UG有限元分析第8章
ug有限元分析教程

ug有限元分析教程有限元分析是一种数值计算方法,用于求解工程结构或物理问题的数学模型。
它将连续的解析问题离散化成有限数量的子域,并在每个子域上进行数值计算,最终得到整个问题的解。
本教程将介绍有限元分析的基本原理和应用方法。
1. 有限元网格的生成有限元分析的第一步是生成适合问题的有限元网格。
网格是由许多小的单元组成,如三角形、四边形或六边形。
生成网格的方法有很多种,如三角剖分、矩形划分和自适应网格等。
2. 定义有限元模型在定义有限元模型时,需要确定问题的几何形状、边界条件和材料性质。
几何形状可以通过几何构造方法来描述,边界条件包括固支、力和热边界条件等。
材料性质可以通过弹性模量、热传导系数和热膨胀系数等参数来描述。
3. 选择合适的有限元类型根据具体的问题,选择合适的有限元类型。
常见的有限元类型包括一维线性元、二维三角形单元和二维四边形单元等。
使用不同的有限元类型可以更好地逼近实际问题的解。
4. 构造有限元方程有限元分析的核心是构造线性方程组。
根据平衡方程和边界条件,将整个问题离散化为有限个子问题,每个子问题对应于一个单元。
然后,根据单元间的连续性,将所有子问题组合成一个总的方程组。
5. 解算有限元方程通过求解线性方程组,可以得到问题的解。
求解线性方程组可以使用直接方法或迭代方法。
常见的直接方法包括高斯消元法和LU分解法,迭代方法包括雅可比迭代法和共轭梯度法等。
6. 后处理结果在求解得到问题的解后,可以进行后处理结果。
后处理包括计算力、应变和位移等物理量,以及绘制图表和动画。
有限元分析是一种强大的数值方法,广泛应用于结构力学、流体力学、热传导和电磁场等领域。
它在解决复杂问题和优化结构设计方面发挥着重要作用。
通过学习有限元分析,您可以更好地理解结构的行为,并提高工程设计的准确性和效率。
ug有限元分析

UG有限元分析什么是有限元分析有限元分析(FEA)是一种计算机辅助工程(CAE)方法,用于解决复杂工程问题。
它通过将结构或物体离散化为有限数量的子区域(有限元),并在每个子区域内确定适当的物理模型,从而近似求解连续结构中的应力、位移和其他物理特性。
有限元分析广泛应用于工程设计、结构分析、强度校核等领域。
UG(Unigraphics)是一款由西门子公司开发的集成化CAD/CAM/CAE软件。
它具有强大的建模和模拟功能,提供了一套完整的有限元分析工具,用于分析产品设计在各种载荷下的行为和性能。
UG有限元分析模块以其高度精确的计算结果和先进的求解算法而受到广泛的认可和应用。
UG有限元分析的优势1. 稳定性和准确性UG有限元分析采用了现代化的数值计算方法和稳定的数学模型,确保结果的准确性和可靠性。
它能够捕捉复杂结构的精细细节,并提供准确的应力和位移预测,帮助工程师做出准确的决策和优化设计。
2. 模拟功能的丰富性UG提供了丰富的分析类型和功能选项,使工程师能够模拟各种不同条件下的结构行为。
它支持静态分析、动态分析、热分析、疲劳分析等多种分析类型,以及多种材料模型和加载条件的设置,可满足不同工程需求的模拟分析。
3. 建模和后处理的高效性UG具有强大的建模工具和用户友好的界面,使建模过程变得高效和便捷。
用户可以通过简单的操作创建复杂的几何模型,并将其转化为有限元模型。
后处理工具提供了丰富的结果显示和分析功能,可对分析结果进行可视化处理,便于工程师对结果的理解和评估。
4. 与其他模块的集成性作为一款集成化的软件,UG有限元分析模块与UG其他模块(如CAD和CAM)的紧密集成,提供了全面的产品设计和工程分析解决方案。
它可以自动获取CAD模型的几何和材料信息,并将分析结果应用于后续的产品开发和制造过程中。
UG有限元分析的应用UG有限元分析在各个行业和领域都有广泛的应用,以下是一些典型的应用场景:1. 结构分析UG可以帮助工程师进行结构强度和刚度分析,对结构的载荷和约束条件进行预测和评估。
