2020-2021学年浙教版七年级数学第一学期期末考试试题(含答案)
浙江省宁波市海曙区2020-2021学年七年级(上)期末数学试卷(含解析)

2020-2021学年浙江省宁波市海曙区七年级第一学期期末数学试卷一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1.2021的相反数是()A.﹣2021B.2021C.D.﹣2.下列运算正确的是()A.32=6B.﹣6a﹣6a=0C.﹣42=﹣16D.﹣5xy+2xy=﹣33.疫情相关数据新闻:《新型冠状病毒肺炎病例群像:何时发病,多大年龄,在哪分布?》获得2020年1﹣8月单篇报道的最大阅读量(283万),远超2019年最受欢迎单篇(164万),283万用科学记数法记为()A.2.83×102B.2.83×106C.0.283×107D.2.83×1054.化简2a+b﹣2(a﹣b)的结果为()A.4a B.3b C.﹣b D.05.下列方程变形不正确的是()A.4x﹣3=3x+2变形得:4x﹣3x=2+3B.3x=2变形得:C.2(3x﹣2)=3(x+1)变形得:6x﹣4=3x+3D.变形得:4x﹣1=3x+186.为了双十一促销,宁波天一广场某品牌服装按原价第一次降价25%,第二次降价120元,此时该服装的利润率是15%.已知这种服装的进价为800元,那么这种服装的原价是多少?设这种服装的原价为x元,可列方程为()A.B.C.D.7.如图,从8点钟开始,过了20分钟后,分针与时针所夹的度数是()A.120°B.130°C.140°D.150°8.将尺寸如图的4块完全相同的长方形薄木块(厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个方框内.已知小木块的宽为2,图甲中阴影部分面积为19,则图乙中AD的长为()A.B.C.D.9.数轴上点A,B,C分别对应数2021,﹣1,x,且C与A的距离大于C与B的距离,则()A.x<﹣1B.x>2021C.x<1010D.x<101110.如图,表中给出的是2021年1月份的月历,任意选取“工”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.76B.91C.140D.161二、填空题(本题有8小题,每小题3分,共24分)11.已知∠α=29°18′,则∠α的余角为.12.,,,,,3.141141114中,无理数有个.13.今年小明的爸爸的年龄是小明的3倍,十三年后,小明的爸爸的年龄是小明的2倍,小明今年岁.14.若2x4y n与﹣5x m y2是同类项,则m n=.15.如图,OB在∠AOC的内部,已知OM是∠AOC的平分线,ON平分∠BOC,若∠AOC =120°,∠BOC=40°,则∠MON=.16.已知M是满足不等式的所有整数的和,N是的整数部分,则M+N 的平方根为.17.已知a,b,c为3个自然数,满足a+2b+3c=2021,其中a≤b≤c,则|a﹣b|+|b﹣c|+|c ﹣a|的最大值是.18.如图,大正方形内有四个形状大小完全相同的长方形,且每个长方形的两条边分别在大正方形的四条边上,大正方形内有个小正方形与四个长方形有重叠(阴影部分),若两个正方形的周长分别为46和34,且四个阴影部分的周长为16,则长方形的周长为.三、解答题(第19,21题8分,第20,22,23题6分,第24题12分,共46分)19.计算:(1)﹣2+(﹣5)+(﹣2)×(﹣5);(2).20.先化简,再求值:3(a2﹣2ab)﹣[a2﹣3b+3(ab+b)],其中a=﹣3,.21.解方程:(1)2(x﹣1)=2﹣5(x+2);(2).22.用直尺和圆规作图,如图,已知直线l和直线外三点A,B,C,按下列要求作图.(1)作射线BA,连接BC;(2)反向延长BC至D,使得BD=BC;(3)在直线l上确定点E,使得AE+CE最小.请说明依据:.23.面对2020年突如其来的“新冠肺炎”疫情,医用防护服销量大幅增加,某工厂为满足市场需求计划每天生产600件防护服,如表是三月份某一周的生产情况(超产部分记为正,减产部分记为负,单位:件).星期一二三四五六日增减+15﹣12+10﹣15﹣8+15+20(1)产量最多的一天比产量最少的一天多生产件;(2)该工厂实行计件工资制,每生产一件支付工资20元,本周该工厂应支付工人的工资总额是多少元?24.如图,等边三角形ABC中,AB=BC=AC=12cm,动点P从点A出发,以2.5cm/s的沿着折线A﹣B﹣C﹣A运动,到点A停止运动,动点Q以1cm/s的速度从点B出发沿折线B﹣C﹣A运动,到点A停止运动,P、Q同时开始运动,用t(s)表示移动时间.(1)请用含t的代数式表示下列线段的长度:当点Q在BC上运动时,QC=;当点P在AC上运动时,PC=.(2)点P能否追上点Q?如果能,求出t值;如果不能,请说明理由.(3)点P,Q在三角形同一条边上时,能否使得PQ=PC,如果能,求出t值;如果不能,请说明理由.参考答案一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1.2021的相反数是()A.﹣2021B.2021C.D.﹣【分析】利用相反数的定义分析得出答案,只有符号不同的两个数互为相反数.解:2021的相反数是:﹣2021.故选:A.2.下列运算正确的是()A.32=6B.﹣6a﹣6a=0C.﹣42=﹣16D.﹣5xy+2xy=﹣3【分析】根据有理数的乘方、合并同类项法则计算出结果,然后对照即可得到哪个选项是正确.解:A、32=9,原计算错误,故此选项不符合题意;B、﹣6a﹣6a=﹣12a,原计算错误,故此选项不符合题意;C、﹣42=﹣16,原计算正确,故此选项符合题意;D、﹣5xy+2xy=﹣3xy,原计算错误,故此选项不符合题意;故选:C.3.疫情相关数据新闻:《新型冠状病毒肺炎病例群像:何时发病,多大年龄,在哪分布?》获得2020年1﹣8月单篇报道的最大阅读量(283万),远超2019年最受欢迎单篇(164万),283万用科学记数法记为()A.2.83×102B.2.83×106C.0.283×107D.2.83×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:283万=2830000=2.83×106.故选:B.4.化简2a+b﹣2(a﹣b)的结果为()A.4a B.3b C.﹣b D.0【分析】先去括号,然后合并同类项求解.解:2a+b﹣2(a﹣b)=2a+b﹣2a+2b=3b.故选:B.5.下列方程变形不正确的是()A.4x﹣3=3x+2变形得:4x﹣3x=2+3B.3x=2变形得:C.2(3x﹣2)=3(x+1)变形得:6x﹣4=3x+3D.变形得:4x﹣1=3x+18【分析】各项方程变形得到结果,即可作出判断.解:A、4x﹣3=3x+2变形得:4x﹣3x=2+3,不符合题意;B、3x=2变形得:x=,不符合题意;C、2(3x﹣2)=3(x+1)变形得:6x﹣4=3x+3,不符合题意;D、x﹣1=x+3变形得:4x﹣6=3x+18,符合题意.故选:D.6.为了双十一促销,宁波天一广场某品牌服装按原价第一次降价25%,第二次降价120元,此时该服装的利润率是15%.已知这种服装的进价为800元,那么这种服装的原价是多少?设这种服装的原价为x元,可列方程为()A.B.C.D.【分析】设这种服装的原价为x元,根据“宁波天一广场某品牌服装按原价第一次降价25%,第二次降价120元,此时该服装的利润率是15%”,列方程即可得到答案.解:设这种服装的原价为x元,根据题意得,,故选:D.7.如图,从8点钟开始,过了20分钟后,分针与时针所夹的度数是()A.120°B.130°C.140°D.150°【分析】根据钟面角的特征得出钟面上两个相邻数字之间所对应的圆心角为30°,再根据时针与分针旋转过程中所成角度之间的变化关系求出∠AOF即可.解:如图,8:20时针与分针所处的位置如图所示:由钟面角的特征可知,∠BOC=∠COD=∠DOE=∠EOF=×360°=30°,由时针与分针旋转过程中所成角度的变化关系可得,∠AOF=30°×=10°,∴∠AOB=30°×4+10°=130°,故选:B.8.将尺寸如图的4块完全相同的长方形薄木块(厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个方框内.已知小木块的宽为2,图甲中阴影部分面积为19,则图乙中AD的长为()A.B.C.D.【分析】设木块的长为x,结合图形知阴影部分的边长为x﹣2,根据其面积为19得出(x ﹣2)2=19,利用平方根的定义求出符合题意的x的值,由BC=2x可得答案.解:设木块的长为x,根据题意,知:(x﹣2)2=19,则x﹣2=±,∴x=2+或x=2﹣<2(舍去),则BC=2x=2+4,故选:C.9.数轴上点A,B,C分别对应数2021,﹣1,x,且C与A的距离大于C与B的距离,则()A.x<﹣1B.x>2021C.x<1010D.x<1011【分析】根据题意,分三种情况考虑:①当点C在点A右侧,即x>2021时;②当点C 在A,B之间,即﹣1≤x≤2021时;③当点C在点B左侧,即x<﹣1时,利用AC>BC 即可求得结果.