数据挖掘期末大作业任务

合集下载

大工20秋《数据挖掘》大作业

大工20秋《数据挖掘》大作业

学习中心:专业:计算机科学与技术年级: 2020年秋季学号:学生:1.谈谈你对本课程学习过程中的心得体会与建议?本学期数据挖掘的课程学习对我来说也是收获颇丰的,当今社会数据的价值不言而喻,通过数据的分析挖掘和处理建模,小到可以预测用户的购物行为和使用习惯为企业提供产品设计思路,分析用户心理从而创造出更加方便智能的产品,还可以极大的方便普通人的生活,大到可以为政府领导决策提供可靠的数据依据。

随着互联网技术的不断发展数据的价值也慢慢体现了出来,但是面对海量复杂的数据如何有效的进行分析汇总如何让数据能够创造价值,这就关联到了数据挖掘这门课程了,数据挖掘是基于Python 这门语言来具体实现的,通过对这门编程语言的学习,从基本概念到具体的语法再到框架我们都经过了一个系统的学习,最终也通过具体的项目去融会贯通之前所学到的知识,数据挖掘课程是理论性和实践性都很强的一门学习,通过这门课程的学习让我对数据价值有了一个全新的认识。

相信以后肯定会更多的使用到的。

2. Knn算法原理以及python实现1. Knn算法介绍:KNN(K-Nearest Neighbor)算法,KNN算法是一种有监督的分类算法,输入同样为样本特征值向量以及对应的类标签,输出则为具有分类功能的模型,能够根据输入的特征值预测分类结果。

核心原理就是,与待分类点最近的K个邻居中,属于哪个类别的多,待分类点就属于那个类别。

2. Knn算法流程:KNN算法模型主要有三要素构成:距离度量,k值的选择和分类的决策规则。

KNN分类算法的思路很简洁,实现也很简洁,具体分三步:1)找K个最近邻。

KNN分类算法的核心就是找最近的K个点,选定度量距离的方法之后,以待分类样本点为中心,分别测量它到其他点的距离,找出其中的距离最近的“TOP K”,这就是K个最近邻。

2)统计最近邻的类别占比。

确定了最近邻之后,统计出每种类别在最近邻中的占比。

3)选取占比最多的类别作为待分类样本的类别。

期末大作业

期末大作业

期末大作业数据挖掘和基于数据的决策是目前非常重要的研究领域,是从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的特殊过程。

在商业上,数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析技术,可用于分析企业数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。

本次作业要求完成一个相亲配对程序,让相亲者更容易找到自己的意中人。

查阅相关文献,以python为工具实现K-近邻算法,从而完成一个基本版的相亲配对系统,在此基础上深入研究聚类算法(K-近邻算法为其中一种),讨论各种聚类思路及算法优劣,完成相应的研究论文。

基本的设计思路提示如下:利用附件datingTestSet.txt文档中提供的三种属性(前三列,其中第1列为对方每年出差/旅行的公里数,第2列为对方玩游戏消耗时间的百分比,第3列为对方每周消费的冷饮公升数)作为测度是否和对方匹配的标准。

附件文件第4列表示了你遇到此类人产生的好恶情感,其中largeDoses表示对你极有吸引力,smallDoses表示对你吸引力一般,didntLike 表示是你不喜欢的类型。

利用此文件提供的数据,以K-近邻算法为工具,进行数据挖掘,发现你的喜好标准,对新的未标定的待匹配方(即只有前三行数据)给出第4行的好恶情感标签(即largeDoses、smallDoses或didntLike)。

具体要求如下:1.查找文献,理解完整的K-近邻算法;2.使用python语言编程实现K-近邻算法,解决相亲配对这一明确的应用问题;3.撰写的研究论文要有关于聚类算法的详细叙述,论文中的算法应该与程序实现的算法相印证。

大作业要求:1.自己设计解决方案,简易的解决方案得分较低,完整的解决方案,即使部分完成,得分也会较高;2.作业上交形式为电子版文件。

所有文件打包为一个文件,以“学号+姓名”的方式命名;3.算法的python源程序(py文件);4.对此问题进行研究得到的研究性论文,论文包括前言(简介),算法部分(算法流程图为核心),程序设计部分(程序流程图为核心),实验结果和分析,小结等内容(doc文件);5.论文必须有规范的发表论文格式,包括题目、作者、单位、摘要、关键字、正文及参考文献;6.附有少量参考资料。

