【必考题】高考数学试题带答案
高三数学考试卷及答案

一、选择题(本大题共10小题,每小题5分,共50分)1. 下列各数中,有理数是:A. √2B. πC. -3D. 无理数2. 函数y=2x-1的图像是:A. 一次函数图像B. 二次函数图像C. 指数函数图像D. 对数函数图像3. 已知等差数列{an}的第一项a1=3,公差d=2,则第10项an的值为:A. 19B. 21C. 23D. 254. 在△ABC中,∠A=30°,∠B=45°,则∠C的度数是:A. 105°B. 120°C. 135°D. 150°5. 若复数z满足|z-1|=2,则复数z在复平面上的几何意义是:A. z到点(1,0)的距离为2B. z到点(0,1)的距离为2C. z到点(1,1)的距离为2D. z到点(0,0)的距离为26. 下列函数中,是奇函数的是:A. y=x^2B. y=x^3C. y=x^4D. y=x^57. 已知函数f(x)=x^2-4x+3,则f(2)的值为:A. 1B. 3C. 5D. 78. 在直角坐标系中,点P(2,3)关于y轴的对称点坐标是:A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,3)9. 若log2(x+1)=3,则x的值为:A. 2B. 3C. 4D. 510. 下列不等式中,正确的是:A. 3x > 2xB. 3x < 2xC. 3x ≤ 2xD. 3x ≥ 2x二、填空题(本大题共5小题,每小题5分,共25分)11. 已知等比数列{an}的第一项a1=1,公比q=2,则第n项an=______。
12. 在△ABC中,若∠A=60°,b=8,c=10,则a=______。
13. 函数y=2^x的图像与y=2^(-x)的图像关于______对称。
14. 若复数z=3+4i,则|z|=______。
15. 已知等差数列{an}的前n项和为Sn,若a1=2,d=3,则S10=______。
高考数学试卷及解析答案

一、选择题(本大题共12小题,每小题5分,共60分)1. 下列各数中,属于有理数的是()A. √2B. πC. -3/5D. 无理数2. 函数y = 2x - 1的图象是()A. 一次函数的图象,斜率为正,y轴截距为负B. 一次函数的图象,斜率为负,y轴截距为正C. 二次函数的图象,开口向上D. 二次函数的图象,开口向下3. 已知等差数列{an}的前n项和为Sn,若S3 = 9,S6 = 27,则第10项a10的值为()A. 6B. 7C. 8D. 94. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数为()A. 75°B. 90°C. 105°D. 120°5. 下列命题中,正确的是()A. 若a > b,则a^2 > b^2B. 若a > b,则ac > bcC. 若a > b,则log2a > log2bD. 若a > b,则a + c > b + c6. 函数f(x) = |x - 1| + |x + 1|的值域为()A. [0, +∞)B. [-2, +∞)C. [-1, +∞)D. [0, 2]7. 已知复数z = a + bi(a, b ∈ R),若|z - 3i| = |z + i|,则实数a的值为()A. 0B. 1C. 2D. 38. 下列各点中,在直线3x - 4y + 5 = 0上的是()A. (1, 1)B. (2, 2)C. (3, 3)D. (4, 4)9. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的图象开口向上,且顶点坐标为(-1, 2),则a的值为()A. 1B. 2C. 3D. 410. 已知函数y = log2(x - 1) + log2(x + 1)的定义域为D,则D的值为()A. (-1, 1)B. (-1, +∞)C. (1, +∞)D. (-∞, -1)∪(1, +∞)11. 在等比数列{an}中,若a1 = 2,公比q = 3,则第n项an的值为()A. 2^nB. 3^nC. 6^nD. 9^n12. 若直线y = kx + 1与圆x^2 + y^2 = 1相切,则k的值为()A. 0B. 1C. -1D. 不存在二、填空题(本大题共6小题,每小题5分,共30分)13. 函数y = 2x - 3的图象与x轴的交点坐标为______。
【必考题】高考数学试题(及答案)

【必考题】高考数学试题(及答案)一、选择题1.已知长方体的长、宽、高分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ) A .25πB .50πC .125πD .都不对2.()22x xe ef x x x --=+-的部分图象大致是( )A .B .C .D .3.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A .23B .35C .25D .154.若满足sin cos cos A B Ca b c==,则ABC ∆为( ) A .等边三角形 B .有一个内角为30的直角三角形 C .等腰直角三角形D .有一个内角为30的等腰三角形5.如图所示,程序据图(算法流程图)的输出结果为( )A .34B .16 C .1112D .25246.已知平面向量a ,b 是非零向量,|a |=2,a ⊥(a +2b ),则向量b 在向量a 方向上的投影为( ) A .1B .-1C .2D .-27.函数()23x f x x+=的图象关于( )A .x 轴对称B .原点对称C .y 轴对称D .直线y x =对称8.南北朝时代的伟大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,如图,夹在两个平行平面之间的两个几何体的体积分别为12,V V ,被平行于这两个平面的任意平面截得的两个截面的面积分别为12,S S ,则“12,S S 总相等”是“12,V V 相等”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件9.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程为0.70.35y x =+,则下列结论错误的是( )x3 4 5 6 y 2.5t44.5A .产品的生产能耗与产量呈正相关B .回归直线一定过4.5,3.5() C .A 产品每多生产1吨,则相应的生产能耗约增加0.7吨 D .t 的值是3.1510.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A .72B .64C .48D .3211.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是( )A .B .C .D .12.样本12310,?,?,? a a a a ⋅⋅⋅的平均数为a ,样本12310,?,?,? b b b b ⋅⋅⋅的平均数为b ,那么样本1122331010,? ,,? ,?,,?,? a b a b a b a b ⋅⋅⋅的平均数为( )A .()a b +B .2()a b +C .1()2a b + D .1()10a b + 二、填空题13.若三点1(2,3),(3,2),(,)2A B C m --共线,则m 的值为 . 14.已知0x >,0y >,0z >,且36x y z ++=,则323x y z ++的最小值为_________.15.若9()a x x-的展开式中3x 的系数是84-,则a = .16.已知样本数据,,,的均值,则样本数据,,,的均值为 .17.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为3,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 . 