On Kolmogorov Topological Spaces 1
熵用于麻醉深度监测的研究进展

熵用于麻醉深度监测的研究进展安徽医科大学附属省立医院麻醉科(230001) 章蔚1 方才1 [摘要]自非线性动力学方法被应用于脑电图非平稳信号的处理以来,将熵的概念引入了麻醉深度监测领域。
与麻醉深度监测有关的熵包括Shannon熵、Kolmogorov 熵、单值分解熵、近似熵、交叉近似熵、状态熵和反应熵等,尤其是近年来倍受关注的状态熵和反应熵,用于麻醉深度监测具有简单、快速、准确等优点,临床应用前景广阔。
熵(Entropy)是由德国物理学家Rudolf-Clausius于1868年首次提出的,最初是物理学的概念。
上世纪40年代末,由于信息理论的需要出现了Shannon熵,50年代末以解决便历理论经典问题而崭露头角的Kolmogorov 熵,以及60年代中期,为研究拓朴动力系统而产生的拓朴熵(topological entropy),都相继诞生;1984年Johnson 和Shore等人进一步将熵引用于信号的功率谱[1]。
简言之,熵是关于不确定性的数学度量。
熵引入麻醉深度监测中是基于1937年Gibbs等首次提出用脑电图(EEG)监测麻醉深度,并将应用EEG信号来监测麻醉深度成为研究的热点。
众所周知,麻醉前后EEG波形会有明显变化,但因EEG个体差异及变化较大,而且不同麻醉药物、不同导联、温度及环境的变化都对EEG信号有较大影响,所以EEG信号一直无法直接应用于临床麻醉。
随着快速傅立叶变换(FFT)技术的成熟,产生了反映EEG频域特征的参数中间频率(MF)、频谱边缘频率(SEF)、脑电双频指数(BIS),前两者有各自的缺陷,未能广泛进入临床,最为成功的方法是BIS,虽然它能较灵敏地反映麻醉深度,但由于它存在对不同药物、不同麻醉方法反应不同的缺点,不能独立应用于临床麻醉监测。
近年来非线性动力学方法被广泛地应用于非平稳信号的处理,多种熵的分析也是如此,而脑电活动正是一种非平稳信号,所以该方法非常适合于EEG的处理[2]。
熵 - 李天岩

熵(Entropy)李天岩原载于数学传播十三卷三期.作者当时任教于美国密执安州立大学数学系1. Shannon 熵2. Kolmogorov 熵3. 拓朴熵(Topological Entropy)4. Boltzmann 熵在我们日常生活中,似乎经常存在看「不确定性」的问题。
比方说,天气预报员常说「明天下雨的可能性是 70%。
这是我们习以为常的「不确定性」问题的一个例子。
一般不确定性问题所包含「不确定」(uncertainty) 的程度可以用数学来定量地描述吗?在多数的情况下是可以的。
本世纪40年代末,由于信息理论(information theory) 的需要而首次出现的 Shannon 熵,50年代末以解决遍历理论 (ergodic theory) 经典问题而崭露头角的 Kolmogorov 熵,以及60年代中期,为研究拓朴动力系统 (topological dynamical system) 而产生的拓朴熵 (topological entropy) 等概念,都是关于不确定性的数学度量。
它们在现代动力系统和遍历理论中,扮演看十分重要的角色。
在自然科学和社会科学中的应用也日趋广泛。
本文的主旨在于引导尽量多的读者在这一引人入胜的领域中寻幽访胜,而不必在艰深的数学语言中踯躅不前。
物理、化学家们也许对他们早已熟悉的热力学熵更觉亲切。
我们在最后一节也将给古典的 Boltzmann 熵作一番数学的描述。
1. Shannon 熵设想我们有两枚五分硬币,一枚硬币表面光滑,材料均匀,而另一枚硬币则表面粗糙,奇形怪状。
我们把硬币上有人头的那面叫正面,另一面称反面。
然后在一个光滑的桌面上旋转硬币,等它停下来后,看是正面或是反面。
这是一个不确定性的问题:可能是正面,可能是反面。
第一枚硬币,由于正面和反面的对称性,正面或反面朝上的机率各为一半。
但对第二枚硬币来说,由于材料磨损,正面和反面不再对称。
可能正面朝上的机率为70%,反面朝上的机率为30%。
拉盖尔-高斯涡旋光束传播中的相位变化分析

拉盖尔-高斯涡旋光束传播中的相位变化分析魏勇;朱艳英【摘要】为了研究拉盖尔-高斯涡旋光束在传播过程中的相位特性,采用螺旋相位板法获取涡旋光束,从菲涅耳衍射积分出发,对光束在传输过程中的相位变化以及整数阶与分数阶涡旋光束相位奇点的稳定性进行了理论推导和数值模拟。
当光束传输一段距离后,光场在观察平面上的等相位线由发散的射线变成了花瓣状的弧线。
结果表明,拓扑荷为整数阶的涡旋光束在传输过程中,相位奇点具有稳定性,而分数阶光束的相位奇点不再保持稳定性,其观察平面的光强分布不对称,且涡旋光束中心为暗核的特点消失。
该结论对光学微操纵和光信息编码技术的实现具有理论指导意义。
%In order to study the phase characteristics of Laguerre-Gaussian vortex beam during propagation , the vortex beam was obtained by means of spiral phase plates .Based on Fresnel diffraction integral formula , the phase change of the beam in the propagation process and the stability of vortex beam phase singularities at integer order and fractional order were studied by theoretical derivation and numerical simulation .When the beam was transmitted a certain distance , phase contours of the light field on the observation plane became from diverging rays into petal-shaped arcs .The results show that if topological charge of the vortex beam is integer order , the phase singularity of the beam assumes stability in the propagation process .The phase singularity of fractional order is unstable , intensity distribution on the observation plane is obvious asymmetric and the central darkness gradually disappears .The research results supplytheoretical foundation and practical guidance for the application of optical micro manipulation and information coding techniques .【期刊名称】《激光技术》【年(卷),期】2015(000)005【总页数】4页(P723-726)【关键词】物理光学;涡旋光束;相位分布;拓扑荷【作者】魏勇;朱艳英【作者单位】燕山大学理学院,秦皇岛066004; 燕山大学里仁学院,秦皇岛066004;燕山大学理学院,秦皇岛066004【正文语种】中文【中图分类】O436;TN241引言涡旋光束又称作暗中空光束或空心光束,即在传播方向上其中心的光强保持为0[1]。
A review of the species of protozoan epibionts on crustaceans-11

A REVIEW OF THE SPECIES OF PROTOZOAN EPIBIONTS ONCRUSTACEANS.I.PERITRICH CILIATESBYGREGORIO FERNANDEZ-LEBORANS and MARIA LUISA TATO-PORTODepartamento de Biologia Animal I(Zoologia),Facultad de Biologia,Pnta9a,Universidad Complutense,E-28040Madrid,SpainABSTRACTAn updated inventory of the peritrich(Protozoa,Ciliophora)epibiont species on crustaceans has been carried out.Data concerning268epibiont species,their taxonomic position,and the various crustacean basibionts were considered.The overview comprised in this study may be of use in further surveys of protozoan-crustacean epibiosis.RESUMENSe ha realizado un inventario actualizado de las especies de peritricos(Protozoa,Ciliophora) epibiontes en crustáceos.Se han considerado los datos concernientes a268especies epibiontes,su posición taxonómica,y los diferentes crustáceos visión general que comprende este estudio puede ser utilizada en futuras investigaciones sobre la epibiosis protozoos-crustáceos.INTRODUCTIONEpibiosis is a facultative association of two organisms:the epibiont and the basibiont(Wahl,1989).The term“epibiont”includes organisms that,during the sessile phase of their life cycle,are attached to the surface of a living substratum, while the basibiont lodges and constitutes a support for the epibiont(Threlkeld et al.,1993).Both concepts describe ecological functions(Wahl,1989).Several crustacean groups,cladocerans,copepods,cirripedes,isopods,amphi-pods,and decapods,include forms that are hosts for macroepibiont invertebrates (Ross,1983),and for protozoan microepibionts of the phylum Ciliophora:apos-tomatids,chonotrichids,suctorians,peritrichs,and heterotrichs(Corliss,1979; Small&Lynn,1985).The study of ciliate epibionts on crustaceans began in the last century.Bütschli(1887-89)made a compilation from former publications.After-wards,other authors(Keiser,1921;Kahl,1934,1935;Precht,1935;Raabe,1947; c®Koninklijke Brill NV,Leiden,2000Crustaceana73(6):643-683644G.FERNANDEZ-LEBORANS&M.L.TATO-PORTONenninger,1948)not only described epibiont species,but proposed explanations for the processes of epibiosis.A review of the protozoan epibionts found on de-capod crustaceans was carried out by Sprague&Couch(1971).Green(1974), in a study of the epibionts living on cladocerans,pays considerable attention to protozoan species.Ho&Perkins(1985)have focused on the epibionts found on copepods.In other contemporary and also earlier works,the following aspects have been taken into account:(1)speci city between ciliates and their crustacean basi-bionts(Evans et al.,1981;Batisse,1986,1992;Clamp,1991);(2)the morpholog-ical and physiological adaptations of the epibionts(D’Eliscu,1975;Batisse,1986, 1994;Fenchel,1987;Clamp,1991;Lom&De Puytorac,1994);(3)the effects pro-duced by the epibionts on the crustaceans(Herman et al.,1971;Turner et al.,1979; Kankaala&Eloranta,1987;Nagasawa,1988);(4)the possible use of epibionts for the assessment of water quality(Antipa,1977;Henebry&Ridgeway,1979;Scott &Thune,1986);(5)the implications of protozoan epibionts on cultures of vari-ous species of crustaceans(Overstreet,1973;Johnson,1977,1978;Lightner,1977, 1988;Couch,1978;Scott&Thune,1986;V ogelbein&Thune,1988;Camacho& Chinchilla,1989);and(6)the organization of the epibiont communities on plank-tonic crustaceans(Threlkeld et al.,1993).Despite the fact that there is a considerable amount of information about the protozoan epibionts on crustaceans,since the works of Sprague&Couch(1971), Green(1974),and Ho&Perkins(1985),which relate to speci c crustacean groups, no further general reviews have appeared.Several new species of protozoan ciliate epibionts have recently been described(Dovgal,1985;Batisse,1992;Fernandez-Leborans&Gomez del Arco,1996;Zhadan&Mikrjukov,1996;Fernandez-Leborans et al.,1996,1997),and some of these are peritrich ciliates(Matthes& Guhl,1973;Bierhof&Roos,1977;Jankowski,1986;Dale&Blom,1987;Clamp, 1990,1991;Threlkeld&Willey,1993;Hudson&Lester,1994;Stoukal&Matis, 1994;Foissner,1996).The purpose of this work is to provide an up-to-date review of the peritrich ciliates living as epibionts on crustaceans:268species have been considered in this compilation,which may contribute data for studies of epibiosis in crustaceans.CRUSTACEAN PROTOZOAN EPIBIONTS,I.PERITRICH CILIATES645RESULTS1)Phylum CILIOPHORA Do ein,1901Class OLIGOHYMENOPHOREA De Puytorac,Batisse,Bohatier,Corliss, Deroux,Didier,Dragesco,Fryd-Versavel,Grain,Grolière,Hovasse,Iftode,Laval,Roque,Savoie&Tuffrau,1974Subclass P ERITRICHIA Calkins,1933Order S ESSILIDA Kahl,1933Family Epistylididae Kahl,1935Genus Rhabdostyla Kent,1880( g.1)R.bosminae Levander,1907.On the cladoceran Bosmina sp.R.conipes Kahl,1935.On the cladoceran Daphnia sp.Fresh water.On the cladocerans Daphnia magna,D.longispina and Scapholeberis mucronata (cf.Green,1957,1974).R.cyclopis Kahl,1935.On the copepod Cyclops sp.Fresh water.R.cylindrica Stiller,1935.On the cladoceran Leptodora ke Balaton (Hungary).On the cladoceran Leptodora kindtii.Denmark(Green,1974).R.hungarica Stiller,1931.On the cladoceran Leptodora ke Balaton (Hungary).R.globularis Stokes,1890.On the cladoceran Bosmina longirostris and on Diaphanosoma brachyurum.Germany(Nenninger,1948).R.invaginata Stokes,1886.On the ostracod Cypris sp.R.sessilis Penard,1922.On the copepod Cyclops sp.Fresh