20090307113曹晨《数据挖掘》期末大作业

20090307113曹晨《数据挖掘》期末大作业

数据挖掘原理、算法及应用学号:学生所在学院:信息工程学院学生姓名:颜伟泰任课教师:汤亮教师所在学院:信息工程学院2015年12月12年级决策树分类算法颜伟泰12软件(1)班一、摘要(一)、决策树算法简介:决策树算法是一种归纳分类算法,它通过对训练集的学习,挖掘出有用的规则,用于对新集进行预测。

决策树算法可设计成具有良好可伸缩性的算法,能够很好地与超大型数据库结合,处理相关的多种数据类型,并且,其运算结果容易被人理解,其分类模式容易转化成分类规则。

(二)、算法思想:该算法的基本思想是:首先找出所有的频集,这些项集出现的频繁性至少和预定义的最小支持度一样。

然后由频集产生强关联规则,这些规则必须满足最小支持度和最小可信度。

然后使用第1步找到的频集产生期望的规则,产生只包含集合的项的所有规则,其中每一条规则的右部只有一项,这里采用的是中规则的定义。

一旦这些规则被生成,那么只有那些大于用户给定的最小可信度的规则才被留下来。

为了生成所有频集,使用了递归的方法。

(三)、算法运用领域:(1)Apriori算法广泛应用于商业中,应用于消费市场价格分析中,它能够很快的求出各种产品之间的价格关系和它们之间的影响。

通过数据挖掘,市场商人可以瞄准目标客户,采用个人股票行市、最新信息、特殊的市场推广活动或其他一些特殊的信息手段,从而极大地减少广告预算和增加收入。

百货商场、超市和一些老字型大小的零售店也在进行数据挖掘,以便猜测这些年来顾客的消费习惯。

(2)Apriori算法应用于网络安全领域,比如时候入侵检测技术中。

早期中大型的电脑系统中都收集审计信息来建立跟踪档,这些审计跟踪的目的多是为了性能测试或计费,因此对攻击检测提供的有用信息比较少。

它通过模式的学习和训练可以发现网络用户的异常行为模式。

采用作用度的Apriori算法削弱了Apriori算法的挖掘结果规则,是网络入侵检测系统可以快速的发现用户的行为模式,能够快速的锁定攻击者,提高了基于关联规则的入侵检测系统的检测性。

打工23从数据挖掘大作业题目及要求

打工23从数据挖掘大作业题目及要求

打工23从数据挖掘大作业题目及要求数据挖掘大作业题目及要求:题目:基于用户评论数据的情感分析要求:1. 数据来源:选择某一特定领域的用户评论数据,如电商平台的商品评论、餐饮行业的用户评价等。

2. 数据预处理:对原始评论数据进行清洗、去除噪声,提取关键词等预处理工作。

3. 数据分析方法:选择适当的情感分析方法,如基于词典的情感分析、基于机器学习的情感分类等。

4. 情感分析结果:对用户评论进行情感分类,如正面、负面、中立等。

可以通过文本分类模型或情感词典进行分类。

5. 结果可视化:根据情感分析结果,将用户评论进行可视化展示,如情感极性饼图、情感变化趋势图等。

参考内容:1. 数据来源选择用户评论数据是进行情感分析的基础,可以通过访问公开的数据源如Kaggle、UCI Machine Learning Repository等获取数据集,也可以选择特定行业领域的数据,如Amazon电商平台、Yelp餐饮评论等。

2. 数据预处理对原始评论数据进行清洗是为了去除噪声和无关信息,可以使用正则表达式进行文本清洗,去除标点符号和数字等特殊字符。

同时,可以使用自然语言处理技术进行文本分词,将评论文本拆分为一个个独立的词语,方便后续分析。

3. 数据分析方法情感分析是指根据用户评论的语义特征和情感倾向,将其归类为积极、消极或中性等情感极性。

常用的情感分析方法包括基于词典的情感分析和机器学习方法。

- 基于词典的情感分析:使用情感词典,如情感词典AFINN、SentiWordNet等,通过匹配评论中的词语与情感词典中的词语,计算评论的情感得分,从而判断评论的情感极性。