18.在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆2cos ρθ=相切,则a =__________.19.计算:1726cos()sin 43ππ-+=_____. 20.已知双曲线1C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,第一象限内的点00(,)M x y 在双曲线1C 的渐近线上,且12MF MF ⊥,若以2F 为焦点的抛物线2C :22(0)y px p =>经过点M ,则双曲线1C 的离心率为_______.三、解答题21.已知数列{}n a 满足1112,22n n n a a a ++==+. (1)设2nn na b =,求数列{}n b 的通项公式; (2)求数列{}n a 的前n 项和n S ; (3)记()()211422nnn n n nn c a a +-++=,求数列{}n c 的前n 项和n T . 22.已知曲线C :(t 为参数), C :(为参数).(1)化C ,C 的方程为普通方程,并说明它们分别表示什么曲线; (2)若C 上的点P 对应的参数为,Q 为C 上的动点,求中点到直线(t 为参数)距离的最小值.23.设()34f x x x =-+-.(Ⅰ)求函数()2()g x f x =-(Ⅱ)若存在实数x 满足()1f x ax ≤-,试求实数a 的取值范围.24.已知函数1(1)f x m x x =---+. (1)当5m =时,求不等式()2f x >的解集;(2)若二次函数223y x x =++与函数()y f x =的图象恒有公共点,求实数m 的取值范围.25.2016年某市政府出台了“2020年创建全国文明城市简称创文”的具体规划,今日,作为“创文”项目之一的“市区公交站点的重新布局及建设”基本完成,市有关部门准备对项目进行调查,并根据调查结果决定是否验收,调查人员分别在市区的各公交站点随机抽取若干市民对该项目进行评分,并将结果绘制成如图所示的频率分布直方图,相关规则为:调查对象为本市市民,被调查者各自独立评分;采用百分制评分,内认定为满意,80分及以上认定为非常满意;市民对公交站点布局的满意率不低于即可进行验收;用样本的频率代替概率.求被调查者满意或非常满意该项目的频率;若从该市的全体市民中随机抽取3人,试估计恰有2人非常满意该项目的概率; 已知在评分低于60分的被调查者中,老年人占,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中选取2人担任群众督察员,记为群众督查员中老年人的人数,求随机变量的分布列及其数学期望.26.如图所示,已知正方体1111ABCD A B C D -中,E F ,分别为11D C ,11C B 的中点,ACBD P =,11A C EF Q =.求证:(1)D B F E ,,,四点共面;(2)若1A C 交平面DBEF 于R 点,则P Q R ,,三点共线.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据长方体的对角线长等于其外接球的直径,求得2252R =,再由球的表面积公式,即可求解. 【详解】设球的半径为R ,根据长方体的对角线长等于其外接球的直径,可得2R =2252R =,所以球的表面积为22544502S R πππ==⨯=球. 故选:B 【点睛】本题主要考查了长方体的外接球的性质,以及球的表面积的计算,其中解答中熟练应用长方体的对角线长等于其外接球的直径,求得球的半径是解答的关键,着重考查了运算与求解能力,属于基础题.2.A解析:A 【解析】 【分析】根据函数的奇偶性,排除D ;根据函数解析式可知定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1,利用特殊值x=0.01和x=1.001代入即可排除错误选项. 【详解】由函数解析式()22x x e e f x x x --=+-,易知()22x xe ef x x x ---=+-=() f x - 所以函数()22x xe ef x x x --=+-为奇函数,排除D 选项根据解析式分母不为0可知,定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1, 当x=0.01时,代入()f x 可得()0f x <,排除C 选项 当x=1.001时,代入()f x 可得()0f x >,排除B 选项 所以选A【点睛】本题考查了根据函数解析式判断函数的图象,依据主要是奇偶性、单调性、特殊值等,注意图中坐标的位置及特殊直线,属于中档题.3.B解析:B 【解析】 【分析】本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解. 【详解】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B ,{,c,},{,c,},{b,,},{c,,}b A b B A B A B 共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,c,},{,c,}b A b B 共6种,所以恰有2只做过测试的概率为63105=,选B . 【点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.4.C解析:C 【解析】 【分析】由正弦定理结合条件可得tan tan 1B C ==,从而得三角形的三个内角,进而得三角形的形状. 【详解】由正弦定理可知sin sin sin A B Ca b c ==,又sin cos cos A B C a b c==, 所以cos sin ,cos sin B B C C ==,有tan tan 1B C ==.所以45B C ==.所以180454590A =--=. 所以ABC ∆为等腰直角三角形. 故选C. 【点睛】本题主要考查了正弦定理解三角形,属于基础题.5.C解析:C 【解析】由算法流程图知s =0+12+14+16=1112.选C. 6.B解析:B 【解析】 【分析】先根据向量垂直得到a (a +2b ),=0,化简得到a b =﹣2,再根据投影的定义即可求出. 【详解】∵平面向量a ,b 是非零向量,|a |=2,a ⊥(a +2b ), ∴a (a +2b ),=0, 即()2·20a a b += 即a b =﹣2∴向量b 在向量a 方向上的投影为·22a b a -==﹣1, 故选B . 【点睛】本题主要考查向量投影的定义及求解的方法,公式与定义两者要灵活运用.解答关键在于要求熟练应用公式.7.C解析:C 【解析】 【分析】求函数的定义域,判断函数的奇偶性即可. 【详解】解:()f x =0x ∴≠解得0x ≠()f x ∴的定义域为()(),00,D =-∞+∞,D 关于原点对称.任取x D ∈,都有()()f x f x x-===,()f x ∴是偶函数,其图象关于y 轴对称,故选:C . 【点睛】本题主要考查函数图象的判断,根据函数的奇偶性的定义判断函数的奇偶性是解决本题的关键.解析:A 【解析】 【分析】根据充分条件和必要条件的定义,结合祖暅原理进行判断即可. 【详解】根据祖暅原理,当12,S S 总相等时,12,V V 相等,所以充分性成立;当两个完全相同的四棱台,一正一反的放在两个平面之间时,此时体积固然相等但截得的面积未必相等,所以必要性不成立.所以“12,S S 总相等”是“12,V V 相等”的充分不必要条件. 故选:A 【点睛】本题考查充分条件与必要条件的判断,属于基础题.9.D解析:D 【解析】 由题意,x =34564+++=4.5, ∵ˆy=0.7x+0.35, ∴y =0.7×4.5+0.35=3.5, ∴t=4×3.5﹣2.5﹣4﹣4.5=3, 故选D .10.B解析:B 【解析】 【分析】由三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,利用体积公式,即可求解。