water.R.pyriformis Perty,1852(cf.Kahl,1935;on Entomostraca).On the clado-ceran Daphnia longispina(cf.Nenninger,1948).On the cladoceran Daph-nia hyalina(cf.Sommer,1950).On Daphnia pulex and Ceriodaphnia reticu-lata(cf.Hamman,1952).On Daphnia magna,D.pulex,D.cucullata,Simo-cephalus vetulus,Ceriodaphnia reticulata,and Leptodora kindtii(cf.Green, 1953).On Daphnia magna(cf.Green,1955).On Daphnia magna andD.longispina(cf.Green,1957).On Daphnia atkinsoni,D.hyalina,D.lon-gispina,D.curvirostris,D.obtusa,Ceriodaphnia laticaudata,and C.pulchel-la(cf.Green,1974).R.vernalis Stokes,1887.On the copepod Eucyclops agilis(cf.Henebry& Ridgeway,1979).1)For authors and dates of species of Crustacea mentioned herein,see separate section,below.646G.FERNANDEZ-LEBORANS&M.L.TATO-PORTOFigs.1-2.1,Rhabdostyla(R.pyriformis,after Green,1957);2,Epistylis(E.gammari,after Precht,1935).Rhabdostyla sp.Bierhof&Roos,1977.Between the spines at the end of the telson on Gammarus tigrinus.Germany.Rhabdostyla sp.Weissman et al.,1993.On the copepod Acartia hudsonica. Genus Epistylis Ehrenberg,1832( g.2)E.anastatica(Linnaeus,1767)(cf.Kent,1881).Syn.:Vorticella anastatica L.,1767.On Entomostraca and freshwater plants.On cyclopoid copepods and Daphnia pulex(cf.Green,1974).E.astaci Nenninger,1948.Fresh water.On the gills of the decapod Astacusastacus(as A. uviatilis)(Germany).On A.leptodactylus(cf.Stiller,1971).On the gills of Austropotamobius torrentium(cf.Matthes&Guhl,1973).E.bimarginata Nenninger,1948.Fresh water.On the appendages of Astacusastacus(as A. uviatilis).Germany.E.branchiophila Perty,1852.Syn.:E.formosa Nenninger,1948.On theparasitic copepod Lernaea cyprinacea,in freshwater environments of South Africa(Van As&Viljoen,1984).E.breviramosa Stiller,1931.On the antennal lament of the cladoceran Daph-nia ke Balaton(Hungary).On the copepod Cyclops sp.,Czechoslovakia (Srámek-Husek,1948).On the cladocerans Bosmina longirostris and Alona af nis(cf.Green,1974).E.cambari Kellicott,1885.On the gills of the decapod Cambarus sp.(NE ofU.S.A.).On the maxillae of the cray sh Astacus leptodactylus(fresh water) (cf.Matthes&Guhl,1973).E.crassicollis Stein,1867.On freshwater Entomostraca and on the pleopodsand gills of cray sh.On the gills of Astacus astacus(as A. uviatilis),andCRUSTACEAN PROTOZOAN EPIBIONTS,I.PERITRICH CILIATES647 the maxillae,maxillipeds,and gills of A.leptodactylus,in Europe(Matthes& Guhl,1973).E.cyprinaceae Van As&Viljoen,1984.On the parasitic copepod Lernaea cyprinacea(fresh water,South Africa).E.daphniae Fauré-Fremiet,1905.On the cladoceran Daphnia sp.On Daphnia magna(cf.Nenninger,1948).On the copepod Boeckella triarticulata(New Zealand)(Xu&Burns,1990).On the cladoceran Moina macrocopa in an urban stream.E.diaptomi Fauré-Fremiet,1905.On the copepod Diaptomus sp.E.digitalis Ehrenberg,1838.On the copepod Cyclops sp.E.epibarnimiana Van As&Viljoen,1984.On the parasitic copepod Lernaea barnimiana(fresh water,South Africa).E.fugitans Kellicott,1887.On the cladoceran Sida crystallina.North America.E.gammari Precht,1935.On the antennae of the gammarid Gammarus sp. (Kiel channel).On the proximal part of the rst antenna and,less commonly, on the second antenna of Gammarus oceanicus and G.salinus.In the Baltic Sea and areas of Norway(Fenchel,1965).On the rst antenna of Gammarus tigrinus(cf.Stiller,1971).E.halophila Stiller,1942.On the cladocerans Daphnia longispina and D.pulex (Lake Cserepeser,Hungary).E.harpacticola Kahl,1933.On harpacticoid copepods in the Kiel channel. E.helenae Green,1957.On the cladocerans Daphnia pulex,D.magna,D.ob-tusa,D.longispina,D.curvirostris,Ceriodaphnia pulchella,C.reticulata, ticaudata,Moina macrocopa,M.micrura,Chydorus sphaericus,Simo-cephalus serrulatus,and S.vetulus(cf.Green,1957,1974).On Daphnia magna(cf.Nenninger,1948).On Ceriodaphnia reticulata and Simocephalus vetulus(cf.Matthes,1950).E.humilis Kellicott,1887.On the gammarid Gammarus sp.and other Ento-mostraca.custris Imhoff,1884.On the pelagic copepod Cyclops sp.On the buccal appendages of the branchiopod Lepidurus apus(freshwater areas near Vienna, Austria)(Foissner,1996).E.magna V an As&Viljoen,1984.On the parasitic copepod Lernaea cypri-nacea(fresh water,South Africa).E.niagarae Kellicott,1883.On the body surface of cray sh(Niagara River, U.S.A.).On the antennae and body of the European cray sh Astacus lep-todactylus,on Austropotamobius torrentium,and on Orconectes limosus(as Cambarus af nis)(cf.Matthes&Guhl,1973).On the surface of the copepod648G.FERNANDEZ-LEBORANS&M.L.TATO-PORTOEucyclops serrulatus,and on the cladocerans Daphnia pulex,D.rosea,Cerio-daphnia reticulata,and Scapholeberis mucronata(lakes of Colorado,U.S.A.) (Willey&Threlkeld,1993).E.nitocrae Precht,1935.On the third pereiopod of Gammarus tigrinus(cf.Bierhof&Roos,1977).E.nympharum Engelman,1862.On cladocerans(Nenninger,1948).On Cy-clops sp.(cf.Foissner&Schiffman,1974).On the branchiuran Dolops ra-narum(cf.Van As&Viljoen,1984).E.ovalis Biegel,1954.On the gnathopods of Gammarus tigrinus.On the thirdpereiopod of the gammarid Gammarus pulex,and on the spines at the end of the third uropod of Gammarus tigrinus(cf.Bierhof&Roos,1977).E.plicatilis Ehrenberg,1838.On the copepods Eucyclops agilis,Cyclopsvernalis,and C.bicuspidatus(Ashmore Lake,Illinois,U.S.A.)(Henebry& Ridgeway,1979).E.salina Stiller,1941.On the rst and second antennae,coxae,and gills of thegammarid Gammarus pulex(cf.Bierhof&Roos,1977).E.thienemanni Sommer,1951.On the gills of Gammarus tigrinus(cf.Bierhof&Roos,1977).E.zschokkei(Keiser,1921).Syn.:Opercularia zschokkei Keiser,1921.On thegnathopods of the gammarid Gammarus tigrinus and on other Entomostraca.On the cladoceran Acantholeberis curvirostris(cf.Nenninger,1948).Epistylis sp.Hutton,1964.On the decapod Penaeus duorarum(Florida,U.S.A.).Between the setae of the rst antenna of Gammarus tigrinus(cf.Bierhof& Roos,1977).Epistylis sp.Hutton,1964.On the decapod Ploeticus robustus(Daytona Beach, Florida,U.S.A.).Epistylis sp.Viljoen&Van As,1983.Two species on the thoracic appendages of a freshwater brachyuran,apparently erroneously identi ed as“Potamon sp.”(South Africa)[the genus Potamon does not occur in southern Africa].Epistylis sp.Pearse,1932.On the gills of the decapods Coenobita clypeatus, Geograpsus lividus,and Pachygrapsus transversus(Florida,U.S.A.).Epistylis sp.Hudson&Lester,1994.On the gills of the decapod Scylla serrata (Moreton Bay,Queensland,Australia).Epistylis sp.Turner et al.,1979.On the estuarine copepods Acartia tonsa andA.clausi(Escambia Bay,Florida,U.S.A.).Epistylis sp.Villarreal&Hutchings,1986.Fresh water.On the maxillipeds, pereiopods,and ventral portion of the abdomen of the decapod Cherax tenuimanus(Australia).CRUSTACEAN PROTOZOAN EPIBIONTS,I.PERITRICH CILIATES649 Family Lagenophryidae Bütschli,1889Genus Lagenophrys Stein,1852( g.3)L.aegleae Mouchet-Bennati,1932.Fresh water.On the branchial laments of the anomurans Aegla sp.,Aegla castro,and Aegla franca.Arroyo Miguelete, (Uruguay)and Parana River(Brazil).L.ampulla Stein,1851.Fresh water.On the gills of species of the genus Gammarus.L.andos(Jankowski,1986)(cf.Clamp,1991).Syn.:Circolagenophrys andos Jankowski,1986.Fresh water.On the decapod Parastacus chilensis(Chile).L.anticthos Clamp,1988.Fresh water.On the branchial laments of the decapods Parastacus pugnax,P.defossus,and P.saffordi(Chile,Brazil, Uruguay).L.aselli Plate,1886.On the branchial surface of the isopod Asellus aquaticus (Hamburg,Germany).L.awerinzewi Abonyi,1928.On the gills of the decapod Potamon uviatilis(as Telphusa uviatilis)(Africa).L.bipartita Stokes,1890.On the cladoceran Daphnia sp.(fresh water,U.S.A.).L.branchiarum Nie&Ho,1943.Fresh water.On the gills of the caridean shrimp Macrobrachium nipponense(as Palaemon nipponense)(Japan).L.callinectes Couch,1967.Marine and in estuaries.On the gills of the decapods Callinectes sapidus,C.bocourti,and C.maracaiboensis(Chesapeake Bay, Maryland,Virginia,and Gulf of Mexico).mensalis Swarczewsky,1930.Fresh water.On gammarids(Lake Baikal).L.darwini Kane,1965.On the branchial laments of the decapod Cherax quadricarinatus(stream near Darwin,Australia).L.dennisi Clamp,1987.Fresh water.On the decapods Orconectes illinoiensis, Cambarus bartonii bartonii,and C.chasmodactylus(North America).L.deserti Kane,1965.Fresh water.On the gills of the decapods Cherax tenuimanus and C.quinquecarinatus(SW rivers,Australia).L.diogenes(Jankowski,1986).Syns.:Circolagenophrys diogenes Jankowski, 1986,Lagenophrys incompta Clamp,1987.Fresh water.On the gills of the decapods Orconectes illinoiensis and Cambarus diogenes(Illinois,U.S.A.).L.discoidea Kellicott,1887(cf.Clamp,1990).Syns.:Lagenophrys labiata Wallengren,1900(a junior homonym of biata Stokes,1887(cf.Clamp, 1990));L.wallengreni Abonyi,1928;Circolagenophrys entocytheris Jankow-ski,1986.Fresh water.On ostracods.On the cray sh Cambarus sp.,C.chas-modactylus,C.bartonii bartonii,and Orconectes illinoiensis(Ontario,Canada and U.S.A.).650G.FERNANDEZ-LEBORANS&M.L.TATO-PORTOFigs.3-7.3,Lagenophrys(L.eupagurus,after Clamp,1989);4,Clistolagenophrys(C.primitiva, after Swarczewsky,1930);5,Setonophrys(munis,after Clamp,1991);6,Operculigera (O.asymmetrica,after Clamp,1991);7,Usconophrys(U.aperta,after Clamp,1991).L.dungogi Kane,1965.On the branchial laments of the decapod Euastacus sp.