集合A ,B ,再利用交集的定义直接求解作答.【详解】不等式260x x --+>化为:260x x +-<,解得:32x -<<,则(3,2)A =-, 不等式513x ≤--,即203x x +≤-,整理得:(2)(3)030x x x +-≤⎧⎨-≠⎩,解得23x -≤<,则[2,3)B =-,所以[2,2)A B ⋂=-.故选:D10.B【解析】【分析】化简集合A ,由交集定义直接计算可得结果.【详解】化简可得{|1}A x x =≥,又{}3,1,1,3B =--所以{1,3}A B =.故选:B.11.C【解析】【分析】求出集合M ,N ,然后进行并集的运算即可.【详解】 ∵{}02M x x =<<,{}11N x x =-≤≤,∴[1,2)M N ⋃=-.故选:C .12.B【解析】【分析】解对数不等式化简A ,求出B 可得答案.【详解】由()22log 1log 8x -<,得19x <<,即{|19}A x x =<<,所以N B A ={2,3,4,5,6,7,8}=,则B 中元素的个数为7.故选:B13.B【解析】【分析】分别解出A 、B 集合,再求交集即可.【详解】集合A :11 022x x +>⇒>-; 集合B :222(1)1,[0,2]y x x x x =-=--∈,[1,0]y ∈- 所以:1(,0]2A B -=故选:B.【点睛】本题考查集合的交集运算.属于基础题.正确解出A 、B 集合是本题的基础.14.D【解析】【分析】利用补集和交集的定义可求得结果.【详解】由已知可得{}0,3U A =,因此,(){}U 3A B ⋂=,故选:D.15.B【解析】【分析】根据集合间的关系写出所有满足条件的集合C 可得出答案.【详解】根据B C A ⊆,集合C 可写成如下形式: {}{}{}{}{}{}{}12312412512341235124512345,,,,,,,,,,,,,,,,,,,,,,, 所以满足条件的集合C 的个数为7个,选项B 正确.故选:B.二、填空题16.[)1,+∞【解析】【分析】先求出集合A 、B ,再求A B .【详解】集合(){}()2|2ln ,A x y x =+∞==-,{}[]2|1,3430B x x x =≤=-+, 所以()[][)2,1,31,A B +∞⋃=∞⋃+=.故答案为:[)1,+∞17.{}12x x <≤##(]1,2【解析】【分析】由集合A ,以及集合A 与集合B 的并集确定出集合B ,以及求出集合A 的补集,再根据交集运算即可求出结果.【详解】 因为{}31A x x =-≤≤,{}32A B x x ⋃=-≤≤,所以{3U x x A =<-或}1x >,{}{}1232x x x B x ⊆<≤⊆-≤≤,所以{}12U B A x x =<≤.故答案为:{}12x x <≤.18.2【解析】【分析】根据集合A 与集合B 相等列式即可求解【详解】因为A B =所以22213a a a ⎧=+⎨-=⎩解之得:2a = 故答案为:219.1【解析】【分析】由子集定义分类讨论即可.【详解】因为B A ⊆,所以a A ∈1A ∈,当2a =-1无意义,不满足题意;当1a =12=,满足题意;当2a =11=,不满足题意.综上,实数a 的值1.故答案为:120.{1,2,33} 【解析】【分析】求解集合,根据集合的并集运算即可.【详解】(){}{}23812x A x ===,(){}231log 13,3B x x ⎧⎫===⎨⎬⎩⎭,则A B ={1,2,33}. 故答案为:{1,2,33}. 21.1,1,22⎧⎫-⎨⎬⎩⎭ 【解析】【分析】根据条件得到2log 1m =-,解出12m =,进而得到1,1,22A B ⎧⎫=-⎨⎬⎩⎭. 【详解】 因为{}1A B ⋂=-,所以1A -∈且1B -∈,所以2log 1m =-,解得:12m =,则1n =-,1,12B ⎧⎫=-⎨⎬⎩⎭,所以1,1,22A B ⎧⎫=-⎨⎬⎩⎭. 故答案为:1,1,22⎧⎫-⎨⎬⎩⎭22.26【解析】【分析】由题知{}4,10T =,再结合韦达定理求解即可.【详解】解:因为240p q ->,所以方程()22040x px q p q ++=->的解集有两个不相等的实数根, 因为1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,, 所以{}4,10T =所以由韦达定理得14p =-,40q =所以26p q +=故答案为:2623.4-【解析】【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解.