解:数轴上点A,B,C分别对应数2021,﹣1,x,由题意可知:AC>BC,分三种情况考虑:①当点C在点A右侧,即x>2021时,由2021>﹣1,则x﹣2021<x+1,即AC<BC,不符合题意;②当点C在A,B之间,即﹣1≤x≤2021时,2021﹣x>x+1,解得:x<1010,符合题意;③当点C在点B左侧,即x<﹣1时,2021>﹣1,2021﹣x>﹣1﹣x,符合题意;综上所述:x<1010,故选:C.10.如图,表中给出的是2021年1月份的月历,任意选取“工”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.76B.91C.140D.161【分析】设最中间的数为x,根据题意列出方程即可求出判断.解:设最中间的数为x,∴这7个数分别为x﹣8、x﹣7、x﹣6、x、x+8、x+7、x+6,∴这7个数的和为:x﹣8+x﹣7+x﹣6+x+x+8+x+7+x+6=7x,当7x=76时,此时x不是整数,当7x=91时,此时x=13,当7x=140时,此时x=20,当7x=161时,此时x=23,故选:A.二、填空题(本题有8小题,每小题3分,共24分)11.已知∠α=29°18′,则∠α的余角为60°42′.【分析】根据互为余角的意义,计算90°﹣29°18′的结果即可.解:∠α的余角为90°﹣∠α=90°﹣29°18′=60°42′,故答案为:60°42′.12.,,,,,3.141141114中,无理数有2个.【分析】根据无理数与有理数的定义分别进行判断.解:=﹣2,=7,在,,,,,3.141141114中,无理数有,,共有2个.故答案为:2.13.今年小明的爸爸的年龄是小明的3倍,十三年后,小明的爸爸的年龄是小明的2倍,小明今年13岁.【分析】设小明今年x岁,则爸爸今年3x岁,根据“十三年后爸爸的年龄恰好是小明的2倍”列出方程求解即可.解:设小明今年x岁,则爸爸今年3x岁,由题意,得3x+13=2(x+13),解得x=13.即小明今年13岁.故答案为:13.14.若2x4y n与﹣5x m y2是同类项,则m n=16.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,列出关于m,n的式子,求解即可.解:∵2x4y n与﹣5x m y2是同类项,∴m=4,n=2,∴m n=42=16,故答案为:16.15.如图,OB在∠AOC的内部,已知OM是∠AOC的平分线,ON平分∠BOC,若∠AOC =120°,∠BOC=40°,则∠MON=40°.【分析】利用角平分线的定义分别求出∠MOC和∠NOC,则∠MOC﹣∠NOC即可求得结论.解:∵OM是∠AOC的平分线,∵∠MOC=∠AOC=×120°=60°.∵ON平分∠BOC,∴∠NOC=∠BOC=×40°=20°.∴∠MON=∠MOC﹣∠NOC=40°.故答案为:40°.16.已知M是满足不等式的所有整数的和,N是的整数部分,则M+N 的平方根为±3.【分析】估算得出整数a的值,求出之和确定出M,求出不等式的最大整数确定出N,进而确定出M+N的平方根.解:∵﹣<a<,∴整数a=﹣1,0,1,2,之和M=﹣1+0+1+2=2,∵<<,∴N=7,∴M+N=2+7=9,∴M+N的平方根为±3.故答案为:±3.17.已知a,b,c为3个自然数,满足a+2b+3c=2021,其中a≤b≤c,则|a﹣b|+|b﹣c|+|c ﹣a|的最大值是1346.【分析】根据绝对值的性质化简式子,再确定a,b,c的值,由此解答即可.解:由题意知b≥a,则|a﹣b|=b﹣a,b≤c,则|b﹣c|=c﹣b,a≤c,则|c﹣a|=c﹣a,故|a﹣b|+|b﹣c|+|c﹣a|=b﹣a+c﹣b+c﹣a=2(c﹣a),上式值最大时,即c最大,且a最小时,(即c﹣a最大时),又a+2b+3c=2021,2021=3×673+2,故c的最大值为673,此时a+2b=2,a≤b,且a,b均为自然数,a=0时,b=1,此时a最小,故2(c﹣a)的最大值即c=673,a=0时的值,即:2×(673﹣0)=1346.故答案为:1346.18.如图,大正方形内有四个形状大小完全相同的长方形,且每个长方形的两条边分别在大正方形的四条边上,大正方形内有个小正方形与四个长方形有重叠(阴影部分),若两个正方形的周长分别为46和34,且四个阴影部分的周长为16,则长方形的周长为10.【分析】利用大正方形的周长可以求出其边长AD,再利用小正方形的周长减去阴影部分周长的一半等于四个长方形之间的长度之和,即求出BC的长,然后进行计算即可.解:如图:由题意得:AD=46÷4=11.5,∵4BC等于小正方形的周长减去阴影部分周长的一半,∴4BC=34﹣×16,∴4BC=26,∴BC=6.5,∴AB+CD=AD﹣BC=5,∴一个长方形的周长=2(AB+CD)=10.三、解答题(第19,21题8分,第20,22,23题6分,第24题12分,共46分)19.计算:(1)﹣2+(﹣5)+(﹣2)×(﹣5);(2).【分析】(1)根据有理数的乘法和加法可以解答本题;(2)根据有理数的乘方、有理数的乘法和加法可以解答本题.解:(1)﹣2+(﹣5)+(﹣2)×(﹣5)=﹣2+(﹣5)+10=3;(2)=(﹣8)+(﹣9+9)×=(﹣8)+0×=﹣8+0=﹣8.20.先化简,再求值:3(a2﹣2ab)﹣[a2﹣3b+3(ab+b)],其中a=﹣3,.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.解:原式=(3a2﹣6ab)﹣[a2﹣3b+(3ab+3b)]=3a2﹣6ab﹣(a2﹣3b+3ab+3b)=3a2﹣6ab﹣a2+3b﹣3ab﹣3b=2a2﹣9ab,当a=﹣3,b=时,原式=2×(﹣3)2﹣9×(﹣3)×=18+9=27.21.解方程:(1)2(x﹣1)=2﹣5(x+2);(2).【分析】(1)方程去括号,移项,合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并,把x系数化为1,即可求出解.解:(1)去括号得:2x﹣2=2﹣5x﹣10,移项得:2x+5x=2﹣10+2,合并得:7x=﹣6,解得:x=﹣;(2)去分母得:2(5x+1)﹣(7x+2)=4,去括号得:10x+2﹣7x﹣2=4,移项得:10x﹣7x=4﹣2+2,合并得:3x=4,解得:x=.22.用直尺和圆规作图,如图,已知直线l和直线外三点A,B,C,按下列要求作图.(1)作射线BA,连接BC;(2)反向延长BC至D,使得BD=BC;(3)在直线l上确定点E,使得AE+CE最小.请说明依据:两点之间线段最短.【分析】(1)根据射线和线段的定义即可作射线BA,连接BC;(2)根据线段的定义即可反向延长BC至D,使得BD=BC;(3)根据两点之间线段最短即可在直线l上确定点E,使得AE+CE最小.解:(1)如图,射线BA,线段BC即为所求;(2)如图,线段BD即为所求;(3)如图,点E即为所求,两点之间线段最短.故答案为:两点之间线段最短.23.面对2020年突如其来的“新冠肺炎”疫情,医用防护服销量大幅增加,某工厂为满足市场需求计划每天生产600件防护服,如表是三月份某一周的生产情况(超产部分记为正,减产部分记为负,单位:件).星期一二三四五六日增减+15﹣12+10﹣15﹣8+15+20(1)产量最多的一天比产量最少的一天多生产35件;(2)该工厂实行计件工资制,每生产一件支付工资20元,本周该工厂应支付工人的工资总额是多少元?【分析】(1)根据正负数的意义确定星期日产量最多,星期四产量最少,然后用记录相减,计算即可得出答案;(2)求出一周记录的和,然后根据工资总额的计算方法,列式计算即可得出结果.解:(1)20﹣(﹣15)=20+15=35(件),∴产量最多的一天比产量最少的一天多生产35件,故答案为:35.(2)(15﹣12+10﹣15﹣8+15+20)+600×7=25+4200=4225(件),20×4225=84500(元),∴本周该工厂应支付工人的工资总额是84500元.24.如图,等边三角形ABC中,AB=BC=AC=12cm,动点P从点A出发,以2.5cm/s的沿着折线A﹣B﹣C﹣A运动,到点A停止运动,动点Q以1cm/s的速度从点B出发沿折线B﹣C﹣A运动,到点A停止运动,P、Q同时开始运动,用t(s)表示移动时间.(1)请用含t的代数式表示下列线段的长度:当点Q在BC上运动时,QC=(12﹣t)cm;当点P在AC上运动时,PC=(2.5t ﹣24)cm.(2)点P能否追上点Q?如果能,求出t值;如果不能,请说明理由.(3)点P,Q在三角形同一条边上时,能否使得PQ=PC,如果能,求出t值;如果不能,请说明理由.【分析】(1)根据题意可得出答案;(2)设当t秒时,P能否追上点Q,列出方程2.5t﹣12=t,解方程可得出答案;(3)分四种情况,①当P,Q在BC边上,且P还没有追上点Q,②当P,Q在BC边上,且P追上点Q后,③当P,Q在AC边上,且P还没有到达A,④当P,Q在AC边上,且P已经到达A停止运动,列出方程求出t即可得出答案.解:(1)∵动点P从点A出发,以2.5cm/s的沿着折线A﹣B﹣C﹣A运动,到点A停止运动,动点Q以1cm/s的速度从点B出发沿折线B﹣C﹣A运动,∴QC=(12﹣t)cm,PC=(2.5t﹣24)cm,故答案为(12﹣t)cm;(2.5t﹣24)cm;(2)能.设当t秒时,P能否追上点Q,∴2.5t﹣12=t,解得t=8,(3)能.①当P,Q在BC边上,且P还没有追上点Q,24﹣2.5t=3(t+12﹣2.5t),解得t=6;②当P,Q在BC边上,且P追上点Q后,24﹣2.5t=3(2.5t﹣t﹣12),解得t=;③当P,Q在AC边上,且P还没有到达A,2.5t﹣24=3[2.5t﹣24﹣(t﹣12)],解得t=6(经检验,不合题意,舍去),④当P,Q在AC边上,且P已经到达A停止运动,此时PC=12,∵PQ=PC,∴PQ=4,∴QC=8,∴t﹣12=8,解得t=20.综合以上可得t=6或或20.。