(stream near Dungog,Australia).L.engaei Kane,1965.On the branchial laments,basal areas of the gills, branchiostegite membrane and,more rarely,on the pleopods of the decapods Engaeus victoriensis and Austroastacus hemicirratulus(Victoria,Tasmania, and Melbourne,Australia).L.eupagurus Kellicott,1893(cf.Clamp,1989).Syns.:Lagenophrys lunatus Imamura,1940;Lagenophrys articularis Nie&Ho,1943.Marine,in estu-arine areas and fresh water.On the decapods Litopenaeus setiferus(as Pe-CRUSTACEAN PROTOZOAN EPIBIONTS,I.PERITRICH CILIATES651 naeus s.)(Penaeidea,Penaeidae),on the surface of the body,Litopenaeus van-namei(as Penaeus v.),on the surface of the body,Macrobrachium nipponense (Caridea,Palaemonidae)on antennae and pleopods,Macrobrachium ohione, on the surface of the middle of the pleura,Macrobrachium rosenbergii,on the gills,Palaemon paucidens(Caridea,Palaemonidae),Palaemonetes inter-medius(Caridea,Palaemonidae),Palaemonetes kadiakensis,Palaemonetes paludosus,Palaemonetes pugio,Palaemonetes varians,on the whole body, except on the gills,Palaemonetes vulgaris,Upogebia af nis(Thalassinidea, Upogebiidae),and Pagurus longicarpus(Anomura,Paguridae),on the gills (U.S.A.,Japan,Venezuela,Thailand).L.foxi Clamp,1987.Fresh water.On the gills of the gammarids Gammarus pseudolimnaeus,G.troglophilus,G.minus,and Gammarus sp.(Missouri, U.S.A.).L.in ata Swarczewsky,1930.On the distal areas of pleopods of the gammarid Gmelinoides fasciata(Lake Baikal).L.jacobi(Kane,1969).Syn.:Stylohedra jacobi Kane,1969.On freshwater decapods in Australia.L.johnsoni Clamp,1990.Syn.:Lagenophrys labiata Stokes,1887(partim). Fresh water.On the appendages and the surface of the carapace of the gammarids Gammarus fasciatus,G.daiberi,G.tigrinus,and Crangonyx gracilis(New Jersey,Michigan,and North Carolina,U.S.A.).biata Stokes,1887(cf.Clamp,1990).Fresh water.On the appendages and on the surface of the carapace of the gammarids Gammarus fasciatus, G.daiberi,G.tigrinus,and Cangronyx gracilis(New Jersey,Michigan,and North Carolina,U.S.A.).L.leniusculus(Jankowski,1986).Syns.:Circolagenophrys leniusculus Jan-kowski,1986;L.oregonensis Clamp,1987.Fresh water.On the carapace, gills,ventral surface of the abdomen,uropods,pereiopods,and pleopods of the decapod Pacifastacus leniusculus leniusculus,and on the gills of P.leniusculus trowbridgii and P.connectens(North America).L.lenticula(Kellicott,1885)(cf.Clamp,1991).Syns.:Stylohedra lenticula Kellicott,1885;S.lenticulata Kahl,1935;Lagenophrys lenticulata(Kahl, 1935)(cf.Thomsen,1945).Fresh water.Setae of the sixth and seventh pereiopods of the gammarids Hyalella azteca and H.curvispina(U.S.A., Canada,Mexico,and Uruguay).L.limnoria Clamp,1988.Syn.:Circolagenophrys circularis Jankowski,1986 (cf.Clamp,1991).On the isopod Limnoria lignorum.L.macrostoma Swarczewsky,1930.Fresh water.On gammarids(Lake Baikal). L.matthesi Schödel,1983.On the maxillipeds of the gammarids Gammarus pulex and Carinogammarus roeselii.652G.FERNANDEZ-LEBORANS&M.L.TATO-PORTOL.metopauliadis Corliss&Brough,1965.Fresh water.On the gills of the brachyuran Metopaulias depressus(endemic on Jamaica).L.monolistrae Stammer,1935.On the pleopods of the isopod Monolistra sp.L.nassa Stein,1852.Fresh water.On the pleopods of the gammarid Gammarus pulex.L.oblonga Swarczewsky,1930.On the antennae of the gammarid Gammarus hyacinthinus(Lake Baikal).L.orchestiae Abonyi,1928.On the amphipod Orchestia cavimana(Lake Balaton,Hungary).L.ornata Swarczewsky,1930.Fresh water.On ke Baikal.L.ovalis Swarczewsky,1930.Fresh water.On the thoracic appendages of ke Baikal.L.parva Swarczewsky,1930.On ke Baikal.L.patina Stokes,1887(cf.Clamp,1990).Syn.:Lagenophrys labiata Stokes, 1887(cf.Shomay,1955).(Corliss&Brough,1965;Clamp,1973).Fresh water.On the pereiopods and gills of the gammarids Gammarus sp.and Hyalella azteca.American continent.L.rugosa Kane,1965.Fresh water.On the gills of the decapod Geocharax falcata(Victoria,Australia).L.similis Swarczewsky,1930.On ke Baikal.L.simplex Swarczewsky,1930.On ke Baikal.L.solida Swarczewsky,1930.On ke Baikal.L.stammeri Lust,1950.On ostracods.Germany.(Lust,1950a).L.stokesi Swarczewsky,1930.On ke Baikal.L.stygia Clamp,1990.Syn.:Lagenophrys labiata Stokes,1887(cf.Jakschik, 1967).Subterranean water.On the gills of the cave-dwelling amphipod Bactrurus mucronatus(Illinois,U.S.A.).L.tattersalli Willis,1942.On European copepods.L.turneri Kane,1969.On freshwater decapods in Australia.L.vaginicola Stein,1852.Syn.:Lagenophrys obovata Stokes,1887.On the genital setae and thoracopods of the copepods Cyclops miniatus and Cantho-camptus sp.L.verecunda Felgenhauer,1982.On the decapod Palaemonetes kadiakensis (Illinois,U.S.A.).L.willisi Kane,1965.Fresh water.On the gills of the decapods Cherax destructor,C.albidus,and C.rotundus(Melbourne,New South Wales(e.g., Newcastle),and NW Australia).Genus Clistolagenophrys Clamp,1991( g.4)C.primitiva(Swarczewsky,1930)(cf.Clamp,1991).Syn.:Lagenophrys primi-tiva Swarczewsky,1930.On pereiopods and pleopods of the gammarid Pallasea cancellus(Lake Baikal).Genus Setonophrys Jankowski,1986(cf.Clamp,1991)( g.5)S.bispinosa(Kane,1965)(cf.Clamp,1991).Syn.:Lagenophrys bispinosa Kane,1965.On pereiopods of the decapod Cherax rotundus setosus.Stream near Newcastle(N.S.W.,Australia).munis(Kane,1965)(cf.Clamp,1991).Syn.:Lagenophrys communis Kane,1965.On the body surface(telson,pleopods,pereiopods,carapace...) of the decapod Cherax destructor.On the gills of the decapods C.rotundus,C.albidus,C.quadricarinatus,Euastacus armatus,and Engaeus marmoratus(Victoria,Melbourne,and Tasmania,Australia).S.lingulata(Kane,1965)(cf.Clamp,1991).Syn.:Lagenophrys lingulata Kane,1965.On the branchial laments and branchiostegite membrane of the decapods Cherax destructor, C.albidus,and C.rotundus(Victoria, Melbourne,and coastal and central areas of Australia).S.nivalis(Kane,1969)(cf.Clamp,1991).Syn.:Lagenophrys nivalis Kane, 1969.On freshwater decapods in Australia.S.occlusa(Kane,1965)(cf.Clamp,1991).Syn.:Lagenophrys occlusa Kane, 1965.On the anterior zone of the branchial cavity of the decapods Cherax destructor,C.albidus,and C.rotundus(Victoria and New South Wales, Australia).S.seticola(Kane,1965)(cf.Clamp,1991).Syn.:Lagenophrys seticola Kane, 1965.On the setae of the decapods Engaeus fultoni and Geocharax falcata (Victoria,Melbourne,and Templestowe,Australia).S.spinosa(Kane,1965)(cf.Clamp,1991).Syn.:Lagenophrys spinosa Kane, 1965.On the pleopods,carapace,and telson of the decapod Cherax destructor (Victoria,Melbourne,and Heathcote,Australia).S.tricorniculata Clamp,1991.On the pleopods of the decapod Geocharax falcata(Victoria,Grampian Mountains,and Wannon River,Australia). Genus Operculigera Kane,1969( g.6)O.asymmetrica Clamp,1991.On the base of the gills of the freshwater decapods Parastacus pugnax and Samastacus spinifrons(Concepción and Talcahuano,Chile).O.insolita Clamp,1991.On the base of the gills of the freshwater decapod Parastacus pugnax(Concepción,Talcahuano,Malleco,and Puren,Chile).O.montanea Kane,1969.On the freshwater decapod Colubotelson sp.