UG有限元分析教程

UG有限元分析教程有限元分析(Finite Element Analysis,FEA)是一种计算方法,用于求解连续介质力学问题。
UG作为一款常用的三维CAD软件,也提供了相应的有限元分析功能,下面将介绍UG有限元分析的基本流程和步骤。
首先,建立几何模型是有限元分析的第一步。
在UG中,可以通过绘制线与曲线、创建体与表面等操作,构建出所需的几何形状。
在建模过程中,需要注意几何模型的准确性和合理性,以保证模拟结果的可靠性。
然后,进行网格划分。
有限元分析将几何模型离散化为多个小单元,每个小单元称为网格,通过将整个模型划分为有限个网格单元,可以更容易地对模型进行数值计算。
在UG中,可以选择不同的网格划分算法和参数设置,以求得较为合适的网格划分结果。
接下来,定义边界条件和加载条件。
在有限元分析中,需要对模型的边界进行约束和加载,以模拟真实的工程环境。
在UG中,可以通过选择特定面或边进行边界条件设置,例如固定边界条件、约束边界条件等。
同时,还可以对特定面或边进行加载条件设置,如施加力、施加压力等。
完成边界条件和加载条件的定义后,即可进行求解。
在UG中,可以通过调用有限元分析求解器进行计算。
求解过程中,UG会对模型进行离散化计算,并得到相应的应力、应变等结果。
求解的时间长短与模型的复杂性、计算机性能等因素有关。
最后,进行后处理。
在有限元分析中,后处理是对求解结果的分析和可视化。
UG提供了丰富的后处理工具,可以对应力、应变等结果进行图形显示和数据分析,并以形式化报告的形式输出结果。
总结而言,UG有限元分析是一项强大的工程分析工具,可以帮助工程师解决各种复杂的力学问题。
通过建立几何模型、网格划分、定义边界条件和加载条件、求解和后处理,可以得到模型的应力、应变等结果,以指导后续的工程设计和优化工作。
UG有限元分析步骤精选整理.doc

UG有限元分析步骤精选整理.doc
1. 准备模型:首先,在UG中绘制需要分析的零件或装配体的3D模型。
确保模型的几何尺寸和材料等参数设置正确。
2. 网格划分:将模型分割成许多小单元,称为网格单元。
这些单元的大小和形状应
该足够小和简单,以便于计算程序的处理。
3. 材料属性定义:为每个网格单元定义材料性质。
这些属性包括弹性模量、泊松比、密度等。
4. 约束条件设置:定义所有约束条件,如边界约束、支撑条件等。
这些条件对应于
被分析部件的实际使用场景。
5. 载荷应用:将载荷应用于模型。
这些载荷可以是静态或动态载荷、温度载荷等,
也可以模拟外部力或压力。
6. 求解模型:选定求解器,使用许多数学方法解决数学方程,以有效地计算应力、
应变和变形等设计参数。
7. 结果分析:对有限元分析的各个方面进行评估和评估,检查计算的准确性和可靠性。
这些结果可以用于优化设计,以改进零件或装配体的性能。
8. 优化设计:如果有必要,使用有限元分析的结果来重新设计零件或装配体,并在
再次进行分析前进行修改。
总之,UG有限元分析是一种重要的工具,用于设计和生产过程中的性能优化和验证。
这个步骤需要正确的建模和分析,以确保计算是精确和可靠的。
UG NX 12中文版:动力学与有限元分析自学手册

13.1材料属性 13.2添加载荷 13.3边界条件的加载 13.4划分网格 13.5环境下拉菜单 13.6练习题
14.1分析模型的编辑 14.2单元操作 14.3有限元模型的检查 14.4节点/单元信息 14.5仿真信息总结 14.6练习题
15.1分析 15.2后处理控制 15.3实例——柱塞有限元分析 15.4练习题
10.1运动函数 10.2 AFU格式表 10.3实例——料斗运动 10.4练习题
11.1起重机模型优化 11.2注射模 11.3落地扇 11.4练习题
第13章建立有限元 模型
第12章有限元分析 准备
第14章有限元模型 的编辑