2022-2023学年浙江七年级上学期数学重难题型精炼第1章 有理数 章末检测卷(含详解)

第1章 有理数 章末检测卷(浙教版)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,考试时间120分钟,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022·山西·七年级期中)在世界数学史首次正式引入负数的中国古代数学著作是( ) A .《孙子算经》 B .《九章算术》 C .《算法统宗》 D .《周髀算经》 2.(2022·湖北武汉·中考真题)2022的相反数是( ) A .12022B .12022-C .−2022D .20223.(2022·山东菏泽·三模)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数,用正、负数来表示只有相反意义的量.一次数学测试,以80分为基准简记,90分记作+10分,那么70分应记作( ) A .+10分B .0分C .-10分D .-20分4.(2022·贵州遵义·七年级期末)一种小吃包装袋上标注着“净含量:50g 1g ±”,则下列小吃净含量合格的是( ) A .52B .48C .50.5D .51.55.(2022·浙江宁波·七年级期末)a b c 、、三个数在数轴上的位置如图所示,则下列各式中正确的个数有( )(1) 0abc >;(2)c a b ->>-;(3) 11b a>;(4)c c =- A .4 个B .3 个C .2 个D .1 个6.(2022·广西贺州·七年级期末)下列说法正确的是( ) A .符号相反的两个数叫做相反数 B .只有正数的绝对值是它本身C .两个数的和一定大于这两个数中的任意一个D .最大的负整数是-17.(2022·广西·靖西市教学研究室七年级期中)下列各组数中,比较大小正确的是( )A .|﹣23|<|﹣12| B .﹣|﹣3411|=﹣(﹣3411) C .﹣|﹣8|>7 D .﹣56<﹣458.(2022·四川遂宁·七年级期末)方程32x -=的解是( ) A .5x = B .1x = C .15x x ==或 D .15x x =-=或 9.(2022·广西南宁·七年级期中)下列说法错误的是( )A .数轴上表示2-的点与表示2+的点的距离是4B .数轴上原点表示的数是0C .所有的有理数都可以用数轴上的点表示出来D .最大的负数是1-10.(2022·浙江·七年级课时练习)如图,数轴上4个点表示的数分别为a 、b 、c 、d .若|a ﹣d |=10,|a ﹣b |=6,|b ﹣d |=2|b ﹣c |,则|c ﹣d |=( )A .1B .1.5C .1.5D .211.(2022·浙江·七年级月考)如图,已知A ,B (B 在A 的左侧)是数轴上的两点,点A 对应的数为8,且AB =12,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向左运动,在点P 的运动过程中,M ,N 始终为AP ,BP 的中点,设运动时间为t (t >0)秒,则下列结论中正确的有( )①B 对应的数是-4;①点P 到达点B 时,t =6;①BP =2时,t =5;①在点P 的运动过程中,线段MN 的长度不变 A .1个B .2个C .3个D .4个12.(2022·重庆忠县·九年级期中)距离,是数学、天文学、物理学研究的基本问题,唯有对宇宙距离进行测量,人类才能掌握世界的尺度.若点A 、B 在数轴上代表的数为a ﹑b ,则A 、B 两点之间的距离AB a b ,则下列说法:①数轴上表示x 和1-的两点之间的距离是1x -﹔①若3AB =,点B 表示的数是2,则点A 表示的数是1; ①当3x =时,代数式135x x x ++-+-有最小值为6;①当代数式22x x ++-取最小值时,x 的取值范围是22x -≤≤;①点A ,B ,C 在数轴上代表的数分别为a ,b ,c ,若a b c a b c -+-=-﹐则点A 位于B ,C 两点之间. 其中说法正确的是( ) A .①①①B .①①①C .①①D .①①①二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上)13.(2022·河南鹤壁·七年级期末)相反数等于它本身的数是__________,绝对值等于它本身的数是__________.14.(2022·湖南·衡阳市成章实验中学七年级期末)下列各数25,﹣6,25,0,3.14,20%中,其中分数有 个。
2020-2021学年浙教版七年级数学第一学期第2章 有理数运算单元同步试卷(含答案)

第二章:有理数运算同步试卷一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.在国家“一带一路”倡议下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13000 km,将13 000用科学记数法表示应为( ) A.0.13×105B.1.3×104C.1.3×105D.13×1032.4个非零有理数相乘,积的符号是负号,则这4个有理数中,正数有( ) A. 1个或3个 B. 1个或2个 C. 2个或4个 D. 3个或4个 3.计算()()41226-÷--⨯的结果是( )A. 10B. 0C. 3-D.9- 4.下列各组数中,互为相反数的有( )①-(-2)和-|-2| ②(-1)2和-12 ③23和32 ④(-2)3和-23A.④B.①②C.①②③D.①②④5.计算39371...971751531311⨯++⨯+⨯+⨯+⨯的结果是( ) A .3917 B .3919 C .3937 D .39386. 若M +|-20|=|M |+|20|.则M 一定是( )A. 任意一个有理数B. 任意一个非负数C. 任意一个非正数D. 任意一个负数 7.用分配律计算 ,去括号后正确的是( )A.B.C.D.8.已知201720172018201822+--=a ,201820182019201922+-=b ,201920192020202022+--=c ,则=++c b a ( ) A .0 B .1 C .-1 D .-39.已知整数4321,,,a a a a …满足下列条件:3,2,1,03423121+-=+-=+-==a a a a a a a ……,依次类推,则2019a 的值为( )A.2018B.2018-C.1009-D.100910.有一列数1-,3,4-,5,8-,12,17-,( )根据规律这一列数的第8个数为( ) A. 22 B. 22- C. 25 D.25-二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.用四舍五人法得到的近似数3108.8⨯精确到________位 12.计算 ()_______12322141=-⨯⎪⎭⎫⎝⎛+- 13.某班同学用一张长为1.8×103 mm ,宽为1.65×103 mm 的大彩色纸板制作一些边长为3×102 mm 的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张14.四个各不相等的整数d c b a ,,,满足9=abcd ,则________=+++d c b a 15.若c b a ,,都是非零有理数,则____________=+++abcabc cc bb aa16.某校利用二维码进行学生学号统一编排.黑色小正方形表示1,白色小正方形表示0,将每一行数字从左到右依次记为a ,b ,c ,d ,那么利用公式计算出每一行的数据.第一行表示年级,第二行表示班级,第三行表示班级学号的十位数,第四行表示班级学号的个位数.如图1所示,第一行数字从左往右依次是1,0,0,1,则表示的数据为1×23+0×22+0×21+1=9,计作09,第二行数字从左往右依次是1,0,1,0,则表示的数据为1×23+0×22+1×21=10,计作10,以此类推,图1代表的统一学号为091034,表示9年级10班34号.小明所对应的二维码如图2所示,则他的统一学号为______________三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(本题8分)计算下列各题:(1)()⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛-⨯-127852148 (2)()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+-⨯⎪⎭⎫ ⎝⎛---÷-311332324222(3)()()[]223425232611⎪⎭⎫ ⎝⎛-÷-----⨯+- (4)763676337634⨯-⎪⎭⎫ ⎝⎛-⨯-⎪⎭⎫ ⎝⎛-⨯18.