【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去;若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去.故4a =-.故答案为:4-.24.3【解析】【分析】根据题意21a a -+7=,结合7A =,即可求得a .【详解】因为{}22,4,1U a a =-+,且{}1,2A a =+,7A =,故可得217a a -+=,即()()320a a -+=,解得3a =或2a =-.当2a =-时,{}2,4,7U =,{}1,2A =-,不合题意,故舍去.当3a =时,满足题意.故答案为:3.25.10,1,4⎧⎫-⎨⎬⎩⎭【解析】【分析】解出集合A ,根据题意,集合B 为集合A 的真子集,进而求得答案.【详解】由题意,{}1,4A =-,因为“x B ∈”是“x A ∈”的充分非必要条件,所以集合B 为集合A 的真子集,若a =0,则B =∅,满足题意;若0a ≠,则1B a ⎧⎫=⎨⎬⎩⎭,所以111a a =-⇒=-或1144a a =⇒=. 故答案为:10,1,4⎧⎫-⎨⎬⎩⎭. 三、解答题26.(1){2,4,6,8,10}是“关联的”,{1,2,3,5,8}是“独立的”;(2){2,4,6,8},{2,4,8,10},{4,6,8,10};(3)证明见解析.【解析】【分析】(1)根据给定定义直接判断作答.(2)由(1)及所给定义直接写出“关联子集”作答.(3)写出M 的所有4元素子集,再利用反证法确定“关联子集”,然后推理作答.(1)集合{2,4,6,8,10}中,因2846+=+,所以集合{2,4,6,8,10}是“关联的”,集合{1,2,3,5,8}中,不存在某两个数的和等于另外两个数的和,所以集合{1,2,3,5,8}是“独立的”.(2)由(1)知,有2846+=+,21048+=+,41068+=+,所以{2,4,6,8,10}的“关联子集”有:{2,4,6,8},{2,4,8,10},{4,6,8,10}.(3)集合M 的4元素子集有5个,分别记为:1234521345{,,,},{,,,}A a a a a A a a a a ==, 312454123551234{,,,},{,,,},{,,,}A a a a a A a a a a A a a a a ===,因此,集合M 至多有5个“关联子集”,若21345{,,,}A a a a a =是“关联子集”,则12345{,,,}A a a a a =不是“关联子集”,否则12a a =,矛盾,若21345{,,,}A a a a a =是“关联子集”,同理可得31245{,,,}A a a a a =,41235{,,,}A a a a a =不是“关联子集”,因此,集合M 没有同时含有元素25,a a 的“关联子集”,与已知矛盾,于是得21345{,,,}A a a a a =一定不是“关联子集”,同理41235{,,,}A a a a a =一定不是“关联子集”,即集合M 的“关联子集”至多为12345{,,,}A a a a a =,31245{,,,}A a a a a =,51234{,,,}A a a a a =, 若12345{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素35,a a 的“关联子集”,与已知矛盾,若31245{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素15,a a 的“关联子集”,与已知矛盾,若51234{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素13,a a 的“关联子集”,与已知矛盾,因此,12345{,,,}A a a a a =,31245{,,,}A a a a a =,51234{,,,}A a a a a =都是“关联子集”, 即有25345432a a a a a a a a +=+⇔-=-,15245421a a a a a a a a +=+⇔-=-,14234321a a a a a a a a +=+⇔-=-,从而得54433221a a a a a a a a -=-=-=-,所以1a ,2a ,3a ,4a ,5a 是等差数列.