数学高考真题答案及解析版

数学高考真题答案及解析版一、选择题1. 本题考查函数的性质和应用。
设函数f(x) = 2^x - 3,若f(x) = 5,则x = 2。
因为f(x)在R上是增函数,所以f(x) > 5 当 x > 2。
因此,选项A正确。
2. 根据题目,我们需要求解不等式。
首先,将不等式整理为标准形式:3x - 2 > 7。
解得x > 3,所以选项C是正确答案。
3. 题目涉及三角函数的图像和性质。
正弦函数y = sin(x)在区间[0,2π]内的最大值为1,最小值为-1。
因此,选项B描述正确。
4. 这是一个关于复数的问题。
设复数z = a + bi,其中a和b是实数。
根据题目条件,z的模长为5,即√(a^2 + b^2) = 5。
又因为z的实部为3,即a = 3。
代入模长公式,解得b = 4。
所以,复数z = 3 +4i,选项D正确。
5. 本题要求我们利用概率的基本原理计算事件的概率。
根据古典概型,事件A的概率P(A) = 事件A的基本事件数 / 总的基本事件数。
这里,事件A是抽取到红色球,有3个红色球和5个蓝色球,总共8个球。
所以,P(A) = 3/8。
选项B是正确答案。
二、填空题1. 题目要求求解几何级数的和。
根据等比数列求和公式,S = a(1 -r^n) / (1 - r),其中a是首项,r是公比,n是项数。
将题目中的数值代入公式,得到S = 1(1 - 2^5) / (1 - 2) = 31/(-1) = -31。
2. 本题考查圆的方程和直线与圆的位置关系。
设圆心为O(0,0),半径r = 3。
直线方程为y = x + 1。
圆心到直线的距离d = |0 - 0 + 1|/ √2 = 1/√2。
因为 d < r,所以直线与圆相交。
根据相交弦的性质,弦长l = 2√(r^2 - d^2) = 2√(9 - 1/2) = √34。
三、解答题1. 首先,我们需要证明函数f(x) = x^3 - 3x^2 + 2x在区间[0,3]上是单调递增的。
【必考题】数学高考试题(带答案)

【必考题】数学高考试题(带答案)一、选择题1.在复平面内,O 为原点,向量OA 对应的复数为12i -+,若点A 关于直线y x =-的对称点为点B ,则向量OB 对应的复数为( ) A .2i -+ B .2i -- C .12i +D .12i -+2.已知532()231f x x x x x =++++,应用秦九韶算法计算3x =时的值时,3v 的值为( ) A .27B .11C .109D .363.已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(⌝q );④(⌝p )∨q 中,真命题是( ) A .①③B .①④C .②③D .②④4.已知F 1,F 2分别是椭圆C :22221x y a b+= (a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( )A .2,13⎡⎫⎪⎢⎣⎭B .1,32⎡⎢⎣⎦C .1,13⎡⎫⎪⎢⎣⎭D .10,3⎛⎤ ⎥⎝⎦5.设i 为虚数单位,复数z 满足21ii z=-,则复数z 的共轭复数等于( ) A .1-iB .-1-iC .1+iD .-1+i6.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为A .2B .2C D .27.已知a 与b 均为单位向量,它们的夹角为60︒,那么3a b -等于( )A BC D .48.设R λ∈,则“3λ=-”是“直线2(1)1x y λλ+-=与直线()614x y λ+-=平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件9.已知i 为虚数单位,复数z 满足(1)i z i +=,则z =( )A .14B .12C .2D10.某校现有高一学生210人,高二学生270人,高三学生300人,用分层抽样的方法从这三个年级的学生中随机抽取n 名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数为( )A .7B .8C .9D .1011.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)[)20,40,40,60,60,80,[80,100].若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .12.如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点.若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是A .3B .2C 3D 2二、填空题13.若三点1(2,3),(3,2),(,)2A B C m --共线,则m 的值为 . 14.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若3A π=,3a =b=1,则c =_____________15.已知函数()sin ([0,])f x x x π=∈和函数1()tan 2g x x =的图象交于,,A B C 三点,则ABC ∆的面积为__________.16.函数()23s 34f x in x cosx =-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是__________. 17.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________.18.已知点()0,1A ,抛物线()2:0C y ax a =>的焦点为F ,连接FA ,与抛物线C 相交于点M ,延长FA ,与抛物线C 的准线相交于点N ,若:1:3FM MN =,则实数a 的值为__________.19.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为3M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 . 20.已知四棱锥S ABCD -的三视图如图所示,若该四棱锥的各个顶点都在球O 的球面上,则球O 的表面积等于_________.三、解答题21.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.22.如图,四棱锥P ABCD -的底面ABCD 是平行四边形,连接BD ,其中DA DP =,BA BP =.(1)求证:PA BD ⊥;(2)若DA DP ⊥,060ABP ∠=,2BA BP BD ===,求二面角D PC B --的正弦值.23.如图,已知三棱柱111ABC A B C -,平面11A AC C ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是11,AC A B 的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面1A BC 所成角的余弦值.24.如图,在正方体1111ABCD A B C D -中,S 是11B D 的中点,E ,F ,G 分别是BC ,DC ,SC 的中点.求证:(1)直线//EG 平面11BDD B ; (2)平面//EFG 平面11BDD B . 