- 基于机器学习的情感分析:使用已标注的评论数据集进行训练,构建情感分类模型。

可以使用朴素贝叶斯、支持向量机等机器学习算法进行分类。

4. 情感分析结果根据选择的情感分析方法,将评论进行情感分类,可分类为正面、负面、中立等。

对于基于词典的情感分析,可以根据评论中的情感得分来确定情感极性。

数据挖掘期末大作业

数据挖掘期末大作业

数据挖掘期末大作业1.数据挖掘的发展趋势是什么?大数据环境下如何进行数据挖掘。

对于数据挖掘的发展趋势,可以从以下几个方面进行阐述:(1)数据挖掘语言的标准化描述:标准的数据挖掘语言将有助于数据挖掘的系统化开发。

改进多个数据挖掘系统和功能间的互操作,促进其在企业和社会中的使用。

(2)寻求数据挖掘过程中的可视化方法:可视化要求已经成为数据挖掘系统中必不可少的技术。

可以在发现知识的过程中进行很好的人机交互。

数据的可视化起到了推动人们主动进行知识发现的作用。

(3)与特定数据存储类型的适应问题:根据不同的数据存储类型的特点,进行针对性的研究是目前流行以及将来一段时间必须面对的问题。

(4)网络与分布式环境下的KDD问题:随着Internet的不断发展,网络资源日渐丰富,这就需要分散的技术人员各自独立地处理分离数据库的工作方式应是可协作的。

因此,考虑适应分布式与网络环境的工具、技术及系统将是数据挖掘中一个最为重要和繁荣的子领域。

(5)应用的探索:随着数据挖掘的日益普遍,其应用范围也日益扩大,如生物医学、电信业、零售业等领域。

由于数据挖掘在处理特定应用问题时存在局限性,因此,目前的研究趋势是开发针对于特定应用的数据挖掘系统。

(6)数据挖掘与数据库系统和Web数据库系统的集成:数据库系统和Web数据库已经成为信息处理系统的主流。

2. 从一个3输入、2输出的系统中获取了10条历史数据,另外,最后条数据是系统的输入,不知道其对应的输出。

请使用SQL SERVER 2005的神经网络功能预测最后两条数据的输出。

首先,打开SQL SERVER 2005数据库软件,然后在界面上右键单击树形图中的“数据库”标签,在弹出的快捷菜单中选择“新建数据库”命令,并命名数据库的名称为YxqDatabase,单击确定,如下图所示。

然后,在新建的数据库YxqDatabas中,根据题目要求新建表,相应的表属性见下图所示。

在新建的表完成之后,默认的数据表名称为Table_1,并打开表,根据题目提供的数据在表中输入相应的数据如下图所示。

数据挖掘大作业例子

数据挖掘大作业例子

数据挖掘大作业例子1. 超市购物数据挖掘呀!想想看,如果把超市里每个顾客的购买记录都分析一遍,那岂不是能发现很多有趣的事情?比如说,为啥周五晚上大家都爱买啤酒和薯片呢,是不是都打算周末在家看剧呀!2. 社交媒体情感分析这个大作业超有意思哦!就像你能从大家发的文字里看出他们今天是开心还是难过,那简直就像有了读心术一样神奇!比如看到一堆人突然都在发伤感的话,难道是发生了什么大事情?3. 电商用户行为挖掘也很棒呀!通过分析用户在网上的浏览、购买行为,就能知道他们喜欢什么、不喜欢什么,这难道不是很厉害吗?就像你知道了朋友的喜好,能给他推荐最适合的礼物一样!4. 交通流量数据分析呢!想象一下,了解每个路口的车流量变化,是不是就能更好地规划交通啦?难道这不像是给城市的交通装上了一双明亮的眼睛?5. 医疗数据挖掘更是不得了!能从大量的病例中找到疾病的规律,这简直是在拯救生命啊!难道这不是一件超级伟大的事情吗?比如说能发现某种疾病在特定人群中更容易出现。

6. 金融交易数据挖掘也超重要的呀!可以知道哪些交易有风险,哪些投资更靠谱,那不就像有个聪明的理财顾问在身边吗!就好比能及时发现异常的资金流动。

7. 天气数据与出行的结合挖掘也很有趣呀!根据天气情况来预测大家的出行选择,真是太神奇了吧!难道不是像有了天气预报和出行指南合二为一?8. 音乐喜好数据挖掘呢!搞清楚大家都喜欢听什么类型的音乐,从而能更好地推荐歌曲,这不是能让人更开心地享受音乐吗!好比为每个人定制了专属的音乐播放列表。