【点睛】关键点睛:涉及集合新定义问题,关键是正确理解给出的定义,然后合理利用定义,结合相关的其它知识,分类讨论,进行推理判断解决.27.(1){}52x x -≤<-; (2){5x x <-或}2x ≥-.【解析】【分析】(1)根据给定条件利用交集的定义直接计算作答.(2)利用补集的定义求出R A ,R B ,再利用并集的定义求解作答. (1) 因集合{}53A x x =-≤≤,{2B x x =<-或}4x >,所以{|52}A B x x ⋂=-≤<-.(2) 依题意,R {5A x x =<-或3}x >,{}R 24B x x =-≤≤,所以{R R ()()5A B x x ⋃=<-或}2x ≥-.28.(1){}30?360120?360,Z A B k k k αα⋂=+<<+∈ (2)U ()A B ⋂ {}210?360300?360,Z k k k αα=+<<+∈ 【解析】【分析】(1)先变形集合A ,再求交集;(2)先求补集,再求交集.(1) 解:因为{}30?180120?180,Z A k k k αα︒︒=+<<︒+︒∈ {}30?360120?360210?360300?360,Z k k k k k ααα︒︒︒=︒+︒<<︒+︒+<<+︒∈或所以 {}30?360120?360,Z A B k k k αα︒︒︒⋂=+︒<<+∈; (2)解:由(1),知U B {}135?360315?360,Z k k k γγ︒︒=+≤≤︒+︒∈ 故U ()A B ⋂{}210?360300?360,Z k k k αα=+<<+∈ 29.(1)以A 为圆心,5为半径的圆内部分(2)线段AB 的垂直平分线【解析】【分析】(1)由圆的定义可得;(2)由线段垂直平分线的定义可得.(1)表示到A 点距离小于5的点组成的集合,即以A 为圆心,5为半径的圆内部分;(2)P 到,A B 距离相等,即线段AB 的垂直平分线.30.(1){}|20x x -<< (2)23,5⎡⎤--⎢⎥⎣⎦ 【解析】【分析】(1)解不等式得M ,再求,M N 交集(2)由题意列不等式组求解(1) 由632x >+化简得302x x <+,解得20x -<<,故{}|20M x x =-<<, 当1t =-时,{}52N x x =-<<,因此{}|20MN x x =-<<.(2) 因{}|20M x x =-<<,{}53N x t x t =<<+,M N ⊆, 所以355230t t t t +>⎧⎪≤-⎨⎪+≥⎩,经计算得235t-≤≤-,故实数t的取值范围是2 3.5⎡⎤--⎢⎥⎣⎦,。

高中数学集合练习题附答案

高中数学集合练习题附答案

高中数学集合练习题附答案一、单选题1.已知集合{}{}0,11,A xx B x x x =≥=-≤≤∈Z ∣∣,则A B =( ) A .[]0,1B .{}1,2C .{}0,1D .[]1,22.已知集合{}1,2,3,4A =,2{|log ,}B y y x x x A ==-∈,则A B =( ) A .{}1,2B .{}1,3C .{}1,2,3D .{}1,3,43.已知集合{}1,0,1,2A =-,{}12B x x =-<<,则A B =( ) A .{}1,0,1- B .{}1,1,2-C .{}0,1D .{}1,24.已知全集,集合{|(2)0}A x x x =+<,{|||1}B x x ,则如图所示的阴影部分表示的集合是( )A .(2,1)-B .[1,0)[1,2)-⋃C .(2,1)[0,1]--D .[0,1]5.已知集合{}35A x x =-≤<,{}42B x y x ==+,则()R A B ⋂=( ) A .13,2⎡⎫--⎪⎢⎣⎭B .1,52⎛⎫- ⎪⎝⎭C .[)3,2--D .()2,5-6.已知集合2{|13},{|4}A x x B x x =-≤<=≥,则A B =( ) A .[1,2]-B .[1,2]C .[2,3)D .[2,)+∞7.已知集合{}22A x x x =<,集合{}1B x x =<,则A B =( )A .(),2-∞B .(),1-∞C .()0,1D .()0,28.