25.(选修4-4:坐标系与参数方程)在平面直角坐标系xOy ,已知曲线3:sin x a C y a⎧=⎪⎨=⎪⎩(a 为参数),在以O 原点为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为2cos()124πρθ+=-. (1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)过点()1,0M -且与直线l 平行的直线1l 交C 于A ,B 两点,求点M 到A ,B 的距离之积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】首先根据向量OA 对应的复数为12i -+,得到点A 的坐标,结合点A 与点B 关于直线y x =-对称得到点B 的坐标,从而求得向量OB 对应的复数,得到结果.【详解】复数12i -+对应的点为(1,2)A -, 点A 关于直线y x =-的对称点为(2,1)B -,所以向量OB 对应的复数为2i -+. 故选A . 【点睛】该题是一道复数与向量的综合题,解答本题的关键是掌握复数在平面坐标系中的坐标表示.2.D解析:D 【解析】 【分析】 【详解】 由秦九韶算法可得()())((())532231? 02311,f x x x x x x x x x x =++++=+++++ 0ν1∴=1ν=1303⨯+= 2ν33211=⨯+= 3ν113336=⨯+=故答案选D3.C解析:C 【解析】试题分析:根据不等式的基本性质知命题p 正确,对于命题q ,当,x y 为负数时22x y>不成立,即命题q 不正确,所以根据真值表可得,(p q p ∨∧q )为真命题,故选C.考点:1、不等式的基本性质;2、真值表的应用.4.C解析:C 【解析】 如图所示,∵线段PF 1的中垂线经过F 2,∴PF 2=12F F =2c ,即椭圆上存在一点P ,使得PF 2=2c. ∴a-c≤2c≤a+c.∴e=1[,1)3c a ∈.选C. 【点睛】求离心率范围时,常转化为x,y 的范围,焦半径的范围,从而求出离心率的范围。
高三数学试题及解析答案

高三数学试题及解析答案一、选择题(每题5分,共20分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = |x|C. f(x) = sin(x)D. f(x) = cos(x)解析:奇函数满足f(-x) = -f(x)的性质。
选项A是偶函数,选项B是偶函数,选项D是偶函数,只有选项C满足奇函数的定义。
因此,正确答案是C。
2. 已知等差数列{an}的首项a1=2,公差d=3,求第5项a5的值。
解析:等差数列的通项公式为an = a1 + (n-1)d。
将已知条件代入公式,得到a5 = 2 + (5-1)×3 = 2 + 12 = 14。
3. 计算下列积分:∫(3x^2 - 2x + 1)dx解析:根据积分的基本公式,我们可以计算出:∫(3x^2 - 2x + 1)dx = x^3 - x^2 + x + C4. 已知圆的方程为(x-3)^2 + (y-4)^2 = 25,求圆心坐标和半径。
解析:圆的标准方程为(x-a)^2 + (y-b)^2 = r^2,其中(a, b)是圆心坐标,r是半径。
根据题目给出的方程,圆心坐标为(3, 4),半径为5。
二、填空题(每题4分,共12分)1. 若sinθ = 3/5,且θ为锐角,求cosθ的值。
答案:根据勾股定理,cosθ = √(1 - sin²θ) = √(1 -(3/5)²) = 4/5。
2. 已知函数f(x) = x^3 - 2x^2 + 3x - 4,求f(2)的值。
答案:将x=2代入函数f(x),得到f(2) = 2³ - 2×2² + 3×2- 4 = 8 - 8 + 6 - 4 = 2。
3. 求方程2x + 5 = 7x - 3的解。
答案:将方程化简,得到5x = 8,解得x = 8/5。
三、解答题(每题18分,共54分)1. 解不等式:|x - 3| < 2。
【必考题】高考数学试卷附答案

【必考题】高考数学试卷附答案一、选择题1.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A .若a b ,与α所成的角相等,则a b ∥B .若a αβ∥,b ∥,αβ∥,则a b ∥C .若a b a b αβ⊂⊂,,,则αβ∥D .若a b αβ⊥⊥,,αβ⊥,则a b ⊥2.已知集合{}{}x -1<x 1Q=x 0x 2P =<<<,,那么P Q=⋃A .(-1,2)B .(0,1)C .(-1,0)D .(1,2) 3.抛掷一枚骰子,记事件A 为“落地时向上的点数是奇数”,事件B 为“落地时向上的点数是偶数”,事件C 为“落地时向上的点数是3的倍数”,事件D 为“落地时向上的点数是6或4”,则下列每对事件是互斥事件但不是对立事件的是( )A .A 与BB .B 与C C .A 与D D .C 与D 4.若满足sin cos cos A B C a b c==,则ABC ∆为( ) A .等边三角形 B .有一个内角为30的直角三角形C .等腰直角三角形D .有一个内角为30的等腰三角形 5.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是A .13B .12C .23D .56 6.在二项式n 的展开式,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为( )A .16B .14C .512D .137.如图所示,程序据图(算法流程图)的输出结果为( )A .34B .16 C .1112 D .2524 8.函数()23x f x x +=的图象关于( ) A .x 轴对称 B .原点对称 C .y 轴对称 D .直线y x =对称 9.已知,m n 是两条不同的直线,α,β是两个不同的平面,给出下列命题: ①若m α,m n ⊥,则n α⊥;②若m α⊥,n α,则m n ⊥;③若,m n 是异面直线,m α⊂,m β,n β⊂,n α,则αβ∥;④若,m n 不平行,则m 与n 不可能垂直于同一平面.其中为真命题的是( )A .②③④B .①②③C .①③④D .①②④ 10.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他十个小长方形面积的和的,且样本容量是160,则中间一组的频数为( )A .32B .0.2C .40D .0.2511.将函数()sin 2y x ϕ=+的图象沿轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为( )A .B .C .0D .4π- 12.已知ABC 为等边三角形,2AB =,设P ,Q 满足AP AB λ=,()()1AQ AC λλ=-∈R ,若32BQ CP ⋅=-,则λ=( )A .12B .122±C .1102±D .3222± 二、填空题13.在区间[1,1]-上随机取一个数x ,cos 2xπ的值介于1[0,]2的概率为 . 14.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______.15.()sin 5013tan10+=________________.16.如图,圆C (圆心为C )的一条弦AB 的长为2,则AB AC ⋅=______.17.锐角△ABC 中,若B =2A ,则b a 的取值范围是__________. 18.已知正三棱锥P ABC -的底面边长为3,外接球的表面积为16π,则正三棱锥P ABC -的体积为________.19.已知向量a 与b 的夹角为60°,|a |=2,|b |=1,则|a +2 b |= ______ .20.