(Aus-tralia).O.obstipa Clamp,1991.Pleopods of the isopod Metaphreatoicus australis (New South Wales,Australia).O.parastacis Jankowski,1986.On the base of the gills of the decapod Parastacus nicoleti(Isla Teja,Valdivia,Chile).O.seticola Clamp,1991.On the setae at the base of gills of the decapod Parastacus pugnax(Concepción,Chile).O.striata Jankowski,1986.On the decapod Parastacus chilensis.Chile.O.taura Clamp,1991.On the branchial laments of the freshwater decapod Parastacus pugnax(Concepción,Malleco,and Puren,Chile).O.velata Jankowski,1986.On the gills of the anomuran Aegla laevis.Chile.O.zeenahensis Kane,1969.On freshwater decapods in Australia.Family Usconophryidae Clamp,1991Genus Usconophrys Jankowski,1985(cf.Clamp,1991)( g.7)U.aperta(Plate,1889)(cf.Clamp,1991).Syns.:Lagenophrys aperta Plate, 1889;Usconophrys dauricus Jankowski,1986.On the gills and pleopods of the isopod Asellus aquaticus(Marburg and Hessen,Germany;North Carolina, U.S.A.;Brittany,Finisterre,Plougarneau,Pont-Menou,and Douron River, France).U.rotunda(Precht,1935)(cf.Clamp,1991).Syn.:Lagenophrys rotunda Precht,1935.On ostracods.Germany.Family Operculariidae Fauré-Fremiet,1979(in Corliss,1979)Genus Opercularia Stein,1854( g.8)O.allensi Stokes,1887.Syn.:O.ramosa Stokes,1887.On several living and inert substrata.On the body of the cray sh Astacus leptodactylus(cf.Matthes &Guhl,1973).O.asellicola Kahl,1935.On the isopod Asellus sp.Germany.O.coarctata Claparède&Lachmann,1858.On crabs(Buck,1961).O.crustaceorum Biegel,1954.On the gills of the cray sh Astacus astacus(asA. uviatilis).On the maxillae,maxillipeds,and pleopods of Austropotamo-bius torrentium(cf.Matthes&Guhl,1973).O.cylindrata Wrzesniowski,1807.On the copepod Cyclops sp.O.gammari Fauré-Fremiet,1905.Pereiopods of the gammarid amphipod Gammarus sp.O.lichtensteini Stein,1868.On various crabs and molluscs.O.nutans Ehrenberg,1838.Syn.:O.microstoma Stein,1854.On Entomostraca.On the cladoceran Alona af nis(cf.Matthes,1950).On the maxillipeds of the European cray sh Astacus leptodactylus(cf.Matthes&Guhl,1973).O.protecta Penard,1922.On the setae of pereiopods of the gammarid amphi-pod Gammarus pulex.O.reichelei Matthes&Guhl,1973.Found exclusively on the maxillipeds of the cray sh Astacus leptodactylus.O.stenostoma Stein,1868.On the isopod Asellus aquaticus.Genus Orbopercularia Lust,1950(cf.Lust,1950b)( g.9)O.astacicola(Matthes,1950)(cf.Matthes&Guhl,1973).Syn.:Opercularia astacicola Matthes,1950.Maxillipeds and pleopods of the cray sh Aus-tropotamobius torrentium.Genus Propyxidium Corliss,1979( g.10)P.aselli Penard,1922.On the isopod Asellus sp.P.asymmetrica Matthes&Guhl,1973.On the European cray sh Astacus astacus(as A. uviatilis).P.bosminae Kahl,1935.On the cladoceran Bosmina sp.P.canthocampti Penard,1922.On the pereiopods of the harpacticoid copepod Canthocamptus sp.Fresh water.P.cothurnioide Kent,1880.On the ostracod Cypris sp.P.hebes Kellicott,1888.On the pereiopods of the isopod Asellus aquaticus.P.henneguyi(Fauré-Fremiet,1905)(cf.Kahl,1935).Syn.:Opercularia hen-neguyi Fauré-Fremiet,1905.On the rst abdominal segment of the copepod Cyclops sp.Genus Ballodora Dogiel&Furssenko,1921( g.11)B.dimorpha Dogiel&Furssenko,1921.On Porcellio sp.and other terrestrialisopods.Genus Nuechterleinella Matthes,1990( g.12)N.corneliae Matthes,1990.On the ostracod Cypria ophthalmica.Genus Bezedniella Stoukal&Matis,1994( g.13)B.prima Stoukal&Matis,1994.Fresh water.On the ostracod Cypria sp.(Slovakia).Figs.8-14.8,Opercularia(O.nutans,after Foissner et al.,1992);9,Orbopercularia(O.astacicola, after Matthes&Guhl,1973);10,Propyxidium(P.canthocampti,after Penard,1922);11,Ballodora (B.dimorpha,after Dogiel&Furssenko,1921);12,Nuechterleinella(N.corneliae,after Matthes, 1990);13,Bezedniella(B.prima,after Stoukal&Matis,1994);14,Rovinjella(R.spheromae,afterMatthes,1972).Family Rovinjellidae Matthes,1972Genus Rovinjella Matthes,1972( g.14)R.spheromae Matthes,1972.On the marine isopod Sphaeroma serratum. Family Scyphidiidae Kahl,1933Genus Scyphidia Dujardin,1841( g.15)Scyphidia sp.Henebry&Ridgeway,1979.On the cladocerans Scapholeberis kingi,Alona costata,and Pleuroxus denticulatus(Ashmore Lake,Illinois, U.S.A.).Family Vaginicolidae De Fromentel,1874Genus Platycola Kent,1881( g.16)P.baikalica(Swarczewsky,1930).Syn.:Vaginicola baicalica Swarczewsky, 1930.Fresh water.On the gills of the gammarids Brandtia lata,Pallasea grubei,and Echinogammarus fuscus(Lake Baikal).P.callistoma Hadzi,1940.Fresh water.On the cave-dwelling isopod Microlis-tra spinosissima(former Yugoslavia).P.circularis Dons,1940.Marine.On the uropods of the isopod Limnoria sp.P.decumbens(Ehrenberg,1830).Syns.:Vaginicola decumbens Ehrenberg, 1830;Platycola ampulla De Fromentel,1874;P.regularis De Fromentel, 1874;P.striata De Fromentel,1874;P.truncata De Fromentel,1874;P.longicollis Kent,1882;P.intermedia Kahl,1935;P.re exa Kahl,1935;P.amphora Swarcezwsky,1930;P.amphoroides Sommer,1951.Fresh water.On several vegetable and animal substrata.On the gills of the gammarid Brachiuropus sp.(Lake Baikal)(Swarczewsky,1930).geniformis Hadzi,1940.Fresh water.On the cave-dwelling isopod Micro-listra spinosissima(former Yugoslavia).P.pala Swarczewsky,1930.Syn.:Vaginicola pala Swarczewsky,1930.On the gills of the gammarid Palicarinus puzyllii(as Parapallesa pazill)(Lake Baikal).Genus Cothurnia Ehrenberg,1831(cf.Claparède&Lachmann,1858)( g.17)C.angusta Kahl,1933.Brackish or fresh water.On ostracods(Kiel,Germany).C.anomala Stiller,1951.Fresh water.On the amphipod Corophium curvispi-num(Lake Balaton,Hungary).C.antarctica(Daday,1911)(cf.Warren&Paynter,1991).Syn.:Cothurniopsisantarctica Daday,1911.Marine.Epibiont on the ostracod Philomedes lae-vipes(Antarctic areas).C.astaci Stein,1854.Fresh water.On the pleopods and gills of cray sh.On the maxillae,maxillipeds,and pleopods of the cray sh Astacus astacus。
The Topological Barrier A Synchronization Abstraction for Regularly-Structured Parallel App

The Topological Barrier:A Synchronization Abstraction for Regularly-Structured Parallel Applications∗Michael L.Scott and Maged M.MichaelDepartment of Computer ScienceUniversity of RochesterRochester,NY14627-0226{scott,michael}@keywords:barriers,synchronization,abstraction,communication topologyJanuary1996AbstractBarriers are a simple,widely-used technique for synchronization in parallel applications.In regularly-structured programs,however,barriers can overly-constrain execution by forc-ing synchronization among processes that do not really share data.The topological barrierpreserves the simplicity of traditional barriers while performing the minimum amount ofsynchronization actually required by the application.Topological barriers can easily beretro-fitted into existing programs.The only new burden on the programmer is the con-struction of a pair of functions to count and enumerate the neighbors of a given process.Wedescribe the topological barrier in pseudo-code and pictures,and illustrate its performanceon a pair of applications.∗This work was supported in part by NSF grants nos.CDA-8822724and CCR-9319445,and by ONR research grant no.N00014-92-J-1801(in conjunction with the DARPA Research in Information Science and Technology—High Performance Computing,Software Science and Technology program,ARPA Order no.8930).1IntroductionMany scientific applications,particularly those involving the simulation of physical systems, display a highly regular structure,in which the elements of a large,multi-dimensional array are updated in an iterative fashion,based on the current values of nearby elements.In the typical shared-memory parallelization of such an application,each process is responsible for updates in a polygonal(usually rectilinear)sub-block of the array.During the course of one iteration,a process updates values in the interior of its block,communicates with its neighbors to update values on the periphery of its block,and then passes through a barrier,which prevents it from beginning the next iteration until all other processes have completed the current iteration.If the new value of each array element indeed depends only on the values of nearby elements, then correctness requires synchronization only among neighbors.A general-purpose,all-process barrier is overkill:it forces mutually distant processes to synchronize with each other even though they share no data.Performance may suffer for several reasons:•In the absence of special-purpose hardware,a barrier requires O(log p)serialized steps to synchronize p processes.If the number of neighbors of any given process is bounded bya constant,then it should be possible to synchronize among neighbors in O(1)serializedsteps.•If work completes more quickly in some regions of the array than it does in other regions, then some earlier-arriving processes may be forced to wait at the barrier when they could be working on the next iteration.