若集合{}220A x x x =--<,{}24B x x =<,则A B =( )A .AB .BC .()1,0-D .()0,29.已知集合{}(5)0A x x x =-<,{}14B x x =-,则A B ⋃=( ) A .[1,0)-B .[4,5)C .(0,4]D .[1,5)-10.已知全集{}1,2,3,4,5U =,{}2,3,4A =,{}3,5B =,则()UA B =( ) A .{}1B .{}3C .{}2,4D .{}1,2,4,511.已知集合{}220M x x x =∈-≤Z ,{}N x x a =≥,若M N ⋂有且只有2个元素,则a的取值范围是( )A .(]0,1B .[]0,1C .(]0,2D .(,1]-∞12.已知集合{}24A x x =≤,{}2,B y y x x ==∈R ,则A B =( )A .[0,2]B .[0,4]C .[2,2]-D .∅13.已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=( )A .[]22-,B .(]2,1-C .[)2,3-D .∅14.已知集合{}0,1,2A =,(){},,,,B x y x A y A x y A x y A =∈∈+∈-∈,则集合B 中元素的个数是( ) A .1B .4C .3D .215.全集{}0,1,2, 3,4U =----,{}{}0,1,2,0, 3, 4M N =--=--, 则()UM N =( ) A .{}0B .{}3,4--C .{}1,2--D .∅二、填空题16.已知集合{}112,,0,2x M x x x R P xx R x ⎧⎫-=-≤∈=≥∈⎨⎬+⎩⎭,则集合M P 中整数的个数为______个.17.已知a 、R b ∈,若不等式20ax x b -+<的解集为112A x x ⎧⎫=<<⎨⎬⎩⎭,不等式210ax bx +-≤的解集为B ,则()R A B ⋂=______.18.已知集合{}{}35,10A x Z x B y y =∈-<<=+>∣∣,则A B 的元素个数为___________. 19.设集合(){},A x y y x ==,()3,1x B x y y x +⎧⎫==⎨⎬-⎩⎭,则A B =______.20.已知集合{}0,1,2A =,则集合{}3,B b b a a A ==∈=______.(用列举法表示)21.已知函数()f x 满足()()2f x f x =-,当1≥x 时,()22f x x =-,若不等式()22f x a ->-的解集是集合{}13x x <<的子集,则a 的取值范围是______.22.已知集合{}2280P x x x =-->,{}Q x x a =≥,若P Q Q ⋂=,则实数a 的取值范围是___________.23.判断下列命题的真假:(1)集合{}1,2,3是集合{}1,2,3的真子集;( ) (2){}1是集合{}1,2,3的元素;( ) (3)2是集合{}1,2,3的子集;( ) (4)满足{}{}00,1,2,3A的集合A 的个数是322-个.( )24.若集合1,24k M x x k Z ⎧⎫==+∈⎨⎬⎩⎭,1,42k N x x k Z ⎧⎫==+∈⎨⎬⎩⎭,则集合M 、N 之间的关系是______.25.若集合{}3A x x =>,集合{}B x x a =≥,且B A ,则实数a 的取值范围是______.三、解答题26.关于x 的不等式()()2220R ax a x a +--≥∈的解集为][(),12,-∞-⋃+∞.(1)求a 的值;(2)若关于x 的不等式()()2320x c a x c c a -++-<解集是集合A ,不等式()()210x x -+>的解集是集合B ,若A B ⊆,求实数c 的取值范围.27.已知集合2{|8200}A x x x =--≤,集合22{|230}B x x mx m =--≤,其中0m >. (1)若52m =,求A B ; (2)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围.28.已知集合{}3A x x =≤,{}31B x a x a =-<<+. (1)当4a =时,求()A B R ; (2)若A B A =,求实数a 的取值范围.29.