若函数2()1ln f x x x a x =-++在(0,)+∞上单调递增,则实数a 的最小值是__________.三、解答题21.已知函数()2f x m x =--,m R ∈,且()20f x +≥的解集为[]1,1-(1)求m 的值;(2)若,,a b c ∈R ,且11123m a b c++=,求证239a b c ++≥ 22.△ABC 在内角A 、B 、C 的对边分别为a ,b ,c ,已知a=bcosC+csinB .(Ⅰ)求B ;(Ⅱ)若b=2,求△ABC 面积的最大值.23.在ABC △中,BC a =,AC b =,已知a ,b 是方程22320x x -+=的两个根,且2cos()1A B +=.(1)求角C 的大小;(2)求AB 的长.24.(选修4-4:坐标系与参数方程)在平面直角坐标系xOy ,已知曲线3:sin x a C y a⎧=⎪⎨=⎪⎩(a 为参数),在以O 原点为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为cos()124πρθ+=-. (1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)过点()1,0M -且与直线l 平行的直线1l 交C 于A ,B 两点,求点M 到A ,B 的距离之积.25.已知(3cos ,cos )a x x =,(sin ,cos )b x x =,函数()f x a b =⋅.(1)求()f x 的最小正周期及对称轴方程;(2)当(,]x ππ∈-时,求()f x 单调递增区间.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】【详解】试题分析:A 项中两直线a b ,还可能相交或异面,错误;B 项中两直线a b ,还可能相交或异面,错误;C 项两平面αβ,还可能是相交平面,错误;故选D.2.A解析:A【解析】利用数轴,取,P Q 所有元素,得PQ =(1,2)-. 【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 3.C解析:C【解析】分析:利用互斥事件、对立事件的概念直接求解判断即可.详解:在A 中,A 与B 是对立事件,故不正确;在B 中,B 与C 能同时发生,不是互斥事件,所以不正确;在C 中,A 与D 两个事件不能同时发生,但能同时不发生,所以是互斥事件,但不是对立事件,所以是正确的;在D 中,C 与D 能同时发生,不是互斥事件,所以是错误的.综上所述,故选C.点睛:本题主要考查了命题的真假判定,属于基础题,解答时要认真审题,注意互斥事件与对立事件的定义的合理运用,同时牢记互斥事件和对立事件的基本概念是解答的基础.4.C解析:C【解析】【分析】由正弦定理结合条件可得tan tan 1B C ==,从而得三角形的三个内角,进而得三角形的形状.【详解】 由正弦定理可知sin sin sin A B C a b c ==,又sin cos cos A B C a b c==, 所以cos sin ,cos sin B B C C ==,有tan tan 1B C ==. 所以45B C ==.所以180454590A =--=.所以ABC ∆为等腰直角三角形.故选C.【点睛】本题主要考查了正弦定理解三角形,属于基础题.5.C解析:C【解析】试题分析:将4种颜色的花种任选2种种在一个花坛中,余下2种种在另一个花坛中,有6种种法,其中红色和紫色的花不在同一个花坛的种数有4种,故所求概率为23,选C. 【考点】古典概型【名师点睛】作为客观题形式出现的古典概型试题,一般难度不大,解答中的常见错误是在用列举法计数时出现重复或遗漏,避免此类错误发生的有效方法是按照一定的标准进行列举. 6.C解析:C【解析】【分析】先根据前三项的系数成等差数列求n ,再根据古典概型概率公式求结果【详解】因为n 前三项的系数为1212111(1)1,,112448n n n n n n C C C C n -⋅⋅∴=+⋅∴-=163418118,0,1,2,82r rr r n n T C x r -+>∴=∴=⋅=,当0,4,8r =时,为有理项,从而概率为636799512A A A =,选C. 【点睛】本题考查二项式定理以及古典概型概率,考查综合分析求解能力,属中档题.7.C解析:C【解析】由算法流程图知s =0+12+14+16=1112.选C. 8.C 解析:C【解析】【分析】求函数的定义域,判断函数的奇偶性即可.【详解】解:()f x x= 0x ∴≠解得0x ≠()f x ∴的定义域为()(),00,D =-∞+∞,D 关于原点对称. 任取x D ∈,都有()()f x f x x-===, ()f x ∴是偶函数,其图象关于y 轴对称,故选:C .【点睛】本题主要考查函数图象的判断,根据函数的奇偶性的定义判断函数的奇偶性是解决本题的关键.9.A解析:A【解析】【分析】根据空间中点、线、面位置关系,逐项判断即可.【详解】①若m α,m n ⊥,则n 与α位置关系不确定;②若n α,则α存在直线l 与n 平行,因为m α⊥,所以m l ⊥,则m n ⊥;③当m α⊂,m β,n β⊂,n α时,平面α,β平行;④逆否命题为:若m 与n 垂直于同一平面,则,m n 平行,为真命题.综上,为真命题的是②③④.故选A【点睛】本题主要考查空间中点线面位置关系,熟记线面关系、面面关系,即可求解,属于常考题型.10.A解析:A【解析】试题分析:据已知求出频率分布直方图的总面积;求出中间一组的频率;利用频率公式求出中间一组的频数.解:设间一个长方形的面积S 则其他十个小长方形面积的和为4S ,所以频率分布直方图的总面积为5S 所以中间一组的频率为所以中间一组的频数为160×0.2=32故选A点评:本题考查频率分布直方图中各组的面积除以总面积等于各组的频率.注意频率分布直方图的纵坐标是.11.B解析:B【解析】 得到的偶函数解析式为sin 2sin 284y x x ππϕϕ⎡⎤⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦,显然.4πϕ= 【考点定位】本题考查三角函数的图象和性质,要注意三角函数两种变换的区别,sin 24x πϕ⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦选择合适的ϕ值通过诱导公式把sin 24x πϕ⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦转化为余弦函数是考查的最终目的.12.A解析:A【解析】【分析】运用向量的加法和减法运算表示向量BQ BA AQ =+,CP CA AP =+,再根据向量的数量积运算,建立关于λ的方程,可得选项.【详解】∵BQ BA AQ =+,CP CA AP =+,∴()()BQ CP BA AQ CA AP AB AC AB AP AC AQ AQ AP ⋅=+⋅+=⋅-⋅-⋅+⋅ ()()2211AB AC AB AC AB AC λλλλ=⋅---+-⋅ ()()232441212222λλλλλλ=---+-=-+-=-,∴12λ=. 故选:A.二、填空题13.【解析】试题分析:由题意得因此所求概率为考点:几何概型概率 解析:13【解析】 试题分析:由题意得1220cos,[1,1]112232222333xx x x x x πππππππ≤≤∈-⇒≤≤-≤≤-⇒≤≤-≤≤-或或,因此所求概率为22(1)13.1(1)3-=--考点:几何概型概率 14.