9. 电影票房数据挖掘呀!通过分析票房数据就能知道观众最爱看的电影类型,这不是超厉害的嘛!就像知道了大家心里最期待的电影是什么样的。

我觉得数据挖掘真的太有魅力了,可以从各种看似普通的数据中发现那么多有价值的东西,真是让人惊叹不已啊!。

大工19秋《数据挖掘》大作业题目及要求答案

大工19秋《数据挖掘》大作业题目及要求答案

网络教育学院《数据挖掘》课程大作业题目:题目一:Knn算法原理以及python实现姓名:报名编号:学习中心:层次:专升本专业:计算机科学与技术第一大题:讲述自己在完成大作业过程中遇到的困难,解决问题的思路,以及相关感想,或者对这个项目的认识,或者对Python与数据挖掘的认识等等,300-500字。

数据挖掘是指从大量的数据中通过一些算法寻找隐藏于其中重要实用信息的过程。

这些算法包括神经网络法、决策树法、遗传算法、粗糙集法、模糊集法、关联规则法等。

在商务管理,股市分析,公司重要信息决策,以及科学研究方面都有十分重要的意义。

数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术,从大量数据中寻找其肉眼难以发现的规律,和大数据联系密切。

如今,数据挖掘已经应用在很多行业里,对人们的生产生活以及未来大数据时代起到了重要影响。

第二大题:完成下面一项大作业题目。

2019秋《数据挖掘》课程大作业注意:从以下5个题目中任选其一作答。

题目一:Knn算法原理以及python实现要求:文档用使用word撰写即可。

主要内容必须包括:(1)算法介绍。

(2)算法流程。

(3)python实现算法以及预测。

(4)整个word文件名为 [姓名奥鹏卡号学习中心](如戴卫东101410013979浙江台州奥鹏学习中心[1]VIP )答:KNN算法介绍KNN是一种监督学习算法,通过计算新数据与训练数据特征值之间的距离,然后选取K(K>=1)个距离最近的邻居进行分类判(投票法)或者回归。

若K=1,新数据被简单分配给其近邻的类。

KNN算法实现过程(1)选择一种距离计算方式, 通过数据所有的特征计算新数据与已知类别数据集中的数据点的距离;(2)按照距离递增次序进行排序,选取与当前距离最小的k个点;(3)对于离散分类,返回k个点出现频率最多的类别作预测分类;对于回归则返回k个点的加权值作为预测值;算法关键(1)数据的所有特征都要做可比较的量化若是数据特征中存在非数值的类型,必须采取手段将其量化为数值。

数据挖掘大作业

数据挖掘大作业

大数据真正开始做始于去年,通过两年的尝试、积累,思路已有,但离成功还很远。

一些国外的大数据案例、大数据故事无非是商务智能(BI)、数据仓库(BW)的改头换面,新瓶装旧酒而已。

就如数据仓库一样,建设了近20年才让每个企业真正承认其价值,大数据也不能期望很快就获得成功,需要一个沉淀时间。

大数据发展可以用一个波浪式的图来形容,现在还处于第一个峰顶,必须经过低谷再升起,几轮反复。

这期间,大家可能会看到许多大数据真实的案例,不管是成功的还是失败的都会给我们启示。

只要尝试了就不一定完全失败,就如数据仓库建设,几年前很多报告都显示80%的项目失败,但仔细分析后发现,只是在发展过程当中没有达到预期价值而已。

前人淌过的路,后边的人可以少走一些雷区。

真正的大数据思维:允许数据的不精确性以前,由于可获得的数据量比较小,为此我们必须尽量准确的记录下所获得的所有数据,做出个KPI供领导参考,采样过程的精确度被放在重要的地位。

显然,这种对精确性的执着是信息缺乏时代的产物。

大数据时代,数据的收集问题不再成为困扰,采集全量的数据成为现实,但海量数据的涌现一定会增加数据的混乱性且造成结果的不准确性,如果仍执迷精确性,那么将无法应对这个新的时代。

大数据通常都用概率说话,且大数据处理之前是可以对之进行清洗从而减少部分的错误数据。

所以,与致力于避免错误相比,对错误的包容将会带给我们更多信息。

其实,允许数据的混杂性和容许结果的不精确性才是我们拥抱大数据的正确态度,只要做到10%准确结果,能够达成业务数十倍的增长即可,这是真正的大数据思维,未来我们应当习惯这种思维。

大数据不是一个纯技术的问题大数据不是一个纯技术问题,会包含很多管理、业务方面的内容。

并不是说,购买了一套数据挖掘工具,组建了一个Hadoop环境,就能称为做了大数据。

除了设备、技术上的投资,企业还需要从组织结构、人员意识、管理方式、企业文化等方面都有一个转变。

大数据的前期准备工作很多,这是一种思维上的全面变革。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据挖掘期末大作业
1.数据挖掘的发展趋势是什么?大数据环境下如何进行数据挖掘。