集合22,Z 33A x k x k k ππππ⎧⎫=-<<+∈⎨⎬⎩⎭,222,Z 3B x k x k k πππ⎧⎫=<<+∈⎨⎬⎩⎭,,Z 62C x k x k k ππππ⎧⎫=+<<+∈⎨⎬⎩⎭,[]10,10D =-,分别求A B ,A C ,A D .30.集合{}30?180120?180,Z A k k k αα︒︒=︒+<<+︒∈,集合{}45?360135?360,Z B k k k ββ=-+<<+∈.(1)求A B ;(2)若全集为U ,求U()A B ⋂.【参考答案】一、单选题 1.C 【解析】 【分析】根据交集的定义和运算直接得出结果. 【详解】 由题意得,{1,0,1}B =-,又{}0A x x =≥,所以{0,1}A B =. 故选:C. 2.A 【解析】 【分析】根据对数的运算求出集合B ,再根据交集的定义可求出结果. 【详解】当1x =时,21log 11y =-=, 当2x =时,22log 21y =-=, 当3x =时,23log 3y =-, 当4x =时,24log 42y =-=, 所以2{1,2,log 3}B =, 所以A B ={1,2}. 故选:A 3.C 【解析】 【分析】由交集定义可直接得到结果. 【详解】由交集定义可得:{}0,1A B =. 故选:C. 4.C 【解析】 【分析】首先解一元二次不等式求出集合A ,再解绝对值不等式求出集合B ,阴影部分表示的集合为()A BAB ⋃,根据交集、并集、补集的定义计算可得;【详解】解:由(2)0x x +<,解得20x -<<,所以}{|(2)0{|20}A x x x x x <-=<<+=, 又{|||1}{|11}B x x x x =-≤≤=≤,所以(2,1]A B =-,[1,0)A B =-, 所以阴影部分表示的集合为()(2,1)[0,1]A BA B ⋃=--,故选:C. 5.A 【解析】 【分析】先求出集合B ,得出其补集,再由交集运算得出答案. 【详解】由420x +≥,得21x ≥-,即集合1,2B ⎡⎫=-+∞⎪⎢⎣⎭,所以R 1,2B ∞⎛⎫=-- ⎪⎝⎭.所以()R 13,2AB ⎡⎫=--⎪⎢⎣⎭. 故选:A 6.C 【解析】 【分析】先化简集合B ,再与集合A 取交集即可解决. 【详解】{2{|4}|2B x x x x =≥=≥或}2x ≤-则A B {|13}x x =-≤<⋂{|2x x ≥或}2x ≤-{|23}x x =≤< 故选:C 7.C 【解析】 【分析】解一元二次不等式,求得集合A ,根据集合的交集运算,求得答案. 【详解】{}22{|02}A x x x x x =<=<<,故{|01}A B x x =<<, 故选:C.8.A 【解析】 【分析】分别求出集合A 和B 求的解集,交集运算即可. 【详解】集合{}{}22012A x x x x x =--<=-<<,{}22B x x =-<<,所以A B A =.故选:A . 9.D 【解析】 【分析】由一元二次不等式的解法求出集合A ,再根据并集的定义即可求解. 【详解】解:因为集合{}{}(5)005A x x x x x =-<=<<,{}14B x x =-, 所以{}{}[05141,5)A B x x x x ⋃=<<⋃-=-. 故选:D. 10.D 【解析】 【分析】利用交集和补集的定义可求得结果. 【详解】由已知可得{}3A B ⋂=,所以,(){}1,2,4,5UA B ⋂=.故选:D. 11.A 【解析】 【分析】求出集合M ,根据M N ⋂有且只有2个元素即可求出a 的范围. 【详解】{}(){}{}220|200,1,2M x x x x x x =∈-≤=∈-≤=Z Z ,∵M N ⋂有且只有2个元素,∴0<a ≤1. 故选:A. 12.A 【解析】 【分析】解不等式得集合A ,求二次函数值域得集合B ,然后由集合的交集运算可得. 【详解】由24x ≤解得22x -≤≤,即{}22A x x =-≤≤, 易知20y x =≥,即{|0}B y y =≥则{|02}A B x x =≤≤. 故选:A 13.C 【解析】 【分析】解对数不等式确定集合A ,解二次不等式确定集合B ,然后由并集定义计算. 【详解】由题意{|021}{|23}A x x x x =<-<=<<,{|22}B x x =-≤≤, 所以{|23}[2,3)A B x x =-≤<=-. 故选:C . 