(本题8分)有理数c b a ,,均不为0,且0=++c b a ,设ba c ac b cb a x +++++=试求代数式20989919+-x x 的值19(本题8分).在一个3×3的方格中填写9个数,使得每行、每列、每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.(1)在图①中空格处填上合适的数,使它构成一个三阶幻方;(2)如图②的方格中填写了一些数和字母,当x +y 的值为多少时,它能构成一个三阶幻方?20(本题10分).据统计,某市 2018年底二手房的均价为每平米 1.3 万元,下表是 2019年上半年(1)2019年4 月份二手房每平米均价是多少万元?(2)2019年上半年几月份二手房每平米均价最低?最低价为多少万元?(3)2015年底小王以每平米 8000 元价格购买了一套 50 平米的新房,除房款外他还另支付了房款总额 1%的契税与 0.05%的印花税,以及 3000 元其他费用;2019年 7 月,小王因工作调动,急售该房,根据当地政策,小王只需缴纳卖房过程中产生的其他费用 1000 元, 无需再缴税;若将(2)中的最低均价定为该房每平米的售价,那么小王能获利多少万元?21(本题10分)(1)已知()2210ab a +++=,求代数式111(1)(1)(2)(2)(3)(3)a b a b a b +++-+-+-+ (1)(2018)(2018)a b -+的值.(2)计算:()20172018201942125.0⨯⨯-22(本题10分)已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为8?若存在,请求出x的值;若不存在,说明理由;(3)现在点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,点P以6个单位长度/秒的速度同时从O点向左运动.当点A与点B之间的距离为3个单位长度时,求点P所对应的数是多少?23(本题12分).一个能被13整除的自然数我们称为“十三数”,“十三数”的特征是:若把这个自然数的末三位与末三位以前的数字组成的数之差,如果能被13整除,那么这个自然数就一定能被13整除.例如:判断383357能不能被13整除,这个数的末三位数字是357,末三位以前的数字组成的数是383,这两个数的差是383﹣357=26,26能被13整除,因此383357是“十三数”.(1)判断3253和254514是否为“十三数”,请说明理由.(2)若一个四位自然数,千位数字和十位数字相同,百位数字与个位数字相同,则称这个四位数为“间同数”.①求证:任意一个四位“间同数”能被101整除.②若一个四位自然数既是“十三数”,又是“间同数”,求满足条件的所有四位数的最大值与最小值之差.答案一.选择题:1.答案:B解析:用科学记数法表示13000,a=1.3,10的指数比原数的整数位数少1,即为4,故13 000=1.3×104,故选B.2.答案:A解析:由题意可知4个有理数中正数为奇数个,所以是1个或3个,故选择A 3.答案:D解析:,故选择D4.答案:C解析:∵,故①是互为相反数;∵,故②是互为相反数;∵,故③不是互为相反数;∵,故④是互为相反数,故选择C5.答案:B解析:∵,故选择B 6.答案:B解析:∵M+|-20|=|M|+|20|,∴,为非负数,故选择B.7.答案:D解析: =,故答案为:D.8.答案:C解析:∵,∴∵,∴∵,∴∴,故选择C9.答案:C解析:∴,故选择C10.答案:C解析:这列数,,,,,,,()我们发现从第4个数开始是前3个数去中间这个数后两数的绝对值的和,奇位上是负数,偶位上是正数,∴第8个数是,第8个是偶位上的数,故为,故选择C二.填空题:11.答案:百解析:精确到百位12.答案:解析:13.答案:30解析:1.8×103÷(3×102)=6,1.65×103÷(3×102)=5.5,因为是纸板张数,所以最多能制作5×6=30(张)14.答案:0解析:∵四个各不相等的整数满足∴,∴分别为,∴15.答案::或或或解析:当为三正时,;当为三负时,;当为一负二正时,;当为二负一正时,故答案为:或或或16.答案:070629解析:∵第一行:0×23+1×22+1×21+1=7,计作07,第二行:0×23+1×22+1×21+0=6,计作06,第三行:0×23+0×22+1×21+0=2,计作2,第四行:1×23+0×22+0×21+1=9,计作9,∴他的统一学号为070629.故答案为:070629.三.解答题:17.解析:(1)(2)原式(3)原式(4)18.解析:.因为a+b+c=0,所以a+b=-c,a+c=-b,b+c=-a,所以由a+b+c=0且a,b,c均不为0,得a,b,c不能全为正,也不能全为负,只能是一正二负或二正一负.所以x=|±1|=1.所以x19-99x+2 098=119-99+2 098=1-99+2 098=2 000.19.解析:(1)2+3+4=9,9-6-4=-1,9-6-2=1,9-2-7=0,9-4-0=5,填数如图所示.(2)-3+1-4=-6,-6+1-(-3)=-2,-2+1+4=3,如图所示.x=3-4-(-6)=5,y=3-1-(-6)=8,所以x+y=5+8=13.20.解析:四月份房价=1.3+0.08-0.11-0.07+0.09=1.29(万元)(2)由表中数据可知,三月份房价最低,最低为:1.3+0.08-0.11-0.07=1.2(万元)(3)购房时所花费用=8000×50×(1+1%+0.05%)+3000=407200(元),卖房获得收入=12000×50-1000=599000(元),利润=599000-407200=191800(元),所以小王获利 19.18万元.21.解析:(1)∵,∴∴……(2)22.解析:(1)∵点P到点A、点B的距离相等,∴点P是线段AB的中点,∵点A、B对应的数分别为﹣1、3,∴点P对应的数是1;(2)①当点P在A左边时,﹣1﹣x+3﹣x=8,解得:x=﹣3;②点P在B点右边时,x﹣3+x﹣(﹣1)=8,解得:x=5,即存在x的值,当x=﹣3或5时,满足点P到点A、点B的距离之和为8;(3)①当点A在点B左边两点相距3个单位时,此时需要的时间为t,则3+0.5t﹣(2t﹣1)=3,解得:t=,则点P对应的数为﹣6×=﹣4;②当点A在点B右边两点相距3个单位时,此时需要的时间为t,则2t﹣1﹣(3+0.5t)=3,1.5t=7解得:t=,则点P对应的数为﹣6×=﹣28;综上可得当点A与点B之间的距离为3个单位长度时,求点P所对应的数是﹣4或﹣28.23.解析:(1)3253不是“十三数”,254514是“十三数”,理由如下:∵3﹣253=﹣250,不能被13整除,∴3253不是“十三数”,∵254﹣514=﹣260,﹣260÷13=﹣20∴254514是“十三数”;(2)①证明:设任意一个四位“间同数”为(1≤a ≤9,0≤b≤9,a、b为整数),∵∵a、b为整数,∴10a+b是整数,即任意一个四位“间同数”能被101整除;②解:设任意一个四位“间同数”为(1≤a≤9,0≤b ≤9,a、b为整数),∵,∵这个四位自然数是“十三数”,∴101b+9a是13的倍数,当a=1,b=3时,101b+9a=303+9=312,312÷13=24,此时这个四位“间同数”为:1313;当a=2,b=6时,101b+9a=606+18=624,624÷13=48,此时这个四位“间同数”为:2626;当a=3,b=9时,101b+9a=909+27=736,936÷13=72,此时这个四位“间同数”为:3939;当a=5,b=2时,101b+9a=202+45=247,247÷13=19,此时这个四位“间同数”为:5252;当a=6,b=5时,101b+9a=505+54=559,559÷13=43,此时这个四位“间同数”为:6565;当a=7,b=8时,101b+9a=808+63=871,871÷13=67,此时这个四位“间同数”为:7878;当a=9,b=1时,101b+9a=101+81=182,182÷13=14,此时这个四位“间同数”为:9191;综上可知:这个四位“间同数”最大为9191,最小为1313,9191﹣1313=7878,则满足条件的所有四位数的最大值与最小值之差为7878.1、人不可有傲气,但不可无傲骨。
浙教版数学七年级上册丽水市莲都区2021学年第一学期期末测试卷(含答案)

A. 3
B. 4
C. 5
D. 6
【答案】 B
7.若3x3myn-1与-x3y是同类项,则m-2n的值为( )
A. 1
B. 0
C. -1
D. -3
【答案】 D
8.小王准备从A地去往B地,打开某导航软件(如图),上面显示两
地之间的距离为50 km,但导航软件提供的三条可选路线长分别为
56 km,66 km,61 km.能解释这一现象的数学知识是
C. 23+x=2(17+x)
D. 23+20-x=2(17+x)
【答案】 B
10.长方形ABCD可以分割成如图所示
的七个正方形.若AB=10,则AD的长
为
()
A. 13
B. 11
C.