第15章分析 和查看结果
第16章球摆 分析综合实 例
12.1分析模块的介绍 12.2有限元模型和仿真模型的建立 12.3求解器和分析类型 12.4模型准备 12.5练习题
UG NX 12中文版:动力学与有限 元分析自学手册
读书笔记模板
01 思维导图
03 目录分析 05 读书笔记
目录
02 内容摘要 04 作者介绍 06 精彩摘录
思维导图
关键字分析思维导图
分析
动力学
ห้องสมุดไป่ตู้分析
有限元
创建
综合
机构
动力学
分析
实例 实例
仿真
有限元
模型
单元
运动
载荷
有限元
检查
内容摘要
全书共分为两篇:第1篇为动力学分析篇,主要介绍UG NX 12动力学分析的一些基础知识和操作实例,包括 运动仿真基础,连杆、质量及材料,运动副,传动副,约束,力的创建,连接器,仿真结果输出,机构检查,XY 函数编辑器,动力学分析综合实例等知识;第2篇为有限元分析篇,主要介绍UG NX 12有限元分析的一些基础知 识和操作实例,包括有限元分析准备、建立有限元模型、有限元模型的编辑、分析和查看结果、球摆分析综合实 例等知识。
UG有限元分析教程

UG有限元分析教程有限元分析(Finite Element Analysis,简称FEA)是一种工程设计和数值计算的方法,通过将复杂结构分割为许多简单的有限元单元,然后通过建立有限元模型,进行数值计算,最终得到结构的力学响应。
本文将向大家介绍UG有限元分析教程。
UG是一种集成的CAD/CAM/CAE软件,具有功能强大且广泛应用的特点。
UG有限元分析是UG软件中的一个功能模块,它可用于进行各种结构的有限元分析,例如静态分析、动态分析、热传导分析等。
2.有限元网格划分:将结构几何模型划分为许多有限元单元,每个单元由节点和单元单元构成。
UG提供了自动网格划分工具,用户可以选择合适的网格密度和单元类型。
3.材料属性定义:为结构的各个部分定义材料属性,包括杨氏模量、泊松比、密度等。
用户可以根据实际情况选择合适的材料模型。
4.边界条件和加载:为结构的边界和加载部分定义边界条件和加载,包括支撑约束、力、压力等。
用户可以根据实际情况选择合适的加载方式。
5.求解:通过对有限元模型进行离散化和求解,得到结构的力学响应。
UG提供了高效的求解器和迭代算法,可以快速求解大规模的有限元模型。
6.结果后处理:对求解结果进行后处理,包括位移、应力、应变等的分析和可视化。
UG提供了丰富的后处理工具,用户可以生成各种工程报表和图形。
UG有限元分析教程提供了详细的步骤和示例,帮助用户快速学习和掌握UG有限元分析的基本方法和技巧。
课程内容包括UG软件的基本操作、几何建模、有限元网格划分、材料属性定义、边界条件和加载的设定、求解器和后处理工具的使用等。
学习UG有限元分析需要一定的工程基础和计算机技巧,但是通过系统的学习和实践,任何人都可以掌握这一方法,并在工程设计和研究中应用它。
总之,UG有限元分析教程提供了全面的学习资料和实例,帮助用户了解和掌握UG有限元分析的基本理论和应用方法,为工程设计和研究提供了有力的工具和支持。
UG有限元分析

第1章 有限元分析方法及NX Nastran 的由来专业文档供参考,如有帮助请下载。
0 UG 有限元分析第1章 有限元分析方法及NX Nastran 的由来1.1 有限元分析方法介绍计算机软硬件技术的迅猛发展,给工程分析、科学研究以至人类社会带来急剧的革命性变化,数值模拟即为这一技术革命在工程分析、设计和科学研究中的具体表现。
数值模拟技术通过汲取当今计算数学、力学、计算机图形学和计算机硬件发展的最新成果,根据不同行业的需求,不断扩充、更新和完善。
1.1.1 有限单元法的形成近三十年来,计算机计算能力的飞速提高和数值计算技术的长足进步,诞生了商业化的有限元数值分析软件,并发展成为一门专门的学科——计算机辅助工程CAE (Computer Aided Engineering )。