对于数据挖掘的发展趋势,可以从以下几个方面进行阐述:
(1)数据挖掘语言的标准化描述:标准的数据
挖掘语言将有助于数据挖掘的系统化开发。

改进多个数据挖掘系统和功能间的互操作,促进其在企业和社会中的使用。

(2)寻求数据挖掘过程中的可视化方法:可视
化要求已经成为数据挖掘系统中必不可少的技术。

可以在发现知识的过程中进行很好的人机交互。

数据的可视化起到了推动人们主动进行知识发现的作用。

(3)与特定数据存储类型的适应问题:根据不
同的数据存储类型的特点,进行针对性的研究是目前流行以及将来一段时间必须面对的问题。

(4)网络与分布式环境下的KDD问题:随着
Internet的不断发展,网络资源日渐丰富,这就需要分散的技术人员各自独立地处理分离数据库的工作方式应是可协作的。

因此,考虑适应分布式与网络环境的工具、技术及系统将是数据挖掘中一个最为重要和繁荣的子领域。

(5)应用的探索:随着数据挖掘的日益普遍,其应用范围也日益扩大,如生物医学、电信业、零售业等
领域。

由于数据挖掘在处理特定应用问题时存在局限性,因此,目前的研究趋势是开发针对于特定应用的数据挖掘系统。

(6)数据挖掘与数据库系统和Web数据库系统的集成:数据库系统和Web数据库已经成为信息处
理系统的主流。

2. 从一个3输入、2输出的系统中获取了10条历史数据,另外,最后条数据是系统的输
入,不知道其对应的输出。

请使用SQL SERVER 2005的神经网络功能预测最后两条数据的输出。

首先,打开SQL SERVER 2005数据库软件,然后在界面上右键单击树形图中的“数据库”标签,在弹出的快捷菜单中选择“新建数据库”命令,并命名数据库的名称为YxqDatabase,单击确定,如下图所示。

然后,在新建的数据库YxqDatabas中,根据题目要求新建表,相应的表属性见下图所示。

在新建的表完成之后,默认的数据表名称为T able_1,并打开表,根据题目提供的数据在表中输入相应的数据如下图所示。

在测试数据被输入到数据库中之后,打开SQL Server Business Intelligence Development Studio 命令,并在文件中新建项目,项目名称命名为MyData,并单击确定,进入下一步,如下图所示。

在进入的新页面上,新建一个数据源,并在出现的新窗口中单击下一步,并选择新建按钮,就会出
现连接管理器窗口,如右图所示。

在打开的
界面中,在“提供程序”下拉列表框中选择Microsoft OLE DB Provider for SQL Server选项,选择完成后,单击确定,进入下一界面,至此,完成了数据连接的工作。

在建立完数据连接之后,需要建立数据源视图,右键单击数据源视图,并选中“新建数据源视图”命令,在数据库YxqDatabase下的数据表Table_1中,选中这个数据表,然后单击下一步,并更改数据源视图的名称为YxqView,单击完成,这样就建好了数据源视图。

如下图所示。

在上面的工作完成之后,我们在界面中单击“挖掘结构”,并新建一个挖掘结构然后点击下一步,在弹出的新窗口“选择挖掘技术”中,我们选择“Microsoft神经网络”选项,并单击下一步,如下图所示。