40 3
D.
100 9
【解析】如解图.
设最小的正方形的边长为x, 则①号正方形的边长为3x, ②号正方形的边长为x+3×3x=10x. ∵AB=10,∴10x=10,∴x=1, ∴AD=10+1×3=13.故选A.
A. 2a-5=b
B. 2a+1=b+6
C. a=b2+52
D. 6a=3b+5
【答案】 D
5.如图,射线OA表示北偏东30°方向,射线OB表示北
偏西50°方向,则∠AOB的度数是
()
A. 60°
2023学年浙江七年级数学上学期专题训练七年级数学期末模拟卷二(含详解)

①若 ,点D、E、F在数轴上分别表示数 、5、7,在这三个点中,点_______是点A、C的双倍绝对点;
②若 ,则 ________;
(2)若 , ,则c的最小值为________;
(3)线段 在数轴上,点P、Q分别表示数 、 , , ,线段 与点A、C同时沿数轴正方向移动,点A、C的速度是每秒1个单位长度,线段 的速度是每秒3个单位长度.设移动的时间为 ,当线段 上存在点A、C的双倍绝对点时,求t的取值范围.
A. B. C. D.
3.已知某点阵的第①②③个图如图所示,按此规律第⑥个点阵图中点的个数为()
A. B. C. D.
4.如果把一个物体向后移动 记作移动 ,那么这个物体又移动 ,这时物体离它两次移动前的位置多远?()
A. B. C. D.
5.若 是关于x的方程 的解,则a的值为()
A. B. C. D.
6.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置的9个数(如6、7、8、13、14、15、20、21、22).若圈出的9个数中,最大数与最小数的和为46,则这9个数的和为()
A.69B.84C.126D.207
7.字母 表示一个有理数,不论 取任意有理数,下列式子的值总是正数的是()
(1)分别求出当t=5和t=18时,∠POQ的度数;
(2)当OP与OQ重合时,求t的值;
(3)当∠POQ=40°时,求t的值.
24.(本题8分)一个通信员需要在规定时间内把信件送到某地.若通信员每小时走15 km,则早到24分钟;若通信员每小时走12 km,则迟到15分钟.规定时间是多少小时?他去该地的路程有多远?
A. B. C. D.
【答案】B
【分析】
浙教版2020-2021学年度上学期浙江省杭州市七年级数学第一次月考试卷(含解析)

2020-2021学年度上学期浙江省杭州市七年级数学第一次月考试卷一、选择题(共10题;共30分)1.用四舍五入法把106.49精确到个位的近似数是( )A. 107B. 107.0C. 106D. 106.52.如果温度上升 3℃ ,记作 +3℃ ,那么温度下降 2℃ 记作( )A. −2℃B. +2℃C. +3℃D. −3℃3.−|−12| 的相反数的倒数是( )A. 12B. −12C. 2D. −24.下列算式中,计算结果是负数的是( )A. (﹣2)+7B. |﹣1|C. 3×(﹣2)D. (﹣1)25.下列各式不成立的是( )A. −(−3)=3B. |2|=|−2|C. 0>|−1|D. −2>−36.2020年初,国家统计局发布数据,按现行国家农村贫困标准测算,截至2019年末,全国农村贫困人口减少至551万人,累计减少9348万人.将9348万用科学记数法表示为( )A. 0.9348×108B. 9.348×107C. 9.348×108D. 93.48×1067.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A. ﹣2B. 0C. 1D. 48.甲、乙、丙三地海拔高度分别为30米, −25 米, −5 米,那么最高的地方比最低的地方高( )A. 20米B. 25米C. 35米D. 55米9.有理数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A. a >﹣4B. bd >0C. |a|>|b|D. b+c >010.计算:1+( − 2)+3+( − 4)+…+2017+( − 2018)的结果是( )A. 0B. − 1C. − 1009D. 1010 二、填空题(共8题;共24分)11.2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为 +100 米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为________米.12.截止2020年6月5日,全世界感染新冠肺炎的人数约为6650000人,数字6650000用科学记数法表示,并保留2个有效数字,应记为________.13.M、N是数轴上的两个点,线段MN的长度为3,若点M表示的数为-1,则点N表示的数为________.14.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2019+ 2020n+c2021的值为________.15.已知|x|=3,|y|=7,且x+y>0,则x−y的值等于________.16.比较大小:−|−5|________ −(−4).17.数轴上点P表示的数是﹣2,那么到P点的距离是3个单位长度的点表示的数是________.18.下面是一个三角形数阵根据该数阵的规律,猜想第十行所有数的和________.三、解答题(共7题;共46分)19.计算:(1)−8+|32÷(−2)3|−(−42)×5 .(2)|﹣9|÷3+(12−23)×12+32;20.把下列各数填在相应的集合内。
2020-2021学年七年级上学期期末考试数学试题含参考答案

2020年秋学期期末测试七年级数学试卷一、选择题(本大题共有6小题,每小题3分,共18分)1.﹣3的相反数是()A.1 3B.13-C.3 D.﹣3 2.下列几何体,都是由平面围成的是()A.圆柱B.三棱柱C.圆锥D.球3.下列各式中,正确的是()A.22a b ab+=B.224235x x x+=C.()3434x x--=--D.2222a b a b a b-+= 4.已知关于x的一元一次方程3240x a--=的解是2x=,则a的值为()A.﹣5 B.﹣1 C.1 D.55.如图,是一个正方体的表面展开图.若该正方体相对面上的两个数和为0,则a b c+-的值为()A.﹣6 B.﹣2 C.2 D.46.如图所示,是由8个完全相同的小正方体搭成的几何体.若小正方体的棱长为1,则该几何体的表面积是()A.16 B.30 C.32 D.34二、填空题(本大题共有10小题,每小题3分,共30分)7.2021的绝对值是.8.双十一购物狂欢节,源于淘宝商城(天猫)2009年11月11日举办的网络促销活动,2020年双十一购物狂欢节全网销售额高达267 400 000 000元,将267 400 000 000用科学记数法表示为_____________.9.若∠A=34°,则∠A的补角等于____________°.10.请写出一个系数是﹣3、次数是4的单项式:_______________.11.如图是某个几何体的三视图,则该几何体的名称是_______________.12.已知2320x y-+=,则22(3)5x y-+的值为_______________.13.若一个等腰三角形的两边长分别为4cm 和9cm,则这个等腰三角形的周长是_______cm.14.若多项式23352x kxy--与2123xy y-+的和中不含xy项,则k的值是_________.15.如图,在ΔABC中,BD平分∠ABC交AC于点D,EF∥BC交BD于点G,若∠BEG=130°,则∠DGF=________°.16.如图,是一个长、宽、高分别为a、b、c(a>b>c)长方体纸盒,将此长方体纸盒沿不同的棱剪(第5题图)(第6题图)(第11题图)(第15题图)(第16题图)开,展成的一个平面图形是各不相同的.则在这些不同的平面图形中,周长最大的值是_______________.(用含a 、b 、c 的代数式表示)三、解答题(本大题共有8小题,共102分.解答时应写出必要的步骤)17.(本题12分)计算: (1)213(4)33⎛⎫---+-+ ⎪⎝⎭; (2)()2020112(3)2---+-÷.18.(本题8分)解下列方程:(1)43211x x -=+; (2)21)1323(x x --=-.19.(本题8分)先化简,再求值:22222(5)2(2)a b ab a b a b ab +-+--,其中1a =-,3b =.20.(本题8分)若方程2(31)12x x +=+的解与关于x 的方程622(3)3kx -=+的解互为倒数,求k 的值.21.