14.B 【解析】 【分析】根据所给定义求出集合B ,即可判断; 【详解】解:因为{}0,1,2A =,(){},,,,B x y x A y A x y A x y A =∈∈+∈-∈,所以()()()(){}0,0,1,0,2,0,1,1B =,即集合B 中的元素有()0,0,()1,0,()2,0,()1,1共4个,故选:B . 15.C 【解析】 【分析】根据补集与交集的运算可直接求解. 【详解】 由题{}1,2UN =--,故(){}1,2U M N ⋂=--.故选:C二、填空题16.3 【解析】 【分析】分别求解对应不等式,化简集合M 、P ,根据交集的定义写出M P ,即可得到答案.【详解】{}{}{}12,21213M x x x R x x x x =-≤∈=-≤-≤=-≤≤,{}110,0,2122x x P x x R x x R x x x x ⎧⎫⎧⎫--=≥∈=≤∈=-<≤⎨⎬⎨⎬++⎩⎭⎩⎭, 则{}[]111,1M P x x ⋂=-≤≤=-,其中的整数有-1,0,1共3个, 故答案为:317.3122x x ⎧-≤≤⎨⎩或}1x =【解析】 【分析】分析可知x 的方程20ax x b -+=的两根分别为12、1,利用韦达定理求出a 、b 的值,然后解不等式210ax bx +-≤可得集合B ,利用补集和交集的定义可求得()A B R . 【详解】由题意可知,关于x 的方程20ax x b -+=的两根分别为12、1,所以11121120a b a a ⎧+=⎪⎪⎪⨯=⎨⎪>⎪⎪⎩,解得2313a b ⎧=⎪⎪⎨⎪=⎪⎩, 不等式210ax bx +-≤即为2211033x x +-≤,即2230x x +-≤,解得312x -≤≤,则312B x x ⎧⎫=-≤≤⎨⎬⎩⎭,因为112A x x ⎧⎫=<<⎨⎬⎩⎭,则R 12A x x ⎧=≤⎨⎩或}1x ≥,因此,()R3122A B x x ⎧⋂=-≤≤⎨⎩或}1x =.故答案为:3122x x ⎧-≤≤⎨⎩或}1x =.18.5 【解析】 【分析】直接求出集合A 、B ,再求出A B ,即可得到答案. 【详解】因为集合{}{}352,1,0,1,2,3,4A x Z x =∈-<<=--∣,集合{}{}101B y y y y =+>=>-∣∣, 所以{}0,1,2,3,4A B =, 所以A B 的元素个数为5. 故答案为:5.19.()(){}1,1,3,3--【解析】 【分析】联立方程组,求出交点坐标,即可得到答案.【详解】解方程组31y xx y x =⎧⎪+⎨=⎪-⎩,得11x y =-⎧⎨=-⎩或33x y =⎧⎨=⎩. 故答案为:()(){}1,1,3,3--.20.{0,3,6}【解析】 【分析】根据给定条件直接计算作答. 【详解】因{}0,1,2A =,而{}3,B b b a a A ==∈,所以{0,3,6}B =. 故答案为:{0,3,6}21.24a ≤≤【解析】 【分析】先由已知条件判断出函数()f x 的单调性,再把不等式()22f x a ->-转化为整式不等式,再利用子集的要求即可求得a 的取值范围. 【详解】由()()2f x f x =-可知,()f x 关于1x =对称,又()22f =-,当1≥x 时,()22f x x =-单调递减,故不等式()22f x a ->-等价于211x a --<,即122a ax <<+, 因为不等式解集是集合{}13x x <<的子集, 所以12132aa ⎧≥⎪⎪⎨⎪+≤⎪⎩,解得24a ≤≤.故答案为:24a ≤≤22.()4,+∞【解析】 【分析】求出集合P ,根据P Q Q ⋂=,得Q P ⊆,列出不等式即可得解. 【详解】解:{}{22804P x x x x x =-->=>或}2x <-,因为P Q Q ⋂=,所以Q P ⊆, 所以4a >. 故答案为:()4,+∞.23. 假 假 假 真 【解析】 【分析】(1)利用真子集的定义即可判断. (2)由集合与集合的关系即可判断真假. (3)由元素与集合的关系即可判断真假.(4)由真子集的定义即可找到满足条件集合A 的个数. 【详解】(1)因为{}1,2,3的真子集有{}{}{}{}{}{},1,2,3,1,2,1,3,2,3∅,所以{}1,2,3不是{}1,2,3真子集,命题为假命题.