•Because processes leave a barrier at roughly the same time,communication in barrier-based applications tends to be quite bursty,as newly-released processes all attempt to fetch remote data at once.The resulting contention for memory and network resources can increase the latency of communication dramatically.Clearly nothing prevents the programmer from implementing the minimum amount of syn-chronization required by the application.Barriers are attractive,however,even if they over-synchronize,because they are so simple.As part of some recent experiments in software-managed cache coherence[3],we re-wrote a banded implementation of successive over-relaxation to use locks on boundary rows,rather than barriers,to synchronize between iterations.Per-formance did improve,but the changes required to the source were non-trivial:a single line of code in the original application(i.e.the call to the barrier)turned into54lines of lock acquisi-tions and releases in the newer version.The extra code is not subtle:just tedious.It could be incorporated easily in programs generated by parallelizing compilers[5].For programs written by human beings,however,it is a major nuisance.What we need for hand-written programs is a programming abstraction that preserves the simplicity of barriers from the programmer’s point of view,while performing the minimum amount of synchronization necessary in a given application.We present such an abstraction in section2.We call it a topological barrier;it exploits the sharing topology of the applica-tion.In section3we illustrate the performance advantage of topological barriers on a pair of applications.In section4we summarize conclusions.2The AlgorithmPseudo-code for the topological barrier appears infigure1.A pictorial representation of the barrier’s data structures appears infigure2.Each process has a private copy of a4-field record1that represents the barrier.Thefirstfield is a serial number that counts the number of barrier episodes that have been completed so far.The only purpose of this counter is to provide a value that is different in each episode,and on which all processes agree.The counter can be as small as two bits;roll-over is harmless.The secondfield of the barrier record for process i indicates the number of neighbors of i;this is the number of elements in the neighbors andflags arrays. In a toroidal topology,every process would have the same number of neighbors;in a mesh the processes on the edges would have fewer.The neighbors array for process i contains pointers toflag words in theflags arrays of i’s neighbors;i’s ownflag words are pointed at by elements of the neighbors arrays of i’s neighbors. To pass a barrier,process i(1)increments its copy of serial num,(2)writes this value into the appropriateflag variables of its neighbors,and(3)waits for its neighbors to write the same value into its ownflags.To minimize communication and contention,flag words should be local to the process that spins on them,either via explicit placement on a non-coherent shared-memory machine,or via automatic migration on a cache-coherent machine.To prevent a process from proceeding past a barrier and over-writing its neighbor’sflag variables before that neighbor has had a chance to notice them,we alternate use of two different sets offlags in consecutive barrier episodes.Gupta[2]has noted that in many applications there is work between iterations that is neither required by neighbors in the next iteration,nor dependent on the work of neighbors in the iteration just completed.Performance in such applications can often be improved by using a fuzzy barrier,which separates the arrival(“I’m here”)and departure(“Are you all here too?”) phases of the barrier into separate subroutines.We can create a fuzzy version of topological barrier trivially,by breaking it between the third and fourth lines.The initialization routine top bar init must be called concurrently by all processes in the program.It takes four arguments.Thefirst two specify the(private)barrier record to be initialized and the total number of processes that will participate in barrier episodes.The last two arguments are formal subroutines that top bar init can use to determine the number and identity of the neighbors of a given process p.These two subroutines must be re-written for every sharing topology.A synchronization library that included topological barriers would presumably provide routines for common topologies(lines,rings,meshes,tori);application programmers can write others as required.Programmers can also declare and initialize more than one barrier record within a single application,to accommodate different sharing topologies in different phases of the computation,or to allow subsets of processes to synchronize among themselves.An example pair of routines,in this case for an N×N square mesh,appears in figure3.Initialization proceeds in two phases.In thefirst phase,each process(1)calls a user-provided routine to determine its number of neighbors,(2)allocates space to hold its neighbors andflags arrays,(3)calls another user-provided routine to temporarilyfill the neighbors array with the process ids of its neighbors,and(4)writes pointers to these arrays,together with the count of neighbors,into a static shared array,where they can be seen by process1.In the second phase of initialization,process1uses the information provided by the various other processes to initialize the pointers in all of the neighbors arrays.To separate the two phases,and to confirm that the second phase hasfinished,we assume the existence of a standard,all-process barrier.To retro-fit an existing application to use topological barriers,the programmer must(1) obtain or write a suitable pair of topology routines(num neighbors and enumerate neighbors), (2)insert a call to top bar init,and(3)replace general barrier calls with calls to topological barrier.These tasks are substantially easier than coding the required synchronization explicitly, in-line.2proc=1..MAX_PROCS--NB:all arrays are indexed1..whatever.parity=0..1top_bar=recordserial_num:small integer--roll-over is harmlessnn:integer--number of neighborsneighbors:pointer to array of pointer to array[parity]of small integerflags:pointer to array of array[parity]of small integer--Two sets of neighbor and flag variables,for alternate barrier episodes.--Variables of type top_bar should be declared private.They should be initialized--by calling top_bar_init in all processes concurrently.Note that top_bar_init--assumes the existence of a general all-process barrier called basic_barrier.private self:proctop_bar_init(var tb:top_bar;num_procs:integernum_neighbors(p:proc):integerenumerate_neighbors(p:proc;var list:array of proc))--The following array is used during initialization only,--to communicate neighbor information among processes:static shared top_bar_info:array[proc]of recordnn:integerneighbors:pointer to array of pointer to array[parity]of small integerflags:pointer to array of array[parity]of small integernext_flag:integertb.serial_num:=0;tb.nn:=num_neighbors(self)new[tb.nn]tb.neighbors--allocate nn x1arraynew[tb.nn][2]tb.flags--allocate nn x2array--Shared.On an NCC-NUMA machine,must be physically local to self.enumerate_neighbors(self,(array of proc)tb.neighbors^)--Temporarily treat neighbors as an array of process ids,--rather than pointers to flag variables.foreach i:integer in1..tb.nntb.flags^[i][0]:=tb.flags^[i][1]:=0top_bar_info[self].nn:=tb.nn;top_bar_info[self].neighbors:=tb.neighborstop_bar_info[self].flags:=tb.flags;top_bar_info[self].next_flag:=1basic_barrier()--synchronize all processes(top_bar_info is initialized)if self=1foreach p:proc in1..num_procsforeach i:integer in1..top_bar_info[p].nnnb:proc:=top_bar_info[p].neighbors^[i]top_bar_info[p].neighbors^[i]:=&top_bar_info[nb].flags^[top_bar_info[nb].next_flag]top_bar_info[nb].next_flag++basic_barrier()--synchronize all processes(top_bar is initialized)topological_barrier(var tb:top_bar)tb.serial_num++--roll-over is harmlessforeach i:integer in1..tb.nntb.neighbors^[i]^[serial_num%2]:=tb.serial_numforeach i:integer in1..tb.nnrepeat/*spin*/until tb.flags^[i][serial_num%2]=serial_numFigure1:Pseudo-code for the topological barrier.This code is the same for all applications, regardless of sharing topology.3shared, local to i shared, local to jprivate to i private to jFigure2:Pictorial representation of the topological barrier data structures.Process j is i’s second neighbor;process i is j’sfirst neighbor.num_neighbors(p:proc)if p in{1,N,N*(N-1)+1,N*N}return2if p<N or p>N*(N-1)or(p-1)%N in{0,N-1}return3return4enumerate_neighbors(p:proc;var list:array of proc)if p=1list[1]:=2;list[2]:=N+1elsif p=Nlist[1]:=N-1;list[2]:=N*2elsif p=N*(N-1)+1list[1]:=N*(N-2)+1;list[2]:=N*(N-1)+2elsif p=N*Nlist[1]:=N*(N-1);list[2]:=N*N-1elsif p<Nlist[1]:=p-1;list[2]:=p+1;list[3]:=p+Nelsif(p-1)%N=0list[1]:=p-N;list[2]:=p+N;list[3]:=p+1elsif(p-1)%N=N-1list[1]:=p-N;list[2]:=p+N;list[3]:=p-1elsif p>N*(N-1)list[1]:=p-1;list[2]:=p+1;list[3]:=p-Nelselist[1]:=p-1;list[2]:=p+1;list[3]:=p-N;list[3]:=p+NFigure3:Example topology functions for a square N×N mesh(N>1).Code of this sort needs to be written for each different sharing topology.4121110987654321121110987654321Figure 4:Speedup graphs for SOR (left)and Mgrid (right)on a 12-processor SGI Challenge.Absolute times on one processor are the same for all three barriers.3Experimental ResultsTo verify the usefulness of the topological barrier abstraction,we retro-fitted a pair of regularly-structured applications—SOR and