这些商品化的CAE 软件具有越来越人性化的操作界面和易用性,使得这一工具的使用者由学校或研究所的专业人员逐步扩展到企业的产品设计人员或分析人员,CAE 在各个工业领域的应用也得到不断普及并逐步向纵深发展,CAE 工程仿真在工业设计中的作用变得日益重要。
许多行业中已经将CAE 分析方法和计算要求设置在产品研发流程中,作为产品上市前必不可少的环节。
CAE 仿真在产品开发、研制与设计及科学研究中已显示出明显的优越性:❑ CAE 仿真可有效缩短新产品的开发研究周期。
❑ 虚拟样机的引入减少了实物样机的试验次数。
❑ 大幅度地降低产品研发成本。
❑ 在精确的分析结果指导下制造出高质量的产品。
❑ 能够快速对设计变更作出反应。
❑ 能充分和CAD 模型相结合并对不同类型的问题进行分析。
❑ 能够精确预测出产品的性能。
❑ 增加产品和工程的可靠性。
❑ 采用优化设计,降低材料的消耗或成本。
❑ 在产品制造或工程施工前预先发现潜在的问题。
❑ 模拟各种试验方案,减少试验时间和经费。
第1章 有限元分析方法及NX Nastran 的由来专业文档供参考,如有帮助请下载。
UG有限元分析-大致步骤

UG有限元分析-大致步骤一、打开一实体零件:
二、点击开始,选择“设计仿真”
三、点设计仿真后会自动跳出“新建FEM和仿真”窗口,点击“确定”
四、确定新建FEM和仿真后,会自动跳出“新建解决方案”窗口,点击“确定”
五、指派材料,点击零件,选择所需要指派的材料,点击“确定”,本例为steel
六、生成网格,以3D四面网格为例:选择网格-输入网格参数,单元大小
七、固定约束,选择所需要约束的面,本例的两个孔为固定约束
八、作用载荷,选择作用力的面,输入压力的大小,本例按单位面积的承压
九、求解,选择求解命令,点击确定
十、求解运算,系统会自动运算,显示作业已完成时,可以关闭监视器窗口
十一、导入求解结果,选择文件所在的路径,结果文件为 .op2, 点击确定十二、查看有限元分析结果:
十三、编辑注释,可以显示相关参数:
十四、动画播放,点击动画播放按键,可以设置动态播放速度的快慢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本章内容简介 本实例以压缩机曲轴单个零部件的结构模态为分析对象,在介绍有限元法模 态分析的基础上,构建该结构有限元模型和仿真模型,分别求解该结构的自由模
态与约束模态,得到相应条件下的模态参数,包括各阶固有频率与振型,为进一
步进行结构动力学分析提供必要的基础参数。
(1)施加约束条件
1)在窗口工具栏中选择【约束类型】图标的小三角或在解算方案的【约束】右键选择 【新建约束】,单击弹出的【用户定义约束】命令,弹出【用户定义约束】对话框。
设置相关参数
2)设置模态参数
单击【Solution 2】节点下的【Subcase - Eigenvalue Method 1】,右键选择 【编辑】命令,如图所示,在【所需模态数】中输入【4】,定义提取前4阶的振型和 模态参数,如图所示。单击工具栏中的【保存】按钮,将上述操作成功的数据及时保 存起来。
第8阶模态振型(固有频 率=58.71Hz)
2017/8/12
4)模式9下云图查看
展开【模式9】下【位移-节点的】节点,双击出现的【幅值】节点,在图 形窗口中出现该弯管的位移云图,如图所示,可以清楚的观看到曲轴在此 频率发生共振的位移变形情况。
第9阶模态振型(固有频 率=137.2Hz)
2017/8/12
工况条件
曲轴使用材料为40CrMoMn,曲轴的支撑约束情况如图所示,使用局部圆柱坐标系,约 束除沿轴线转动自由度外的其余五个自由度,计算曲轴结构自由模态与约束模态的前3 阶固有频率和相应的振型。
8.3 问题分析