(2){}1是集合,因此不是{}1,2,3的元素,命题为假命题. (3)因为2是元素,因此不是{}1,2,3的子集,命题为假命题. (4)若{}0A ,所以集合A 中至少含有两个元素且其中一个必须为0,又因为{}0,1,2,3A,所以集合A 可以从1,2,3中再选取一个元素、或者两个元素,所以满足条件的集合A 把∅和{}0,1,2,3去掉,所以满足条件集合A 的个数为322-个,命题为真命题.故答案为:假;假;假;真 .M N 【解析】 【分析】从两个集合的元素特征入手整理化简,再判定两集合的包含关系进行求解. 【详解】因为121,Z ,Z 244k k M x x k x x k ⎧⎫⎧⎫+==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭, 1+2,Z =,Z 424k k N x x k x x k ⎧⎫⎧⎫==+∈=∈⎨⎬⎨⎬⎩⎭⎩⎭,若x M ∈,则21(21)244k k x +-+==, 因为Z k ∈,所以21Z k -∈,所以x ∈N ,所以M N ⊆, 又因为0N ∈,0M ∉,所以M N . 故答案为:M N .25.3a >【解析】 【分析】解不等式求得结合A ,根据B A 列不等式来求得a 的取值范围. 【详解】3x >⇔3x <-或3x >,所以{|3A x x =<-或}3x >.由于B A ,所以3a >.故答案为:3a >三、解答题26.(1)1;(2)72c --≤≤【解析】【分析】(1)由给定条件可得-1,2是方程()2220ax a x +--=的根,且0a >,再借助韦达定理计算作答.(2)求出集合B ,按集合A 是空集和不是空集分类求解作答.(1)依题意,方程()2220ax a x +--=的解为-1,2,且0a >,于是得2122a a a-⎧=⎪⎪⎨-⎪=-⎪⎩,解得:1a =,所以1a =.(2)由(1)知,()(){}231210A x x c x c c =-++-<,而()1,2B =-,又A B ⊆, 当A =∅时,()()2231811410c c c c c ∆=+--=++≤,解得77c --≤-+当A ≠∅时,2Δ1410311221(31)2(1)042(31)2(1)0c c c c c c c c c ⎧=++>⎪+⎪-<<⎪⎨⎪+++-≥⎪-++-≥⎪⎩,解得72c -+<≤综上得:72c --≤所以实数c的取值范围是72c --≤27.(1)15[2,]2-; (2)10,3⎡⎫+∞⎪⎢⎣⎭. 【解析】【分析】(1)利用一元二次不等式的解法化简求解集合AB 、即可求解; (2)根据x A ∈是x B ∈成立的充分不必要条件,由[]2,10- [],3m m -求解.(1)由28200x x --≤,得210x -≤≤.故集合{}|210A x x =-≤≤ 由22230x mx m --≤,得()(3)0x m x m +-≤,当0m >时,3m m -<,解得3m x m -≤≤,故集合{}|3B x m x m =-≤≤. 当52m =时,515[,]22B =-,故15[2,]2A B =-. (2)∵x A ∈是x B ∈成立的充分不必要条件,所以[]2,10- [],3m m -, 则2310m m -≤-⎧⎨≥⎩,解得103m ≥,此时经检验,符合题意, 所以实数m 的取值范围为10,3⎡⎫+∞⎪⎢⎣⎭. 28.(1){}35x x <<(2)(6,)+∞【解析】【分析】(1)求出集合A ,进而求出A 的补集,根据集合的交集运算求得答案; (2)根据A B A =,可得A B ⊆,由此列出相应的不等式组,解得答案.(1){}{}333A x x x x =≤=-≤≤,则R {|3A x x =<-或3}x > ,当4a =时,{}15B x x =-<<,(){}R =35A B x x ∴⋂<< ;(2)若A B A =,则A B ⊆,3313a a -<-⎧∴⎨+>⎩, ∴实数a 的取值范围为6a >,即(6,)a ∈+∞ .29.2,2,3k k k πππ⎛⎫+∈ ⎪⎝⎭Z ;2,2,63k k k ππππ⎛⎫++∈ ⎪⎝⎭Z ;7557,,,333333ππππππ⎛⎫⎛⎫⎛⎫--⋃-⋃ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 【解析】【分析】根据任意角的弧度表示及交集的概念即可计算.