(本题10分)如图是由相同边长的小正方形组成的网格图形,小正方形的边长为1个单位长度,每个小正方形的顶点都叫做格点,△ABC 的三个顶点都在格点上,利用网格画图.(注:所画格点、线条用黑色水笔描黑)(1)过点A 画BC 的垂线,并标出垂线所过格点P ;(2)过点A 画BC 的平行线,并标出平行线所过格点Q ; (3)画出△ABC 向右平移8个单位长度后△A ′B ′C ′的位置;(4)△A ′B ′C ′的面积为________.22.(本题10分)用“※”定义一种新运算:对于任意有理数a 和b ,规定a ※b =a (a +b ). 例如:1※2=1×(1+2)=1×3=3. (1)求(﹣3) ※5的值;(2)若(﹣2) ※(3x -2)=x +1,求x 的值.23.(本题10分)如图,已知直线AB,CD相交于点O,∠AOE与∠AOC互余.(1)若∠BOD=32°,求∠AOE的度数;(2)若∠AOD:∠AOC=5∶1,求∠BOE的度数.24.(本题10分)如图1,直线MN∥PQ、ΔABC按如图放置,∠ACB=90°,AC、BC分别与MN、PQ相交于点D、E,若∠CDM=40°.(1)求∠CEP的度数;(2)如图2,将△ABC绕点C逆时针旋转,使点B落在PQ上得△A'B'C,若∠CB'E=22°,求∠A'CB的度数.25.(本题12分)全球新冠疫情爆发后,口罩成了急需物资,中国企业积极采购机械生产口罩,为全球抗击疫情作出了贡献.某企业准备采购A、B两种机械共15台,用于生产医用口罩和N95医用防护口罩,A种机械每天每台可以生产医用口罩7万个,B种机械每天每台可以生产N95医用防护口罩2万个,根据疫情需要每天生产的医用口罩要求是N95医用防护口罩的4倍.(1)求该企业A、B两种机械各需要采购多少台?(2)设该企业每天生产数量相同的同一类型口罩,每天销售9万元,并提供优惠政策:购买不超过10天不优惠,超过10天不超过20天的部分打九折,超过20天不超过30天的部分打8折,超过30天的部分打7折.①某国内医疗机构购买了该企业2周的口罩产量,问应付多少钱?②某国外医疗机构一次性付款207万元,问医疗机构购买了多少天的口罩产量?26.(本题14分)两个完全相同的长方形ABCD 、EFGH ,如图所示放置在数轴上. (1)长方形ABCD 的面积是__________.(2)若点P 在线段AF 上,且PE +PF =10,求点P 在数轴上表示的数.(3)若长方形ABCD 、EFGH 分别以每秒1个单位长度、3个单位长度沿数轴正方向移动.设两个长方形重叠部分的面积为S ,移动时间为t .①整个运动过程中,S 的最大值是____________,持续时间是__________秒. ②当S 是长方形ABCD 面积一半时,求t 的值.附加题1.如图①,在长方形 A BCD 中, E 点在 A D 上,并且∠ABE = 28︒ ,分别以 B E 、CE 为折痕进行折叠并压平,如图②,若图②中∠A ED =n ︒,则∠D E C 2. 如上图,已知点A 是射线BE 上一点,过A 作AC ⊥BF ,垂足为C ,CD ⊥BE ,垂足为D ,给出下列结论:①∠1是∠ACD 的余角;②图中互余的角共有3对;③∠1的补角只有∠DCF ;④与∠ADC 互补的角共有3个.其中正确结论有_____. 3.如图,直线l 上有A 、B 两点,点O 是线段AB 上的一点,且OA =10cm ,OB =5cm . (1)若点C 是线段 AB 的中点,求线段CO 的长. (2)若动点 P 、Q 分别从 A 、B 同时出发,向右运动,点P 的速度为4c m/s ,点Q 的速度为3c m/s ,设运动时间为 x 秒, ①当 x =__________秒时,PQ =1cm ;②若点M 从点O 以7c m/s 的速度与P 、Q 两点同时向右运动,是否存在常数m ,使得4PM +3OQ ﹣mOM 为定值,若存在请求出m 值以及这个定值;若不存在,请说明理由. (3)若有两条射线 OC 、OD 均从射线OA 同时绕点O 顺时针方向旋转,OC 旋转的速度为6度/秒,OD 旋转的速度为2度/秒.当OC 与OD 第一次重合时,OC 、OD 同时停止旋转,设旋转时间为t 秒,当t 为何值时,射线 OC ⊥OD ?2020年秋学期期末学业质量测试七年级数学参考答案题号 1 2 3 4 5 6 答案CBDCBD(本大题共有10题,每小题3分,共30分)7. 2021 8. 2.674×1011 9. 146 10.﹣3x 4(答案不唯一) 11. 六棱柱 12. 1 13. 22 14. 8 15. 25 16. 8a +4b +2c三、解答题(本大题共有8题,共102分.解答时应写出必要的步骤)17.(1)解:原式213433=-+-+(2分) 21(34)33⎛⎫=--++ ⎪⎝⎭(2分)71=-+6=- (2分)(2)解:原式12(3)2=-+-⨯(3分) 16=-- (1分) 7=- (2分) 18.(1)解:42311x x -=+ (2分) 214x = (1分) 7x = (1分)(2)解:()32196x x --=- (1分) 32196x x -+=- (1分) 1110x -=- (1分)1011x = (1分) 19.解:原式22222524a b ab a b a b ab =-+-+(2分)22222254a b a b a b ab ab =+--+2ab =- (3分) 当1a =-,3b =时,()2213ab -=--⨯ (2分)9= (1分)20.解: ()23112x x +=+6212x x +=+41x =-14x =- (2分)14-的倒数是4-(2分) 将4-代入方程()62233kx -=+ 则6223k-=-(2分)626k -=- 212k -=-6k = (2分)21.(1)画出垂线(1分) (2)标出格点P (1分) (2)画出平行线(1分)只要标出1个格点Q (1分) (3)画出三角形(2分)标出字母(1分) (4)9.5 (3分)22.解:(1)由题意知,()3-※5()()335=-⨯-+⎡⎤⎣⎦ (2分)()32=-⨯ 6=- (2分)(2)由题意知,()2-※(32)x -()()()2232x =-⨯-+-⎡⎤⎣⎦(2分)()()234x =-⨯- 68x =-+(2分)因为()2-※(32)1x x -=+ 所以681x x -+=+(1分)77x -=-1x = (1分)23.解:(1)因为∠AOC 与∠BOD 是对顶角所以∠AOC =∠BOD =32°(1分) 因为∠AOE 与∠AOC 互余所以∠AOE +∠AOC =90°(1分) 所以∠AOE =90°-∠AOC (1分)=90°-32° =58° (2分)(2)因为∠AOD :∠AOC =5:1所以∠AOD =5∠AOC (1分) 因为∠AOC +∠AOD =180°(1分) 所以6∠AOC =180°∠AOC =30°(1分) 由(1)知∠BOD =∠AOC =30°∠COE =∠DOE =90°(1分)所以∠BOE =∠DOE +∠BOD=90°+30° =120°(1分)24.解:(1)连接DE因为MN ∥PQ所以∠MDE +∠PED =180°(2分)即∠CDM +∠CEP +∠CDE +∠CED =180° 因为∠CDE +∠CED +∠DCE =180°所以∠CDM +∠CEP =∠DCE =90°(1分) 所以∠CEP =90°-∠CDM=90°-40° =50°(2分)(2)由(1)知∠CEP =50°因为∠CEP +∠CEB '=180° 所以∠CEB '=180°-∠CEP=180°-50° =130°(1分)因为∠ECB '+∠CEB '+∠CB 'E =180° 所以∠ECB '=180°-∠CEB '-∠CB 'E=180°-130°-22° =28°(1分)因为∠A 'CB '是由∠ACB 旋转得到 所以∠A 'CB '=∠ACB =90°(1分) 所以∠A 'CB =∠A 'CB '+∠ECB '=90°+28° =118°(2分)25.解:(1)设采购A 种机械x 台,则采购B 种机械(15-x )台.(1分)由题意得742(15)x x =⨯-(3分)解得8x =151587x -=-=答:采购A 种机械8台,采购B 种机械7台.(2分) (2)①两周=14天9×10+9×0.9×4 (1分) =90+32.4=122.4(万元)答:应付122.4万元.(1分)②购买20天费用:9×10+8.1×10=171(万元)购买30天费用:9×10+8.1×10+7.2×10=243(万元) 171<207<243设国外医疗机构购买了y 天的口罩产量(20<y <30) 则9×10+8.1×10+7.2×(y -20)=207(2分) 解得y =25答:国外医疗机构购买了25天的口罩产量.