Mgrid—and measured their performance on a 12-processor SGI Challenge machine.We ran the applications with the topological barrier,the native (SGI library)barrier,and a tree-based barrier known to provide excellent performance and to scale well to large machines [4].Speedup graphs appear in figure 4.Absolute running times on one processor were essentially the same for all three barriers.SOR computes the steady state temperature of a metal sheet using a banded parallelization of red-black successive over-relaxation.We used a small (100×100)grid,to keep the number of rows per processor small and highlight the impact of synchronization.Mgrid is a simplified shared-memory version of the multigrid kernel from the NAS Parallel Benchmarks [1].It per-forms a more elaborate over-relaxation using multi-grid techniques to compute an approximate solution to the Poisson equation on the unit cube.We ran 10iterations,with 100relaxation steps in each iteration,and a grid size of 8×8×120.For SOR on 12processors,absolute running time with the topological barrier was 28%faster than with the native barrier,and 11%faster than with the tree barrier.For Mgrid on 12processors,running time with the topological barrier was 11%faster than with the native barrier,and 7%faster than with the tree barrier.For any given number of processors,the relative impact of barrier performance decreases with larger problem sizes,since each process does more work per iteration.Our small data sets may therefore overestimate the importance of barrier performance on small machines.Speculating about larger machines,we observe that increasing both the problem size and the number of processors,together,should increase the performance differences among barrier implementations,since the time to complete a general barrier is logarithmic in the number of processes,while the time to complete a topological barrier is essentially constant.54ConclusionsWe have introduced topological barriers as a programming abstraction for neighbor-based busy-wait synchronization in regularly-structured,iterative,shared-memory parallel programs,and have illustrated its utility with performance results for a pair of applications on a12-processor SGI machine.The notion of neighbor-based synchronization is not new;our contribution is to make it easy. The only potentially tricky part is to obtain or write a pair of functions to count and enumerate the neighbors of a process.Given these functions,a topological barrier can be retro-fitted into an existing barrier-based application simply by adding a call to an initialization routine,and then calling a different barrier.The latter task can be achieved either by modifying the source or by changing the identity of the barrier library routine.References[1] D.Bailey,J.Barton,sinski,and H.Simon.The NAS Parallel Benchmarks.ReportRNR-91-002,NASA Ames Research Center,January1991.[2]R.Gupta.The Fuzzy Barrier:A Mechanism for High Speed Synchronization of Proces-sors.In Proceedings of the Third International Conference on Architectural Support for Programming Languages and Operating Systems,pages54–63,Boston,MA,April1989.[3]L.I.Kontothanassis and ing Memory-Mapped Network Interfaces toImprove the Performance of Distributed Shared Memory.In Proceedings of the Second International Symposium on High Performance Computer Architecture,San Jose,CA, February1996.Earlier version available as“Distributed Shared Memory for New Gener-ation Networks,”TR578,Computer Science Department,University of Rochester,March 1995.[4]J.M.Mellor-Crummey and M.L.Scott.Algorithms for Scalable Synchronization onShared-Memory Multiprocessors.ACM Transactions on Computer Systems,9(1):21–65, February1991.[5]S.P.Midkiffand piler Algorithms for Synchronization.IEEE Trans-actions on Computers,C-36(12),December1987.6。
美国数学参考书目

美国数学本科生、研究生基础课程参考书目在网上找书的时候恰好看到这个,看着觉得的确是经典书目大全,贴在这里供学弟学妹们参考:)其中所谓第几学年云云,各校要求不同,像我所在的学校,一般学生第一年选三到四门基础课(代数、分析、几何三大类中至少各挑一门),学年末进行qualifying笔试。
第二年开始选自己喜爱方向的高级课程,并通过qualifying口试。
第三年开始做research,并通过第二语言考试(法语或德语或俄语,一般人都选法语,因为代数几何经典大作都是法语的). 而Princeton 就没有基础课,只有seminar类型的课。
第一学年几何与拓扑:1、James R. Munkres, Topology:较新的拓扑学的教材适用于本科高年级或研究生一级;2、Basic Topology by Armstrong:本科生拓扑学教材;3、Kelley, General Topology:一般拓扑学的经典教材,不过观点较老;4、Willard, General Topology:一般拓扑学新的经典教材;5、Glen Bredon, Topology and geometry:研究生一年级的拓扑、几何教材;6、Introduction to Topological Manifolds by John M. Lee:研究生一年级的拓扑、几何教材,是一本新书;7、from calculus to cohomology by Madsen:很好的本科生代数拓扑、微分流形教材。
代数:1、Abstract Algebra Dummit:最好的本科代数学参考书,标准的研究生一年级代数材;2、Algebra Lang:标准的研究生一、二年级代数教材,难度很高,适合作参考书;3、Algebra Hungerford:标准的研究生一年级代数教材,适合作参考书;4、Algebra M,Artin:标准的本科生代数教材;5、Advanced Modern Algebra by Rotman:较新的研究生代数教材,很全面;6、Algebra:a graduate course by Isaacs:较新的研究生代数教材;7、Basic algebra Vol I&II by Jacobson:经典的代数学全面参考书,适合研究生参考。
(完整版)托福TPOextra答案解析和原文翻译

TPO 34阅读解析第一篇Population and Climate【P1】地球人口的增长已经对大气和生态环境产生了影响。
化石燃料的燃烧,毁林,城市化,种植大米,养殖家畜,生产作为助推燃料和制冷剂的CFC增加了空气中CO2,甲烷,二氧化氮,二氧化硫灰尘和CFOs 的含量。
约70%的太阳能量穿过大气直射地球表面。
太阳射线提高了土地和海洋表面的温度,随后土地和海洋表面将红外射线反射会太空中。
这能使地球避免温度过高。
但是并不是所有的红外射线被返回会太空中,一些被大气中的气体吸收,然后再次反射回地球表面。
温室气体就是其中吸收了红外射线的一种气体,然后再次反射一些红外线到地球。
二氧化碳,CFC,甲烷和二氧化氮都是温室气体。
大气中温室效应形成和建立的很自然。
事实上,大气中如果没有温室气体,科学家预测地球温度比当前的能够低33度。
【P2】大气中当前二氧化碳浓度是360ppm。
人类活动正在对大气中二氧化碳浓度的增加有着重要的影响,二氧化碳浓度正在快速增长,目前预估在未来50-100年内,浓度将是目前的一倍。
IPCC在1992中做出一份报告,在该份报告中大多数大气科学家中观点一致,预测二氧化碳浓度翻倍可能会将全球气温提高1.4-4.5度。
IPCC在2001年的报告中做出的预测是气温几乎将会提高2倍。
可能发生的气温升高比在冰河时期发生的变化要大很多。
这种温度的升高也不会是一直的,在赤道周围变化最小,而在极点周围的变化则是2-3倍。
这些全球变化的本地化影响很难预测,但是大家一致认为可能会影响洋流的改变,在北半球的一些区域可能增加在冬天发洪水的可能性,在一些区域夏天发生干旱的概率提高,还有海平面的升高也可能会淹没位置较低的国家。
【P3】科学家积极参与地球气候系统中物理,化学和生物成分的调查,为了对温室气体的增加对未来全球气候的影响做出准确预测。
全球环流模型在这个过程中是重要的工具。
这些模型体现包含了当前对大气环流模式,洋流,大陆影响和类似东西所掌握的知识,在变化的环境下预测气候。
0411523v1 Twisted representations of vertex operator superalgebras

a r X i v :m a t h /0411523v 1 [m a t h .Q A ] 23 N o v 2004Twisted representations of vertex operatorsuperalgebrasChongying Dong 1and Zhongping ZhaoDepartment of Mathematics,University of California,Santa Cruz,CA 95064AbstractThis paper gives an analogue of A g (V )theory for a vertex operator superalgebra V and an automorphism g of finite order.The relation between the g -twisted V -modules and A g (V )-modules is established.It is proved that if V is g -rational,then A g (V )is finite dimensional semisimple associative algebra and there are only finitely many irreducible g -twisted V -modules.1IntroductionThe twisted sectors or twisted modules are basic ingredients in orbifold conformal field theory (cf.[FLM1],[FLM2],[FLM3],[Le1],[Le2],[DHVW],[DVVV],[DL2],[DLM2]).The notion of twisted module [FFR],[D]is derived from the properties of twisted vertex operators for finite automorphisms of even lattice vertex operator algebras constructed in [Le1],[Le2]and [FLM2],also see [DL2].In this paper we study the twisted modules for an arbitrary vertex operator superalgebra following [Z],[KW]and [DLM2].An associative algebra A (V )was introduced in [Z]for every vertex operator algebra V to study the representation theory for vertex operator algebra.The main idea is to reduce the study of representation theory for a vertex operator algebra to the study of represen-tation theory for an associative algebra.This approach has been very successful and the irreducible modules for many well-known vertex operator algebras have been classified by using the associative algebras.This theory has been extended to the vertex operator superalgebras in [KW]and has been further generalized to the twisted representations for a vertex operator algebra in [DLM2].This paper is a “super analogue”of [DLM2].We construct an associative algebra A g (V )for any vertex operator superalgebra V together with an automorphism g of finite order.Then the vacuum space of any admissible g -twisted V -module becomes a module for A g (V ).On the other hand one can construct a ‘universal’admissible g -twisted V -module from any A g (V )-module.This leads to a one to one correspondence between the set of inequivalent admissible g -twisted V -modules and the set of simple A g (V )-modules.As in the case of vertex operator algebra,if V is g -rational then A g (V )is a finite dimensional semisimple associative algebra.The ideas of this paper and other related papers are very natural and go back to the theory of highest weight modules for Kac-Moody Lie algebras and other Lie algebras with triangular decompositions.In the classical highest weight module theory,the highestweight or highest weight vector determines the highest weight module structure to some extend(different highest weight modules can have the same highest weight).The role of the vacuum space for an admissible twisted module is similar to the role of the highest weight space in a