【解析】【分析】结合图形可以发现利用三角形中位线定理将线段长度用坐标表示成圆的方程与椭圆方程联立可进一步求解利用焦半径及三角形中位线定理则更为简洁【详解】方法1:由题意可知由中位线定理可得设可得联立【解析】【分析】结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示成圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁.【详解】方法1:由题意可知||=|2OF OM |=c =, 由中位线定理可得12||4PF OM ==,设(,)P x y 可得22(2)16x y -+=, 联立方程22195x y += 可解得321,22x x =-=(舍),点P 在椭圆上且在x 轴的上方,求得32P ⎛- ⎝⎭,所以212PF k ==方法2:焦半径公式应用解析1:由题意可知|2OF |=|OM |=c =, 由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=- 求得3152P ⎛-⎝⎭,所以1521512PF k == 【点睛】 本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.15.【解析】【分析】利用弦化切的运算技巧得出然后利用辅助角二倍角正弦以及诱导公式可计算出结果【详解】原式故答案为:【点睛】本题考查利用三角恒等变换思想求非特殊角的三角函数值在计算时要结合角之间的关系选择 解析:1【解析】【分析】 利用弦化切的运算技巧得出()cos103sin10sin 50cos 0sin 5013t 1an10++=⋅,然后利用辅助角、二倍角正弦以及诱导公式可计算出结果.【详解】原式()2sin 1030sin50cos103sin102sin 40cos 40sin50cos10cos10cos10++=⋅==()sin 9010sin80cos101cos10cos10cos10-====. 故答案为:1.【点睛】本题考查利用三角恒等变换思想求非特殊角的三角函数值,在计算时要结合角之间的关系选择合适的公式化简计算,考查计算能力,属于中等题.16.2【解析】【分析】过点C作CD⊥AB于D可得Rt△ACD中利用三角函数的定义算出再由向量数量积的公式加以计算可得的值【详解】过点C作CD⊥AB于D则D为AB的中点Rt△ACD中可得cosA==2故答解析:2【解析】【分析】过点C作CD⊥AB于D,可得1 ADAB12==,Rt△ACD中利用三角函数的定义算出1cos AAC=,再由向量数量积的公式加以计算,可得AB AC⋅的值.【详解】过点C作CD⊥AB于D,则D为AB的中点.Rt△ACD中,1AD AB12==,可得cosA=11,cosAADAB AC AB AC AB AC ABAC AC AC=∴⋅=⋅=⋅⋅==2.故答案为2【点睛】本题已知圆的弦长,求向量的数量积.着重考查了圆的性质、直角三角形中三角函数的定义与向量的数量积公式等知识,属于基础题.17.【解析】【分析】【详解】因为为锐角三角形所以所以所以所以所以解析:2,3)【解析】【分析】【详解】因为ABC∆为锐角三角形,所以0222B AA Bπππ⎧<=<⎪⎪⎨⎪<--<⎪⎩,所以463AAπππ⎧<<⎪⎪⎨⎪<<⎪⎩,所以(,)64Aππ∈,所以sin2cossinb BAa A==,所以(2,3)ba∈.18.或【解析】【分析】做出简图找到球心根据勾股定理列式求解棱锥的高得到两种情况【详解】正三棱锥的外接球的表面积为根据公式得到根据题意画出图像设三棱锥的高为hP 点在底面的投影为H 点则底面三角形的外接圆半径 解析:334或93 【解析】【分析】做出简图,找到球心,根据勾股定理列式求解棱锥的高,得到两种情况.【详解】正三棱锥P ABC -的外接球的表面积为16π,根据公式得到21642,r r ππ=⇒= 根据题意画出图像,设三棱锥的高为h,P 点在底面的投影为H 点,则2,2,2OP r OA r OH h =====-,底面三角形的外接圆半径为AH ,根据正弦定理得到0323sin 60= 3. 在三角形OAH 中根据勾股定理得到()223413h h -+=⇒=或 三棱锥的体积为:13ABC h S⨯⨯ 代入数据得到1313313332⨯⨯⨯=或者1319333 3.324⨯⨯⨯= 3393 【点睛】这个题目考查了已知棱锥的外接球的半径,求解其中的一些量;涉及棱锥的外接球的球心的求法,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.19.【解析】【分析】【详解】∵平面向量与的夹角为∴∴故答案为点睛:(1)求向量的夹角主要是应用向量的数量积公式(2)常用来求向量的模解析:【解析】【分析】【详解】∵平面向量a 与b 的夹角为060,21a b ==,∴021cos601a b ⋅=⨯⨯=.∴2222(2)4(2)444a b a b a a b b +=+=+⋅+=++=故答案为点睛:(1)求向量的夹角主要是应用向量的数量积公式.(2) a a a =⋅ 常用来求向量的模.20.【解析】【分析】由函数单调递增可得导函数在区间内大于等于零恒成立根据分离变量的方式得到在上恒成立利用二次函数的性质求得的最大值进而得到结果【详解】函数在上单调递增在上恒成立在上恒成立令根据二次函数的解析:18【解析】【分析】由函数单调递增可得导函数在区间内大于等于零恒成立,根据分离变量的方式得到22a x x ≥-在()0,∞+上恒成立,利用二次函数的性质求得22x x -的最大值,进而得到结果.【详解】函数()21ln f x x x a x =-++在()0,∞+上单调递增 ()210a f x x x '∴=-+≥在()0,∞+上恒成立 22a x x ∴≥-在()0,∞+上恒成立 令()22g x x x =-,0x >根据二次函数的性质可知:当14x =时, ()max 18g x = 18a ∴≥,故实数a 的最小值是18本题正确结果:18 【点睛】本题考查根据函数在区间内的单调性求解参数范围的问题,关键是能将问题转化为导函数的符号的问题,通过分离变量的方式将问题转变为参数与函数最值之间的关系问题.三、解答题21.(1)1;(2)见解析【解析】【分析】(1)由条件可得()2f x m x +=-,故有0m x -≥的解集为[11]-,,即x m ≤的解集为[11]-,,进而可得结果;(2)根据()111232323a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭利用基本不等式即可得结果.【详解】 (1)函数()2f x m x =--,m R ∈,故()2f x m x +=-,由题意可得0m x -≥的解集为[11]-,,即x m ≤的解集为[11]-,,故1m =. (2)由a ,b ,R c ∈,且111 123m a b c ++==, ∴()111232323a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭23321112233b c a c a b a a b b c c =++++++++ 233233692233b c a c a b a a b b c c=++++++≥+=, 当且仅当2332 12233b c a c a b a a b b c c======时,等号成立. 所以239a b c ++≥. 【点睛】本题主要考查带有绝对值的函数的值域,基本不等式在最值问题中的应用,属于中档题. 22.(Ⅰ)B=4π(Ⅱ)21+ 【解析】【分析】【详解】(1)∵a=bcosC+csinB∴由正弦定理知sinA=sinBcosC+sinCsinB ①在三角形ABC 中,A=-(B+C)∴sinA=sin(B+C)=sinBcosC+cosBsinC ②由①和②得sinBsinC=cosBsinC而C ∈(0,),∴sinC≠0,∴sinB=cosB又B(0,),∴B=(2) S △ABC 12=ac sin B 24=ac , 由已知及余弦定理得:4=a 2+c 2﹣2ac cos4π≥2ac ﹣2ac 22⨯, 整理得:ac 22≤-,当且仅当a =c 时,等号成立, 则△ABC 面积的最大值为121222222⨯=-(22+2=1. 