(2分)26.(1)48 (3分)(2)设点P 在数轴上表示的数是x , 则(10)10PE x x =--=+(4)4PF x x =--=+ (1分) 因为10PE PF +=所以(10)(4)10x x +++= (1分) 解得2x =-答:点P 在数轴上表示的数是﹣2.(1分)(3)①36;1 (4分) ②由题意知移动t 秒后,点E 、F 、A 、B 在数轴上分别表示的数是 103t -+、43t -+、2t +、10t + 情况一:当点A 在E 、F 之间时(43)(2)26AF t t t =-+-+=- 由题意知148242AF AD S ⋅==⨯= 所以()62624t ⋅-=解得5t =(2分)情况二:当点B 在E 、F 之间时()()10103202BE t t t =+--+=-由题意知148242BE BC S ⋅==⨯=所以()620224t ⋅-= 解得8t =(1分)综上所述,当S 是长方形ABCD 面积一半时,5t =或8.(1分)附加题1.(28+1/2 n )°2. 答案为①④.3. 【答案】解:(1)∵OA =10cm ,OB =5cm ,∴AB =OA +OB =15cm . ∵点C 是线段 AB 的中点,∴AC =12AB =7.5cm ,∴CO =AO -AC =10-7.5=2.5(cm ). (2)①∵PQ =1,∴|15-(4x -3x )|=1,∴|15-x |=1,∴15-x =±1,解得:x =14或16.②∵PM =10+7x -4x =10+3x ,OQ =5+3x ,OM =7x ,∴4PM +3OQ ﹣mOM =4(10+3x )+3(5+3x )-7mx =55+(21-7m )x ,要使4PM +3OQ ﹣mOM定值,则21-7m =0,解得:m =3,此时定值为55.(3)分两种情况讨论:①如图1,根据题意得:6t -2t =90,解得:t =22.5; ②如图2,根据题意得:6t +90=360+2t ,解得:t =67.5.综上所述:当t =22.5秒和67.5秒时,射线 OC ⊥OD .。
2020-2021学年浙江省杭州市七年级上期末数学试卷及答案解析

第 1 页 共 14 页2020-2021学年浙江省杭州市七年级上期末数学试卷一.选择题(共10小题,满分30分)1.(3分)若a 是绝对值最小的有理数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c三数之和为( )A .﹣1B .0C .1D .2 2.(3分)在下列各数:√8、0.2、﹣π、227、√273、0.101001中无理数的个数是( ) A .1 B .2 C .3 D .43.(3分)某日的气温是﹣2℃~6℃,则该日的温差是( )A .8℃B .5℃C .2℃D .﹣8℃4.已知a =20.18是由四舍五入得到的近似数,则a 的可能取值范围是( )A .20.175≤a ≤20.185B .20.175≤a <20.185C .20.175<a ≤20.185D .20.175<a <20.185 5.(3分)下列四个数中,最小的数是( )A .0B .−12020C .5D .﹣16.(3分)下列各式,运算正确的是( )A .5a ﹣3a =2B .2a +3b =5abC .7a +a =7a 2D .10ab 2﹣5b 2a =5ab 27.(3分)已知n 是正整数,并且n ﹣1<3+√26<n ,则n 的值为( )A .7B .8C .9D .108.(3分)我国元朝朱世杰所著的《算学启蒙》中有个问题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.这道题的意思是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?如果我们设快马x 天可以追上慢马,则可列方程( )A .240x =150x +12B .240x =150x ﹣12C .240x =150(x +12)D .240x =150(x ﹣12)9.(3分)点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,BC =2,OA =OB ,若C 点所表示的数为x ,则A 点所表示的数为( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年七年级数学第一学期期末考试试题一、选择题(本大题共10小题,共30.0分) 1. -2的相反数是( )A. 2B. −2C. 12 D. −12 2. 下列实数中是无理数的是( )A. −1B. 12C. πD. 03. 图中的几何体有( )条棱.A. 3B. 4C. 5D. 64. 港珠澳大桥总投资1100亿,那么1100亿用科学记数法表示为( )A. 1.1×1011B. 1.1×1012C. 11×1010D. 0.11×10125. 下列代数式中:①3x 2-1;②xyz ;③12b ;④3x+y 2,单项式的是( )A. ①B. ②C. ③D. ④ 6. 计算√−643+√16的结果是( )A. −4B. 0C. 4D. 87. 一个代数式减去-2x 得-2x 2-2x +1,则这个代数式为( )A. −x 2+1B. −2x 2−4x +1C. −2x 2+1D. −2x 2−4x 8. 已知x =1是关于x 的方程2-ax =x +a 的解,则a 的值是( )A. 12 B. −1C. 32 D. 19. 下列各式的值一定是正数的是( )A. √a 3B. √a 2C. 1a 2D. |a|10. α与β的度数分别是2m -19和77-m ,且α与β都是γ的补角,那么α与β的关系是( )A. 不互余且不相等B. 不互余但相等C. 互为余角但不相等D. 互为余角且相等二、填空题(本大题共6小题,共24.0分)11. 在-12,0,-2,1这四个数中,最小的数是______. 12. 单项式-23x 2y 的系数是______.13. 用代数式表示:“x 的一半与y 的3倍的差”______.14. 23.8°=______(化成度、分、秒的形式) 15. 一件商品按成本价提高20%标价,然后打9折出售,此时仍可获利16元,则商品的成本价为______元.16. 已知线段AB ,点C 、点D 在直线AB 上,并且CD =8,AC :CB =1:2,BD :AB =2:3,则AB =______.三、计算题(本大题共4小题,共36.0分)17.计算:)×2+3.(1)(-12.(2)22+(-3)2÷3218.先化简,再求值:(2x2+x)-[4x2-(3x2-x)],其中x=-5.319.某公司的年销售额为a元,成本为销售额的60%,税额和其他费用合计为销售额的P%.(1)用关于a、P的代数式表示该公司的年利润;(2)若a=8000万,P=7,则该公司的年利润为多少万元?20.如图,已知数轴上点A表示的数为-3,B是数轴上位于点A右侧一点,且AB=12.动点P从点A出发,以每秒2个单位长度的速度沿数轴向点B方向匀速运动,设运动时间为t秒.(1)数轴上点B表示的数为______;点P表示的数为______(用含t的代数式表示).(2)动点Q从点B出发,以每秒1个单位长度的速度沿数轴向点A方向匀速运动;点P、点Q同时出发,当点P与点Q重合后,点P马上改变方向,与点Q继续向点A方向匀速运动(点P、点Q在运动过程中,速度始终保持不变);当点P到达A点时,P、Q停止运动.设运动时间为t秒.①当点P与点Q重合时,求t的值,并求出此时点P表示的数.②当点P是线段AQ的三等分点时,求t的值.四、解答题(本大题共3小题,共30.0分)21.解方程:(1)2x+3=4x-5(2)1−2x7-1=x+33.22.《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?23.如图,E是直线AC上一点,EF是∠AEB的平分线.(1)如图1,若EG是∠BEC的平分线,求∠GEF的度数;(2)如图2,若GE在∠BEC内,且∠CEG=3∠BEG,∠GEF=75°,求∠BEG的度数.(3)如图3,若GE在∠BEC内,且∠CEG=n∠BEG,∠GEF=α,求∠BEG(用含n、α的代数式表示).答案和解析1.【答案】A【解析】解:根据相反数的定义,-2的相反数是2.故选:A.根据相反数的意义,只有符号不同的数为相反数.本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.【答案】C【解析】解:π为无理数,-1,,0为有理数.故选:C.根据无理数的三种形式求解.