highest weight module.So from this point of view,the A g(V)theory is a natural extension of highest weight module theory in the representation theory of vertex operator superalgebras.A vertex operator superalgebra has a canonical automorphismσof order2arising from the structure of superspace.Theσ-twisted modules which are called the Ramond sector in the literature play very important roles in the study of geometry.Important topological invariants such as elliptic genus and certain Witten genus can be understood as graded trace functions on the Ramond sectors constructed from the manifolds.It is expected that the theory developed in this paper will have applications in geometry and physics.Since the setting and most results in this paper are similar to those in[DLM2]we only provide the arguments which are either new or need a lot of modifications.We refer the reader to[DLM2]for details.The organization of this paper is similar to that of[DLM2].We review the definition of vertex operator superalgebra and define various notions of g-twisted V-modules in section2.In section3,we introduce the algebra A g(V)for VOSA V.Section4is devoted to the study of Lie superalgebra V[g]which is kind of twisted affinization of V.A weak g-twisted V-module is naturally a V[g]-module.In section5,we construct the functorΩwhich sends a weak g-twisted V-module to an A g(V)-module.We construct another functor L from the category of A g(V)-modules to the category of admissible g-twisted V-modules in Section6.That is,for any A g(V)-module U we can construct a kind of“generalized Verma module”¯M(U)which is the universal admissible g-twisted V-module generated by U.It is proved that there is a1-1correspondence between the irreducible objects in these two categories.Moreover if V is g-rational,then A g(V)is a finite dimensional semisimple associative algebra.We discuss some examples of vertex operator superalgebras constructed from the free fermions and their twisted modules in Section7.2Vertex Operator superalgebra and twisted mod-ulesWe review the definition of vertex operator superalgebra(cf.[B],[FLM3],[DL1])and various notions of twisted modules in this section(cf.[D],[DLM2],[FFR],[FLM3],[Z]).Recall that a super vector space is a Z2-graded vector space V=V¯0⊕V¯1.The elements in V¯0(resp.V¯1)are called even(resp.odd).Let˜v be0if v∈V¯0,and1if v∈V¯1.Definition2.1.A vertex operator superalgebra is a12Z+V n=V¯0⊕V¯1.(2.1)with V¯0= n∈Z V n and V¯1= n∈112(m3−m)δm+n,0c;(2.6)dz0 Y(u,z1)Y(v,z2)−(−1)˜u˜v z−10δ z2−z1z2 Y(Y(u,z0)v,z2).(2.9) whereδ(z)= n∈Z z n and(z i−z j)n is expanded as a formal power series in z j.Throughout the paper,z0,z1,z2,etc.are independent commuting formal variables.Such a vertex operator superalgebra may be denoted by V=(V,Y,1,ω).In the case V¯1=0,this is exactly the definition of vertex operator algebra given in[FLM3].Definition2.2.Let V be a vertex operator superalgebra.An automorphism g of V is a linear automorphism of V preservingωsuch that the actions of g and Y(v,z)on V are compatible in the sense thatgY(v,z)g−1=Y(gv,z)for v∈V.Note that any automorphism of V commutes with L(0)and preserves each homoge-neous space V n.As a result,any automorphism preserves V¯0and V¯1.Let Aut(V)be the group of automorphisms of V.There is a special automorphism σ∈Aut(V)such thatσ|V¯0=1andσ|V¯1=−1.It is clear thatσis a central element of Aut(V).Fix g∈Aut(V)of order T0.Let o(gσ)=T.Denote the decompositions of V into eigenspaces with respect to the actions of gσand g as followsV=⊕r∈Z/T Z V r∗(2.10)V=⊕r∈Z/T0ZV r(2.11) where V r∗={v∈V|gσv=e2πir/T v}and V r={v∈V|gv=e2πir/T0v}Definition2.3.A weak g-twisted V-module M is a vector space equipped with a linear mapV→(End M)[[z1/T0,z−1/T0]v→Y M(v,z)= n∈1T0+Zu n z−n−1;(2.12)u l w=0for l>>0;(2.13)Y M(1,z)=Id M;(2.14) z−10δ z1−z2−z0 Y M(v,z2)Y M(u,z1)=z−12 z1−z0z2 Y M(Y(u,z0)v,z2).(2.15)Following the arguments in[DL1]one can prove that the twisted Jacobi identity is equivalent to the following associativity formula(z0+z2)k+r T0Y M(Y(u,z0)v,z2)w.(2.16) where w∈M and k∈Z+s.t z k+rz2 −r/T0δz1−z0Lemma2.4.The associativity formula(2.16)is equivalent to the following: (z0+z2)m+s T Y M(Y(u,z0)v,z2)wfor u∈V s∗and some m∈1T Y M(u,z)w involves only nonnegative integral powers of z.Proof:Let u∈V r.It is enough to prove that wt u+sT0are congruent modulo Z.It is easy to see that s≡T2˜u+2r modulo Z if T0is odd.Thus wt u+s2˜u+r2˜u and wt u are congruentmodulo Z,the result follows immediately.Equating the coefficients of z−m−11z−n−12in(2.17)yields[u m,v n]=∞i=0 m i (u i v)m+n−i.(2.18)We may also deduce from(2.12)-(2.15)the usual Virasoro algebra axioms,namely that if Y M(ω,z)= n∈Z L(n)z−n−2then[L(m),L(n)]=(m−n)L(m+n)+1dzY M(v,z)=Y M(L(−1)v,z)(2.20) (cf.[DLM1]).The homomorphism and isomorphism of weak twisted modules are defined in an ob-vious way.Definition2.5.An admissible g-twisted V-module is a weak g-twisted V-module M which carries a1T Z+M(n)(2.21)satisfyingv m M(n)⊆M(n+wt v−m−1)(2.22) for homogeneous v∈V.Definition2.6.An ordinary g-twisted V-module is a weak g-twisted V-moduleM= λ∈C Mλ(2.23) such that dim Mλisfinite and forfixedλ,M nThe admissible g-twisted V-modules form a subcategory of the weak g-twisted V-modules.It is easy to prove that an ordinary g-twisted V-module is admissible.Shifting the grading of an admissible g-twisted module gives an isomorphic admissible g-twisted V-module.A simple object in this category is an admissible g-twisted V-module M such that0and M are the only graded submodules.We say that V is g-rational if every admissible g-twisted V-module is completely reducible,i.e.,a direct sum of simple admissible g-twisted modules.V is called rational if V is1-rational.V is called holomorphic if V is rational and V is the only irreducible V-module up to isomorphism.If M=⊕n∈1T Z+M(n)∗(2.24)where M(n)∗=Hom C(M(n),C).The vertex operator Y M′(a,z)is defined for a∈V via Y M′(a,z)f,u = f,Y M(e zL(1)(−z−2)L(0)a,z−1)u (2.25) where · denotes the natural paring between M′and M.Then we have the following [FHL]:Lemma2.7.(M′,Y M′)is an admissible g−1-twisted V-module.Lemma2.7is needed in the proof of several results in Section6although we do not intend to give these proofs(cf.[DLM2]).3The associative algebra A g(V)Let r be an integer between0and T−1(or T0−1).We will also use r to denote its residue class modulo T or T0.For homogeneous u∈V r∗,we setδr=1if r=0andδr=0 if r=0.Let v∈V we defineu◦g v=Res z (1+z)wt u−1+δr+rz1+δrY(u,z)v(3.1)where(1+z)αforα∈C is to be expanded in nonnegative integer powers of z.Let O g(V) be the linear span of all u◦g v and define the linear space A g(V)to be the quotient V/O g(V).We will use A(V),O(V),u◦v,when g=1.The A(V)was constructed in[KW] and if V is a vertex operator,A g(V)was constructed in[DLM2].Lemma3.1.If r=0then V r∗⊆O g(V).Proof:The proof is the same as that of Lemma2.1in[DLM2].Let I=O g(V)∩V0∗.Then A g(V)≃V0∗/I(as linear spaces).Since O(V0∗)⊂I, A g(V)is a quotient of A(V0∗).We now define a product ∗g on V which will induce an associative product in A g (V ).Let r,u and v be as above and setu ∗gv =Res z (Y (u,z )(1+z )wt uT+nzY (v,z )u ∈O (V 0∗)and(iii)u ∗v −(−1)˜u ˜v v ∗u −Res z (1+z )wt u −1Y (u,z )v ∈O (V 0∗).Proof:See the proofs of Lemmas 2.1.2and 2.1.3of[Z]bynoting thatY (u,z )v ≡(−1)˜u ˜v (1+z )−wtu −wtv Y (v,−zz Y (c,z )u(3.4)andu∗c≡Res z(1+z)wt c−1z0 Y(c,z1)Y(a,z2)b−(−1)˜c˜a z−10δ z2−z1z2 Y(Y(c,z0)a,z2)b.(3.6) Forε=0or1,(3.6)implies:xε=Res z1(1+z1)wt c−εTz1Y(c,z1)(1+z2)wt a−1+δr+rz1+δr2Y(a,z2)b=(−1)˜a˜c Res z1Res z2(1+z1)wt c−εTz1(1+z2)wt a−1+δr+rz1+δr2z−12δ z1−z0z1(1+z2)wt a−1+δr+rz1+δr2Y(a,z2)Y(c,z1)b+Res z2Res z(1+z2+z0)wt c−εTTz1Y(c,z1)b+∞i,j=0(−1)j wt c−εi Res z2(1+z2)wt a−1+δr+r z j+2+δr2Y(c i+j a,z2)b=(−1)˜c˜a Res z2(1+z2)wt a−1+δr+rz1+δr2Y(a,z2)Res z1(1+z1)wt c−εT+j+1−εNext we prove that∗g is associative.We need to verify that(a∗b)∗c−a∗(b∗c)∈O g(V0∗)for a,b,c∈V0∗.A straightforward computation using the twisted Jacobi identity gives(a∗b)∗c=wt a i=0(a i−1b)∗c=wt ai=0 wt a i Res w(Y(a i−1b,w)(1+w)wt(a i−1b)wc)=Res w Res z−w(Y(Y(a,z−w)b,w)(1+z)wt a(1+w)wt bw(z−w)c)−(−1)˜a˜b Res w Res z(Y(b,w)Y(a,z)(1+z)wt a(1+w)wt bwc)−(−1)˜a˜b∞i=0Res w Res z(Y(b,w)Y(a,z)(−1)i+1z i w−i−1(1+z)wt a(1+w)wt bzwc)mod O g(V0∗)≡a∗(b∗c)mod O g(V0∗)Thus A g(V)≃V0∗T0,t−1dt f(t) g(t).(4.1) (see[B]).Then the tensor productL(V)=C[t1T0]⊗V.(4.2)is a vertex superalgebra with vertex operatorY (f (t )⊗v,z )(g (t )⊗u )=f (t +z )g (t )⊗Y (v,z )u.(4.3)The L (−1)operator of L (V )is given by D =dT 0)(t m ⊗ga ).(4.4)Let L (V,g )be the g -invariants which is a vertex sub-superalgebra of L (V ).Clearly,L (V,g )=⊕T 0−1r =0tr/T 0C [t,t −1]⊗V r .