(1)曲轴结构的几何模型上的一些小尺寸的圆孔、倒角等,可以在理想化几何模 型中进行处理,并不影响模态参数的计算。 (2)可以按照先计算曲轴的自由模态,然后在此基础之上施加约束,计算约束模 态的求解思路和计算自由模态的求解思路一致。UG NX高级仿真计算结构模态的操 作顺序和操作步骤和静力学分析过程相似,在几何体模型基础上,可以进行理想
有限元模型的环优化(理想化)模型
在【仿真导航器】窗口分级树中,单击【fem1_Crank Shaft_i.part】节点,右键 弹出快捷菜单【设为显示部件】并单击之(也可以直接双击该节点),即可进入
优化模型的环境。
右键单击【fem1_Crank Shaft_i.part】节点,选择【提升】命令,在窗口图形中 选择整个曲轴模型作为要提升的选择体,单击【确定】。
8.4.1 曲轴结构自由模态的计算
打开随书光盘part源文件所在的文件夹路径: Book_CD\Part\Part_CAE_Unfinish\Ch08_Crank Shaft,选中文件Crank Shaft.prt,调出曲轴三维实体模型。
(1)创建有限元模型
依次左键单击【开始】和【高级仿 真】,在【仿真导航器】窗口分级 树中单击【Crank Shaft.prt】节 点,新建FEM,并进行相关操作; 单击【确定】按钮即可进入了创建
1)理想化几何体
在工具栏上单击【理想化几何体】命令,弹出【理想化几何体】对话框;
油孔1
设置相 关参数
油孔2
删除曲轴上两 个贯通的油孔
2)移除几何特征
删除模型上的油孔后会发现,在油孔删除部位处还残留有前面的断线,选择【移
除几何特征】命令,
选取相应 的对象
移除几何特征 操作后示意图
(3)创建有限元模型
5)查看动画迭代图像
在上述步骤中查看模态振型时,单击工具栏中的【播放】按钮,出现曲轴某阶模态下 的振型变形演示过程,这就是分析某阶模态的振型演变过程。 单击工具栏上的【动画】图标,弹出【动画】对话框,在【动画】选项中切换为【迭 代】,单击【播放】按钮,即可清楚地观察到第1阶到第10阶模态振型的动态转换过 程,单击【停止】按钮,退出动画演示。
单击确定
4)仿真导航器新增节点
单击【创建解算方案】对话框的【确定】 按钮,注意到【仿真导航器】窗口分级树 中新出现了相关的数据节点,如图所示。 单击工具栏中的【保存】按钮,将上述操 作成功的仿真模型和数据及时保存起来。
仿真导航器 新增节点
(5)求解自由模态
在【仿真导航器】窗口分级树中单击【Crank Shaft_sim1.sim】节点,单击求解, 待求解完成关闭相应的窗口,如图所示。双击【结果】命令窗口,出现模态后处理结 果。 后处理导航 器新增节点
单击确定
2)创建解算方案
弹出【创建解算方案】对话框,如 图所示,在【名称】中修改为 【Solution 1】,【解算方案类型】 选取为【SOL 103 Real Eigenvalues】。 设置相关 参数
单击确定
3)设置工况控制参数
单击【创建解算方案】对话框下面【工 况控制】选项卡,出现相应的选项及其 参数对话框,默认【特征值方法】选项 为【Lanczos法】,单击【Lanczos法】 右侧的【创建模型对象】图标,弹出如 图所示的【实数特征值】对话框; 设置参数
2017/8/12
2)模式7下云图查看
展开【模式7】下【位移-节点的】节点,双击出现的【幅值】节点,在图形窗口中 出现该弯管的位移云图,如图所示,可以清楚的观看到曲轴在此频率发生共振的位 移变形情况。
第7阶模态振型(固有频 率=56.51Hz)
2017/8/12
3)模式8下云图查看
展开【模式8】下【位移-节点的】节点,双击出现的【幅值】节点,在图形窗口中 出现该弯管的位移云图,如图所示,可以清楚的观看到曲轴在此频率发生共振的位 移变形情况。
解算监视器对话 框图
(6)后处理及其动画演示