23.120o C =,10c =【解析】 试题分析:解:(1)()()1cos cos cos 2C A B A B π⎡⎤=-+=-+=-⎣⎦,所以120C = (2)由题意得23{2a b ab +==∴222222cos 2cos120AB AC BC AC BC C a b ab =+-⋅⋅=+-=()(22223210a b ab a b ab ++=+-=-= ∴10AB考点:本题考查余弦定理,三角函数的诱导公式的应用点评:解决本题的关键是用一元二次方程根与系数之间关系结合余弦定理来解决问题24.(1)曲线C :2213x y +=,直线l 的直角坐标方程20x y -+=;(2)1. 【解析】试题分析:(1)先根据三角函数平方关系消参数得曲线C 化为普通方程,再根据cos ,sin x y ρθρθ== 将直线l 的极坐标方程化为直角坐标方程;(2)根据题意设直线1l 参数方程,代入C 方程,利用参数几何意义以及韦达定理得点M 到A ,B 的距离之积试题解析:(1)曲线C 化为普通方程为:2213x y +=, 由2cos 124πρθ⎛⎫+=- ⎪⎝⎭,得cos sin 2ρθρθ-=-, 所以直线l 的直角坐标方程为20x y -+=.(2)直线1l 的参数方程为212x y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),代入2213x y +=化简得:2220t -=, 设,A B 两点所对应的参数分别为12,t t ,则121t t =-,121MA MB t t ∴⋅==.25.(1) T π= ;26k x ππ=+(k Z ∈). (2) 5(,]6ππ--,[,]36ππ-和2[,]3ππ 【解析】【分析】(1)化简得()1sin 262f x x π⎛⎫=++ ⎪⎝⎭,再求函数的周期和对称轴方程;(2)先求出函数在R 上的增区间为[,36k k ππππ-+] (k Z ∈),再给k 赋值与定义域求交集得解.【详解】解:(1)()23sin cos cos f x a b xx x =⋅=+ 111cos2sin 22262x x x π⎛⎫=++=++ ⎪⎝⎭ 所以()f x 的周期22T ππ==, 令262x k πππ+=+(k Z ∈),即26k x ππ=+(k Z ∈) 所以()f x 的对称轴方程为26k x ππ=+(k Z ∈). (2)令222262k x k πππππ-≤+≤+ (k Z ∈) 解得36k x k ππππ-≤≤+ (k Z ∈),由于(],x ππ∈- 所以当1,0k =-或1时, 得函数()f x 的单调递增区间为5,6ππ⎛⎤--⎥⎝⎦,,36ππ⎡⎤-⎢⎥⎣⎦和2,3ππ⎡⎤⎢⎥⎣⎦. 【点睛】 本题主要考查三角恒等变换,考查三角函数的周期的求法和对称轴的求法,考查三角函数的单调区间的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.。
高考真题数学试卷及答案

一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数f(x) = x^3 - 3x,则f'(x) = ()A. 3x^2 - 3B. 3x^2 + 3C. x^2 - 3D. x^2 + 3答案:A2. 下列各数中,不是无理数的是()A. √2B. πC. 0.1010010001...D. √(9/16)答案:D3. 已知等差数列{an}的前三项分别为1,2,3,则该数列的公差d = ()A. 1B. 2C. 3D. 0答案:B4. 已知复数z = 1 + 2i,则|z| = ()A. 1B. 2C. √5D. 3答案:C5. 若等比数列{an}的首项为a1,公比为q,则S3 = a1 + a2 + a3 = ()A. a1q^2B. a1(1 + q + q^2)C. a1(1 - q^3) / (1 - q)D. a1(1 - q^2)答案:B6. 下列函数中,为奇函数的是()A. y = x^2B. y = |x|C. y = x^3D. y = x^4答案:C7. 若直角三角形ABC中,∠C = 90°,a = 3,b = 4,则斜边c的长度为()A. 5B. 6C. 7D. 8答案:A8. 已知圆C:x^2 + y^2 - 4x - 6y + 9 = 0,则圆心C的坐标为()A. (2, 3)B. (2, -3)C. (-2, 3)D. (-2, -3)答案:A9. 若直线l的斜率为k,且直线l与x轴的交点为(1, 0),则直线l的方程为()A. y = kx + kB. y = kx - kC. y = -kx + kD. y = -kx - k答案:A10. 已知函数f(x) = e^x - x,则f'(x) = ()A. e^x - 1B. e^x + 1C. e^x - xD. e^x + x答案:A二、填空题(本大题共5小题,每小题5分,共25分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)求证:平面 平面 ;
(2)在线段 上是否存在点 ,使得平面 与平面 所成锐二面角为 ?若存在,求 的值;若不存在,说明理由.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
【分析】
【详解】
由已知新运算 的意义就是取得 中的最小值,
即仅第一个实习生加工一等品(A1)与仅第二个实习生加工一等品(A2)两种情况,
则P(A)=P(A1)+P(A2)= × + × =
故选B.
10.A
解析:A
【解析】
【分析】
【详解】
∵函数f(x)=xlnx只有一个零点,∴可以排除CD答案
又∵当x∈(0,1)时,lnx<0,∴f(x)=xlnx<0,其图象在x轴下方
∴可以排除B答案
考点:函数图像.
11.B
解析:B
【解析】
【分析】
先求出函数y=g(x)的解析式,再利用三角函数的图像和性质对每一个选项逐一分析判断.
【详解】
设点P(x,y)是函数 图像上的任意一点,Leabharlann 点Q 在函数y=f(x)的图像上,
,
对于选项A,函数y=g(x)的最大值为1,但是 ,所以图象不关于直线 对称,所以该选项是错误的;
A. B. C. D.
8.函数 的图象关于( )
A.x轴对称B.原点对称C.y轴对称D.直线 对称
9.两个实习生每人加工一个零件.加工为一等品的概率分别为 和 ,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为
A. B. C. D.
10.函数 的大致图像为()
A. B.
C. D.
6.C
解析:C
【解析】
【分析】
根据流程图可知该算法表示统计14次考试成绩中大于等于90的人数,结合茎叶图可得答案.
【详解】
根据流程图所示的顺序,可知该程序的作用是累计14次考试成绩超过90分的次数.根据茎叶图可得超过90分的次数为9.
故选:C.
【点睛】
本题主要考查了循环结构,以及茎叶图的认识,解题的关键是弄清算法流程图的含义,属于基础题.
对于选项B, ,所以函数g(x)是奇函数,解
, ,所以函数在 上单调递减,所以该选项是正确的;
对于选项C,由前面分析得函数y=g(x)的增区间为 ,且函数y=g(x)不是偶函数,故该选项是错误;
对于选项D,函数的周期为 ,解 所以函数图像的对称中心为 ,所以该选项是错误的.
故选:B
【点睛】
本题主要三角函数的解析式的求法,考查三角函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.