本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.3.【答案】D【解析】解:此几何体有6条棱,故选:D.计算出几何体的棱数即可.此题主要考查了认识立体图形,关键是掌握几何体的形状.4.【答案】A【解析】解:1100亿用科学记数法表示为1.1×1011.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【答案】B【解析】解:单项式有②xyz,故选:B.根据单项式的定义对各选项进行逐一分析即可.本题考查的是单项式的定义,熟知数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式是解答此题的关键.6.【答案】B【解析】解:原式=-4+4=0,故选:B.原式利用平方根、立方根定义计算即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.7.【答案】B【解析】解:设这个代数式为A,∴A-(-2x)=-2x2-2x+1,∴A=-2x2-2x+1-2x=-2x2-4x+1,故选:B.根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.8.【答案】A【解析】解:把x=1代入方程2-ax=x+a得:2-a=1+a,解得:a=,故选:A.把x=1代入方程2-ax=x+a得到关于a的一元一次方程,解之即可.本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.9.【答案】C【解析】解:A、当a≤0时,≤0,故A错误;B、当a=0时,=0,故B错误;C、∵a≠0,∴a2>0,∴>0,故C正确;D、当a=0时,|a|=0,故D错误;故选:C.根据实数、绝对值以及算术平方根的性质进行选择即可.本题考查了实数,非负数:绝对值和算术平方根,掌握非负数的性质是解题的关键.10.【答案】D【解析】解:∠α与∠β都是∠γ的补角,得∠α=∠β,即2m-19=77-m,解得m=32,2m-19=77-m=45.故选:D.根据补角的性质,可得∠α=∠β,根据解方程,可得答案.本题考查了余角和补角,关键是熟悉补角的性质:等角的补角相等.11.【答案】-2【解析】解:在-,0,-2,1这四个数中,最小的数是-2,故答案为:-2.根据有理数的大小比较法则,即可得出答案.本题考查了有理数的大小比较,属于基础题,解答本题的关键是掌握有理数的大小比较法则.12.【答案】-23【解析】解:单项式-x2y的系数是-.故答案为:-.直接利用单项式系数的定义得出答案.此题主要考查了单项式,正确把握单项式系数的确定方法是解题关键.x−3y13.【答案】12【解析】解:由题意可得:x-3y.故答案为:x-3y.直接利用x的一半为:x,y的3倍为3y,进而得出答案.此题主要考查了列代数式,正确理解题意是解题关键.14.【答案】23°48'【解析】解:23.8°=23°48',故答案为:23°48'.根据度分秒间的进率的进率是60,不到一度的化成分,不到一分的化成秒,可得答案.本题考查了度分秒的换算,大的单位化小的单位乘以进率,不到一度的化成分,不到一分的化成秒.15.【答案】200【解析】解:设这种商品的成本价是x元,则商品的标价为x(1+20%),由题意可得:x×(1+20%)×90%=x+16,解得x=200,即这种商品的成本价是200元.故答案为:200.设这种商品的成本价是x元,则商品的标价为x(1+20%),等量关系为:标价×90%=成本+利润,把相关数值代入求解即可.此题考查一元一次方程的应用,得到售价的等量关系是解决本题的关键,难度一般,注意细心审题.16.【答案】6【解析】解:分两种情况进行讨论:①当C在线段AB上时,点D在线段AB的延长线上,∵AC:CB=1:2,∴BC=AB,∵BD:AB=2:3,∴BD=,∴CD=BC+BD=,∴AB=6;②当点C在线段AB的反向延长线时,∵BD:AB=2:3,∴AB=3AD,∵AC:CB=1:2,∴AC=AB,∴CD=AC+AD=4AD=8,∴AD=2,∴AB=6;③点C、D在线段AB上时,C、D两点重合,不成立.故AB=6.要分三种情况进行讨论:①当C在线段AB上时,点D在线段AB的延长线上;②当点C在线段AB的反向延长线时,点D在AB上时;③点C、D在线段AB 上时,C 、D 两点重合,不成立. 本题主要考查线段的和差,注意分类讨论. 17.【答案】解:(1)原式=-1+3=2;(2)原式=4+6=10. 【解析】(1)原式先计算乘法运算,再计算加减运算即可求出值;(2)原式先计算乘方运算,再计算除法运算,最后算加减运算即可求出值. 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 18.【答案】解:(2x 2+x )-[4x 2-(3x 2-x )]=2x 2+x -[4x 2-3x 2+x ] =2x 2+x -4x 2+3x 2-x =x 2,当x =-53时,原式=(-53)2=259. 【解析】原式去括号合并后,将x 的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键. 19.【答案】解:(1)根据题意列得:a (1-60%-p %)=a (40%-p %);(2)将a =8000万,P =7代入得:8000×(40%-7%)=8000×33%=2640(万元), 答:该公司的年利润为2640万元. 【解析】(1)由销售额-成本-税额和其他费用,即可表示出该公司的年利润; (2)将a 与P 的值代入(1)表示出的式子中,即可求出该公司的年利润. 此题考查了整式的加减,以及化简求值,属于一道应用题.弄清题意列出相应的式子是解本题的关键. 20.【答案】9 -3+2t【解析】解:(1)由题意知,点B 表示的数是-3+12=9,点P 表示的数是-3+2t , 故答案为:9,-3+2t ;(2)①根据题意,得:(1+2)t=12,解得:t=4,∴-3+2t=-3+2×4=5,答:当t=4时,点P与点Q重合,此时点P表示的数为5;②P与Q重合前:当2AP=PQ时,有2t+4t+t=12,解得t=;当AP=2PQ时,有2t+t+t=12,解得t=3;P与Q重合后:当AP=2PQ时,有2(8-t)=2(t-4),解得t=6;当2AP=PQ时,有4(8-t)=t-4,解得t=;综上所述,当t=秒或3秒或6秒或秒时,点P是线段AQ的三等分点.(1)根据两点间的距离求解可得;(2)①根据重合前两者的路程和等于AB的长度列方程求解可得;②分点P与点Q重合前和重合后,依据点P是线段AQ的三等分点线段间的数量关系,并据此列出方程求解可得.此题考查了实数与数轴,以及一元一次方程的应用,熟练掌握各自的性质是解本题的关键.21.【答案】解:(1)移项得:2x-4x=-5-3,合并同类项得:-2x=-8,系数化为1得:x=4,(2)方程两边同时乘以21得:3(1-2x)-21=7(x+3),去括号得:3-6x-21=7x+21,移项得:-6x-7x=21+21-3,合并同类项得:-13x=39,系数化为1得:x=-3.【解析】(1)依次移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.22.【答案】解:设城中有x户人家,=100依题意得:x+x3解得x=75.答:城中有75户人家.【解析】设城中有x户人家,根据鹿的总数是100列出方程并解答.考查了一元一次方程的应用.解题的关键是找准等量关系,列出方程.23.【答案】解:(1)∵EF是∠AEB的平分线,∠AEB,∴∠BEF=12∵EG是∠BEC的平分线,∴∠BEG=1∠BEC,2∴∠GEF=∠BEF+∠BEG=1(∠AEB+∠BEC)=90°;2(2)∵∠GEF=75°,∴∠BEF=75°-∠BEG,∵EF是∠AEB的平分线,∴∠AEB=2∠BEF=150°-2∠BEG,∵∠CEG=3∠BEG,∴∠BEG+3∠BEG+150°-2∠BEG=180°,∴∠BEG=15°;(3)∵∠GEF=α,∴∠BEF=α-∠BEG,∵EF是∠AEB的平分线,∴∠AEB=2∠BEF=2α-2∠BEG,∵∠CEG=n∠BEG,∴∠BEG+n∠BEG+2α-2∠BEG=180°,∴∠BEG=180°−2α.n−1【解析】(1)根据角平分线的定义得到∠BEF=∠AEB,∠BEG=∠BEC,根据角的和差即可得到结论;(2)根据角平分线的定义和角的和差即可得到结论;(3)由已知条件得到∠BEF=α-∠BEG,由角平分线的定义得到∠AEB=2∠BEF=2α-2∠BEG,于是得到结论.本题考查了角平分线的定义,角的计算,正确的理解题意是解题的关键.1、三人行,必有我师。