【详解】22,22,22,2,3333A B k k k k k k k ππππππππππ⎛⎫⎛⎫⎛⎫⋂=-+⋂+=+∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Z ;2,2,2,2,336263A C k k k k k k k ππππππππππππ⎛⎫⎛⎫⎛⎫⋂=-+⋂++=++∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Z ; 分别令k =-1,0,1,即可得:[]75572,210,10,,,33333333A D k k ππππππππππ⎛⎫⎛⎫⎛⎫⎛⎫⋂=-+⋂-=--⋃-⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 30.(1){}30?360120?360,Z A B k k k αα⋂=+<<+∈ (2)U ()A B ⋂ {}210?360300?360,Z k k k αα=+<<+∈ 【解析】【分析】(1)先变形集合A ,再求交集;(2)先求补集,再求交集.(1) 解:因为{}30?180120?180,Z A k k k αα︒︒=+<<︒+︒∈ {}30?360120?360210?360300?360,Z k k k k k ααα︒︒︒=︒+︒<<︒+︒+<<+︒∈或所以 {}30?360120?360,Z A B k k k αα︒︒︒⋂=+︒<<+∈; (2)解:由(1),知U B {}135?360315?360,Z k k k γγ︒︒=+≤≤︒+︒∈ 故U ()A B ⋂{}210?360300?360,Z k k k αα=+<<+∈。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

--
-- 集 合
1.集合概念 元素:互异性、无序性、确定性
2.集合运算 全集U:如U =R
交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=⋃或
补集:}{A x U x x A C U ∉∈=且
3.集合关系 空集A ⊆φ 子集B A ⊆:任意B x A x ∈⇒∈
B A B B A B
A A
B A ⊆⇔=⊆⇔= 注:数形结合---文氏图(即韦恩图、Ve nn 图)、数轴
典型例题
1. 集合(){}0,=+=y x y x A ,(){}2,=-=y x y x B ,则=B A
2. 已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于
3. 设(){}R b b x b x x A ∈=++++=,0122,求A 中所有元素之和.
4. 已知集合{}24,3,22++=a a A ,{}a a a B --+=2,24,7,02,且{}7,3=B A ,求a 的值.
5. 已知(){}011=+-=x m x A ,{}0322=--=x x x B ,若B A ⊆,则m 的值为
6. 已知{}121-≤≤+=m x m x A ,{}52≤≤-=x x B ,若B A ⊆,求实数m 的取值范围.
7. 设全集{}32,3,22-+=a a S ,{}2,12-=a A ,{}5=A C S ,求a 的值.
8. 若{}Z n n x x A ∈==,2,{}Z n n x x B ∈-==,22,试问B A ,是否相等.
9. 已知(){}a x y y x M +==,,(){}2,22=+=y x y x N ,求使得φ=N M 成立的实数a 的取值范围.
10. 设集合{}R x x x x A ∈=+=,042,(){}R x R a a x a x x B ∈∈=-+++=,,011222,若A B ⊆,求实数a 的取值范围.
11. 设R U =,集合{}R x a ax x x A ∈=+-+=,03442,(){}R x a x a x x B ∈=+--=,0122,{}R x a ax x x C ∈=-+=,0222,若C B A ,,中至少一个不是空集,求实数a 的取值范围.
12. 设集合(){}01,2=--=x y y x A ,(){}
05224,2=+-+=y x x y x B ,(){==y y x C ,}b kx +,是否存在N b k ∈,,使得()φ=C B A ?若存在,请求出b k ,的值;若不存在,请说明理由.。

相关文档
最新文档