1)在【后处理导航器】窗口中,可以发现在【Crank Shaft_sim1.sim】的 【Solution 1】前6阶模态非常接近零,是因为此次计算的是曲轴的自由模态,放开了 6个自由度,因此在6个自由度方向中出现了刚体位移,读者可以点击进行查看相对某 一自由度的刚体位移形式。从后处理导航器可以看出:曲轴模型的第1阶固有频率为 56.51Hz,第2阶固有频率为58.71Hz,第3阶固有频率为137.2Hz。
2017/8/12
5)退出后处理视图
读者也单击工具栏中的【四视图】按钮,可以展示弯管前3阶模态的振型情况,在此不 赘述,最后退出后处理仿真界面,具体操作请参考随书光盘中的录像文件。 本实例中其他计算结果和显示模式请参考随书光盘Book_CD\ Part_CAE_Finish\Part\Ch08_Crank Shaft\文件夹中相关文件,操作过程的演示请 参考影像文件Book_CD\AVI\Ch08_Crank Shaft_AVI。
后处理导航器新 增节点
1)模式1下云图查看
展开【模式1】下【位移-节点的】节点,双击出现的【幅值】节点,在图形窗口中出 现该曲轴的振型位移云图,如图所示,可以清楚的观看到整个曲轴的振型位移的变形 情况;
第1阶模态振型(固有 频率=307.01Hz)
2)模式2下云图查看
展开【模式2】下【位移-节点的】节点,双击出现的【幅值】节点,在图形窗口中出 现该曲轴的振型位移云图,如图所示,可以清楚的观看到整个曲轴的振型位移的变形 情况
1)定义材料属性
单击工具栏中的【指派材料】图标,弹出【指派材料】对话框; 设置相关参数
单击该命令
2)创建物理属性
单击工具栏中的【物理属性】图标,弹出【物理属性表管理器】对话框
选择材料
单击【创建】
单击【确定】
3)网格属性定义
单击工具栏中的【网格收集器(俗称为:网格属性定义)】图标,弹出【网格捕集器】 对话框
化模型操作,然后建立有限元模型(包括赋予材料属性、定义单元属性、划分网
格等),在仿真模型环境中,如果不定义边界约束条件,那可以求解该结构的自 由模态(6个DOF均为自由);如果定义了边界约束条件,那可以求解该结构的约 束工况模态,但是有一点相同的,那就是不必进行定义作用载荷操作。
8.4 操作步骤
8.4.1 曲轴结构自由模态的计算 创建有限元模型 优化(理想化)模型 创建有限元模型 创建仿真模型 求解自由模态 后处理及其动画演示 8.4.3 曲轴结构模态计算精度的对比 8.4.2 曲轴结构约束模态的计算 施加约束条件 求解约束模态 后处理及其动画演示
2017/8/12
8.4.3 曲轴结构模态计算精度的对比
将曲轴模型在不同的软件(工程中常用有限元分析软件有NX Nastran、Ansys和 Abaqus)中建立有限元模型,使用相同的材料及施加相同的约束条件,并进行分析计 算,得出的前3阶模态数据比较结果如表所示。
单击【确定】
4)划分网格
单击工具栏中的【3D网格】命令,弹出【3D网格】对话框;
设置相 关参数
5)检查单元质量
单击工具栏中的【单元质量】图标,弹 出【单元质量】对话框,如图所示。
设置相 关参数
单击该命令
(4)创建仿真模型
1)单击【仿真导航器】窗口分级树的 【Crank Shaft_fem1.fem】节点,右键弹 出快捷菜单,单击【新建仿真】,弹出 【新建部件文件】对话框,在【名称】中 修改为【Crank Shaft_sim1.sim】, 选择 本实例高级仿真相关数据存放的【文件 夹】,单击【确定】按钮,弹出【新建仿 真】对话框,如图所示,默认所有的选项, 单击【确定】按钮;
在【仿真导航器】窗口分级树中,双击【结果】节点,进入了【后处理导航器】窗口, 可以发现在【Crank Shaft_sim1.sim】节点出现了【模式1,3.070e+002Hz】、 【模式2,3.070 e+002Hz】、【模式3,5.123e+002Hz】及【模式4, 5.201e+002Hz】等四个子节点,这就是在上述约束条件下曲轴前4阶模态及其对应 的固有频率值;