弹出的新窗口要求对T able_1中的各个列指定类型:键类型、输入类型、可预测类型。

把数据表T able_1中的data列定为键类型,x1,x2,x3规定为输入类型,y1,y2规定为可预测类型,选择之后情形如下图所示。

在上图中,单击下一步,再选择默认值,并单击下一步,就完成了挖掘模型的创建。

挖掘模型创建完成之后会出现下图所示的窗口。

在此界面中,我们选择“挖掘模型查看器”选项卡,会弹出一个小窗口,提问“服务器内容似乎已过时。

是否先生成和部署项目?”单击是按钮,系统将花费一点时间进行部署和生成,见下图所示。

部署成功后,就会弹出另外一个小窗口,提问“必须先处理T able_1挖掘模型才能浏览其内容。

处理模型可能要花费一些时间,具体将取决于数据量。

是否继续?”单击“是”按钮,并在新弹出的窗口中单击“运行”按钮”处理成功之后在两个窗口分别单击“关闭”按钮,就会得到下图所示的数据分析图表。

最后,选择“挖掘模型预测”选项卡,进行数据预测,出现的界面如下图所示。

在所示的界面中,我们单击“选项事例表”按钮,在选择导航中,选择事例表为T able_1,将出现下图所示的界面。

在上图所示的结构中,单击工具栏上的“单独查询”按钮,即产生下图所示的界面。

在上图所示的界面中,把表中数据的最后一行分别输入到变量x1,x2,x3后面的空白中,然后把挖掘模型下的Y1,Y2项拖动至最下面一行的最左边位置。

然后单击工具栏上的“切换到查询结果”按钮,会出现下图所示的界面。

至此,我们通过神经网络功能预测出了最后两条数据的输出。

3.用ID3算法生成分类决策树
在之前创建好的数据源与数据源视图的前提下,我们开始创建决策树的挖掘结构,单击“挖掘结构”,并从中选择“新建挖掘结构”命令,系统将打开数据挖掘导向。

在“欢迎使用数据挖掘向导”页上,单击下一步按钮,在“选择定义方法”页上,确认已选中“你要使用何种数据挖技术?”下拉列表中选择“Microsoft决策树”选项,如下图所示。

然后单击下一步,出现“指定定型数据”页,如下图所示。

在界面中,确保选中RID列右边“键”列中的复选框,这即是决策树分析中所用的属性。

在上图中,单击下一步,在随后“指定列的内容和数据类型”页上,单击下一步按钮,出现“完成向导”页。

接下来,我们开始设置决策树挖掘结构的相关参数,在“挖掘模型”选项卡上单击鼠标右键,从弹出的快捷菜单中选择“设置算法参数”命令,系统将打开“算法参数”对话框,如下图所示。

在设置好决策树挖掘结构的相关参数之后,接下来,开始建立决策树挖掘模型,选择“挖掘模型查看器”选项卡,程序是否建立部署项目,选择“是”,单击运行按钮,出现“处理进度”窗口,我们再次选择“挖掘模型查看器”选项卡,生成的决策树如下图所示。

4.数据挖掘与数据仓库的关系是什么?谈谈对数据挖掘的理解。

首先,数据挖掘是从大量数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的过程。

简单的说,数据挖掘就是从大量的数据中提取或“挖掘”知识。

然而,数据仓库通常是指一个数据库环境,而不是指一件产品,它提供用户用于决策支持的当前和历史数据,这些数据在传统的数据库中通常不方便得到。

简单来说,数据仓库就是一个面向主题的、集成的、相对稳定的、反应历史变化的数据集合,通常用于辅助决策支持。

其实,可以用这样一个简单例子形象化两者的关系,如果将数据仓库比作矿井,那么数据挖掘就是深入矿井采矿的工作。

决策者利用数据作决策,即从数据仓库中挖掘出对决策有用的信息与知识,是建立数据仓库与进行数据挖掘的最大目的。

只有数据仓库先建行立完成,且数据仓库所含数据时干净、完备和经过整合的,数据挖掘才能有效地进行,因此从一定意义上可将两者的关系解读为数据挖掘时从数据仓库中找出有用信息的一种过程与技术。

5.通过我班同学的身体特征,进行数据的分析,各特征有序号、身高(cm)、体重(kg)、
胸围(cm)、腰围(cm)、臀围(cm),总共有50个学生的资料。

首先,通过之前所创建的数据源、数据源视图,在接下来我们开始创建k-means挖掘结构,在此,我们新建挖掘结构,如下图所示。

然后单击下一步,接下来出现的“指定定型数据”页,也即是指定聚类分析中所用的属性,如下图所示。

至此,k-means挖掘结构创建完成,接下来我们开始设置k-means挖掘结构的相关参数,在“挖掘模型”选项卡上单击鼠标右键,从弹出的快捷菜单中选择“设置算法参数”命令,系统将打开“算法参数”对话框,如下图所示。

接着,我们开始建立k-means挖掘模型,然后选择“挖掘模型查看器”,程序问是否建立部署项目,选择“是”。

在接下来的“处理挖掘模型”页上,单击运行按钮,出现“处理速度”页,如下图所
示。

在上图中,处理进度完成之后,单击关闭按钮,建模完成。

然后再次选择“挖掘模型查看器”选项卡,由此得到的k-means聚类结果如下图所示。

在上图所示的界面中,我们再次单击“分类对比”按钮,得到下图所示,至此通过图示所示,我们可以分析出班上50位同学的各种身体特征指标。

_。

相关文档
最新文档