将 代入抛物线方程,
即 ,
因为 ,
解得 .
【点睛】
本题考查了抛物线的性质、向量相等等知识,解决几何问题时,往往可以转化为代数问题来进行研究,考查了数形结合的思想.
16.【解析】【分析】设此圆的底面半径为高为母线为根据底面圆周长等于展开扇形的弧长建立关系式解出再根据勾股定理得即得此圆锥高的值【详解】设此圆的底面半径为高为母线为因为圆锥的侧面展开图是一个半径为圆心角为
A. B. C. D.
5.函数 的一个零点所在的区间是( )
A. B. C. D.
6.如图是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为 ,下图是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图,那么算法流程图输出的结果是()
A.7B.8
C.9D.10
7.一个几何体的三视图如图所示,其中正视图是一个正三角形,俯视图是一个等腰直角三角形,则该几何体的外接球的表面积为
性质法(利用函数性质):若能确定函数的单调性,则其零点个数不难得到;若所考查的函数是周期函数,则只需解决在一个周期内的零点的个数
14.【解析】【分析】【详解】由得由整数有且仅有123知解得
解析:
【解析】
【分析】
【详解】
由 得
由整数有且仅有1,2,3知 ,解得
15.【解析】【分析】由直线方程为与准线得出点坐标再由可得点为线段的中点由此求出点A的坐标代入抛物线方程得出的值【详解】解:抛物线的准线方程为过点且斜率为的直线方程为联立方程组解得交点坐标为设A点坐标为因
23.在直角坐标系xOy中,曲线C的参数方程为 (t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为 .
(1)求C和l的直角坐标方程;
(2)求C上的点到l距离的最小值.
24.已知函数 .
(1)当 时,求不等式 的解集;
(2)若二次函数 与函数 的图象恒有公共点,求实数 的取值范围.
18.1【解析】【分析】先求出二项式的展开式的通项公式令的指数等于求出的值即可求得展开式中的项的系数再根据的系数是列方程求解即可【详解】展开式的的通项为令的展开式中的系数为故答案为1【点睛】本题主要考查二
二、填空题
13.函数 的零点个数是________.
14.若不等式 的解集中的整数有且仅有1,2,3,则 的取值范围是
15.若过点 且斜率为 的直线与抛物线 的准线 相交于点 ,与 的一个交点为 ,若 ,则 ____.
16.已知圆锥的侧面展开图是一个半径为 ,圆心角为 的扇形,则此圆锥的高为________ .
解析:2
【解析】
【详解】
当x≤0时,由f(x)=x2﹣2=0,解得x= ,有1个零点;
当x>0,函数f(x)=2x﹣6+lnx,单调递增,
则f(1)<0,f(3)>0,此时函数f(x)只有一个零点,
所以共有2个零点.
故答案为:2.
【点睛】
判断函数零点个数的方法
直接法(直接求零点):令f(x)=0,如果能求出解,则有几个不同的解就有几个零点,
【必考题】高考数学试题带答案
一、选择题
1.定义运算 ,则函数 的图象是( ).
A. B.
C. D.
2.已知集合 ,那么
A.(-1,2)B.(0,1)C.(-1,0)D.(1,2)
3.若满足 ,则 为()
A.等边三角形B.有一个内角为 的直角三角形
C.等腰直角三角形D.有一个内角为 的等腰三角形
4.已知复数z满足 ,则复数 的虚部为( )
解析:
【解析】
【分析】
由直线方程为 与准线 得出点 坐标,再由 可得,点 为线段 的中点,由此求出点A的坐标,代入抛物线方程得出 的值.
【详解】
解:抛物线 的准线方程为
过点 且斜率为 的直线方程为 ,
联立方程组 ,
解得,交点 坐标为 ,
设A点坐标为 ,
因为 ,
所以点 为线段 的中点,
所以 ,解得 ,
【点睛】
本题给出圆锥的侧面展开图扇形的半径和圆心角,求圆锥高的大小,着重考查了圆锥的定义与性质和旋转体侧面展开等知识,属于基础题.
17.【解析】【分析】将平移到和相交的位置解三角形求得线线角的余弦值【详解】过作过作画出图像如下图所示由于四边形是平行四边形故所以是所求线线角或其补角在三角形中故【点睛】本小题主要考查空间两条直线所成角的
因此函数 ,
只有选项 中的图象符合要求,故选A.
2.A
解析:A
【解析】
利用数轴,取 所有元素,得 .
【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.
3.C
解析:C
【解析】
【分析】
由正弦定理结合条件可得 ,从而得三角形的三个内角,进而得三角形的形状.
【详解】
由正弦定理可知 ,又 ,
解析:
【解析】
【分析】
将 平移到和 相交的位置,解三角形求得线线角的余弦值.
【详解】
过 作 ,过 作 ,画出图像如下图所示,由于四边形 是平行四边形,故 ,所以 是所求线线角或其补角.在三角形 中, ,故 .
【点睛】
本小题主要考查空间两条直线所成角的余弦值的计算,考查数形结合的数学思想方法,属于中档题.
所以 ,有 .
所以 .所以 .
所以 为等腰直角三角形.
故选C.
【点睛】
本题主要考查了正弦定理解三角形,属于基础题.
4.B
解析:B
【解析】
设 ,由 , ,故选B.
5.B
解析:B
【解析】
【分析】
先求出 根据零点存在性定理得解.
【详解】
由题得 ,
,
所以
所以函数 的一个零点所在的区间是 .
故选B
【点睛】
本题主要考查零点存在性定理,意在考查学生对该知识的理解掌握水平,属于基础题.
12.C
解析:C
【解析】
试题分析:通过选项a的值回代验证,判断集合中有3个元素即可.
解:当a=1时,由a2=1,2﹣a=1,4组成一个集合A,A中含有2个元素,
当a=﹣2时,由a2=4,2﹣a=4,4组成一个集合A,A中含有1个元素,
当a=6时,由a2=36,2﹣a=﹣4,4组成一个集合A,A中含有3个元素,
当a=2时,由a2=4,2﹣a=0,4组成一个集合A,A中含有2个元素,
故选C.
点评:本题考查元素与集合的关系,基本知识的考查.
二、填空题
13.2【解析】【详解】当x≤0时由f(x)=x2﹣2=0解得x=有1个零点;当x>0函数f(x)=2x﹣6+lnx单调递增则f(1)<0f(3)>0此时函数f(x)只有一个零点所以共有2个零点故答案为:
定理法(零点存在性定理):利用定理不仅要求函数的图象在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点,