(4.5)Following [B],we know thatV [g ]=L (V,g )/D L (V,g )(4.6)is a Lie superalgebra with bracket[u +D L (V,g ),v +D L (V,g )]=u 0v +D L (V,g ).(4.7)For short let a (q )be the image of t q ⊗a ∈L (V,g )in V [g ].Then we have Lemma 4.1.Let a ∈V r ,v ∈V s and m,n ∈Z .Then(i)[ω(0),a (m +r T 0a (m −1+rT 0),b (n +s T 0ia ib (m +n +r +sTZ -graded.Since D increases degree by 1,D L (V,g )is a graded subspace ofL (V,g )and V [g ]is naturally 1TZV [g ]n .By Lemma 4.1,V [g ]is a1TZV [g ]±n .Lemma 4.2.V [g ]0is spanned by elements of the form a (wt a −1)for homogeneous a ∈V 0∗.Proof:Let a∈V.Then the degree wt a−n−1of a(n)is0if and only if a∈V0¯andn=wt a−1or a∈V T0/2¯1and n=wt a−1.The bracket of V[g]0is given by[a(wt a−1),b(wt b−1)]=∞j=0 wt a−1j a j b(wt(a j b)−1).(4.10)Set o(a)=a(wt a−1)for homogeneous a∈V0∗and extend linearly to all a∈V0∗. This gives a linear mapV0∗→V[g]0,a→o(a).(4.11) As the kernel of the map is(L(−1)+L(0))V0∗,we obtain an isomorphism of Lie super-algebras V0∗/(L(−1)+L(0))V0∗∼=V[g]0.The bracket on the quotient of V0∗is given by[a,b]= j≥0 wt a−1j a j b.Lemma4.3.Let A g(V)Lie be the Lie superalgebra of the associative algebra A g(V)intro-duced in section3such that[u,v]=u∗g v−(−1)˜u˜v v∗g u.Then the map o(a)→a+O g(V) is an onto Lie superalgebra homomorphism from V[g]0to A g(V)Lie.Proof:Recall that I=O g(V)∩V0∗.So we have a surjective linear mapV[g]0∼=V0∗/(L(−1)+L(0))V0∗→V0∗/I≃A g(V),o(a)→a+(L(−1)+L(0))V0∗→a+I.(4.12) The Lie homomorphism follows from[o(a),o(b)]=∞j=0 wt a−1j o(a j b).and[a+O g(V),b+O g(V)]≡a∗g b−(−1)˜a˜b b∗g a≡∞j=0 wt a−1j a j b≡Res z(1+z)wt a−1Y(a,z)b mod O g(V0∗)≡∞i=0 wt a−1i a i b mod O g(V0∗).5The functorΩThe main purpose in this section is to construct a covariant functorΩfrom the category of weak g-twisted V-modules to the category of A g(V)-modules(cf.Theorem5.1).Let M be a weak g-twisted V-module.We define the space of“lowest weight vectors”to beΩ(M)={w∈M|u wt u+n w=0,u∈V,n≥0}.The main result in this section says thatΩ(M)is an A g(V)-module.Moreover if f:M→N is a morphism in weak g-twisted V-modules,the restrictionΩ(f)of f toΩ(M)is an A g(V)-module morphism.Note that if M is a weak g-twisted V-module then M becomes a V[g]-module such that a(m)acts as a m.Moreover,M is an admissible g-twisted V-module if and only if M is a1TY(u,z)v.z2The argument in the Proof of Theorem2.1.2in[Z]with suitable modification giveso(u∗v)=o(u)o(v).Note that o(L(−1)u+L(0)u)=0and(L(−1)u+L(0)u)∗v=u◦v.We immediately have o(u◦v)=0onΩ(M).Ifa=Res z (1+z)wt c−1+rzY(u,z)v,we can use Lemma2.4.Since z wt u−1+rT Y M(u,z0+z2)Y M(v,z2)w=(z2+z0)wt u−1+rT2to(5.1)yields0=Res z0Res z2z−10zwt v−rT Y M(Y(u,z0)v,z2)w=∞i=0 wt u−1+rTi o(u i−1v)w=o Res z(1+z)wt u−1+r z Y M(u,z)v w=o(a)w(5.2) as required.If M is a nonzero admissible g-twisted V-modules we may and do assume that M(0) is nonzero with suitable degree shift.With these conventions we haveProposition5.2.Let M be a simple admissible g-twisted V-module.Then the following hold(i)Ω(M)=M(0).(ii)Ω(M)is a simple A g(V)-module.Proof:The proof is the same as in[DLM2].6Generalized Verma modules and the functor LIn this section we focus on how to construct admissible g-twisted V-modules from a given A g(V)-module U.We use the same trick which was used in[DLM2]to do this.We will define two g-twisted admissible V-modules¯M(U)and L(U).The¯M(U)is the universal admissible g-twisted V-module such that¯M(U)(0)=U and L(U)is smallest admissible g-twisted V-module whose L(U)(0)=U.Just as in the classical highest weight module theory,L(U)is the unique irreducible quotient of¯M(U)if U is simple.We start with an A g(V)-module U.Then U is automatically a module for A g(V)Lie.By Lemma4.3U is lifted to a module for the Lie superalgebra V[g]0.Let V[g]−act trivially on U and extend U to a P=V[g]−⊕V[g]0-module.Consider the induced moduleM(U)=Ind V[g]P(U)=U(V[g])⊗U(P)U(6.1)T0Zv(m)z−m−1(6.2)Then Y M(U)(v,z)satisfies condition(2.12)-(2.14).By Lemma4.1(ii),the identity(2.18) holds.But this is not good enough to establish the twisted Jacobi identity for the action (6.2)on M(U).Let W be the subspace of M(U)spanned linearly by the coefficients of(z0+z2)wt a−1+δr+r T Y(Y(a,z0)b,z2)u(6.3) for any homogeneous a∈V r∗,b∈V,u∈U.We set¯M(U)=M(U)/U(V[g])W.(6.4) Proposition6.1.Let M be a V[g]-module such that there is a subspace U of M satisfying the following conditions:(i)M=U(V[g])U;(ii)For any a∈V r∗and u∈U there is k∈wt a+Z+such that(z0+z2)k+r T Y(Y(a,z0)b,z2)u(6.5) for any b∈V.Then M is a weak V-module.Proof:We only need to prove the twisted Jacobi identity,which is equivalent to com-mutator relation(2.17)and the associativity(2.16).But the commutator formula is built in already as M is a V[g]-module.By Lemma2.4,the assumption(ii)can be reformulated as follows:(ii’)For any a∈V r and u∈U there is k∈Z+such that(z0+z2)k+r T0Y(Y(a,z0)b,z2)u(6.6) Since M is a V[g]-module generated by U it is enough to prove that if u satisfies(ii’) then c n u also satisfies(ii’)for c∈V and n∈1T0Y(c i a,z0+z2)Y(b,z2)u=(z2+z0)k2+r+sT0Y(a,z0+z2)Y(c i b,z2)u=(z2+z0)k2+r+sT0+n−k1>k2+r+s(z 0+z 2)k +rT 0c n Y (a,z 0+z 2)Y (b,z 2)u −(−1)˜a ˜c (−1)˜b ˜c∞ i =0n i (z 0+z 2)k +r T 0Y (a,z 0+z 2)Y (c i b,z 2)u=(−1)˜a ˜c (−1)˜b ˜c (z 0+z 2)k +rT 0+n −iY (Y (c i a,z 0)b,z 2)u−(−1)˜b ˜c∞ i =0n iz n −i2(z 2+z 0)k +rT 0c n Y (Y (a,z 0)b,z 2)u−(−1)˜a ˜c (−1)˜b ˜c ∞ i =0n i (z 2+z 0)k +r T 0Y (c i Y (a,z 0)b,z 2)u+(−1)˜a ˜c (−1)˜b ˜c ∞ i =0∞ j =0n j j iz n −i2(z 2+z 0)k +rT 0c n Y (Y (a,z 0)b,z 2)u−(−1)˜a ˜c (−1)˜b ˜c ∞ i =0n i (z 2+z 0)k +r T 0Y (c i Y (a,z 0)b,z 2)u+(−1)˜a ˜c (−1)˜b ˜c ∞ j =0∞ i =jn j n −ji −jz n −i2(z 2+z 0)k +rT 0c n Y (Y (a,z 0)b,z 2)u−(−1)˜a ˜c (−1)˜b ˜c∞ i =0n i z n −i 2(z 2+z 0)k +rT 0c n Y (Y (a,z 0)b,z 2)u−(−1)˜a ˜c (−1)˜b ˜c (z 2+z 0)k +rT 0Y (Y (a,z 0)b,z 2)c n u,=(z 2+z 0)k +rThe proof is complete.Applying Proposition6.1to¯M(U)gives the following main result of this section. Theorem6.2.¯M(U)is an admissible g-twisted V-module with¯M(U)(0)=U and with the following universal property:for any weak g-twisted V-module M and any A g(V)-morphismφ:U→Ω(M),there is a unique morphism¯φ:¯M(U)→M of weak g-twisted V-modules which extendsφ.As in[DLM2]we also haveTheorem6.3.M(U)has a unique maximal graded V[g]-submodule J with the property that J∩U=0.Then L(U)=M(U)/J is an admissible g-twisted V-module satisfying Ω(L(U))∼=U.L defines a functor from the category of A g(V)-modules to the category of admissible g-twisted V-modules such thatΩ◦L is naturally equivalent to the identity.We have a pair of functorsΩ,L between the A g(V)-module category and admissible g-twisted V-module category.AlthoughΩ◦L is equivalent to the identity,L◦Ωis not equivalent to the identity in general.The following result is an immediate consequence of Theorem6.3.Lemma6.4.Suppose that U is a simple A g(V)-module.Then L(U)is a simple admissible g-twisted V-module.Using Lemma6.4,Proposition5.2(ii),Theorems6.2and6.3gives:Theorem6.5.L andΩare equivalent when restricted to the full subcategories of com-pletely reducible A g(V)-modules and completely reducible admissible g-twisted V-modules respectively.In particular,L andΩinduces mutually inverse bijections on the isomor-phism classes of simple objects in the category of A g(V)-modules and admissible g-twisted V-modules respectively.We now apply the obtained results to g-rational vertex operator superalgebras to obtain:Theorem6.6.Suppose that V is a g-rational vertex operator superalgebra.Then the following hold:(a)A g(V)is afinite-dimensional,semi-simple associative algebra(possibly0).(b)V has onlyfinitely many isomorphism classes of simple admissible g-twisted mod-ules.(c)Every simple admissible g-twisted V-module is an ordinary g-twisted V-module.(d)V is g−1-rational.(e)The functors L,Ωare mutually inverse categorical equivalences between the cate-gory of A g(V)-modules and the category of admissible g-twisted V-modules.(f)The functors L,Ωinduce mutually inverse categorical equivalences between the category offinite-dimensional A g(V)-modules and the category of ordinary g-twisted V-modules.The proof is the same as that of Theorem8.1in[DLM2].7ExamplesIn this section we discuss the well known vertex operator superalgebras constructed from the free fermions and their twisted modules.In particular we compute the algebra A g (V )and classify the irreducible twisted modules using A g (V ).The classification results have been obtained previously in [Li2]with a different approach.Let H = li =1C a i be a complex vector space equipped with a nondegenerate symmet-ric bilinear form (,)such that {a i |i =1,2,...l }form an orthonormal basis.Let A (H,Z +12}subject to the relation [a (n ),b (m )]+=(a,b )δm +n,0.Let A +(H,Z +12,n >0},andmake C a 1-dimensional A +(H,Z +12)=A (H,Z +12)C∼=Λ[a i(−n )|n >0,n ∈Z +1∂a i (−n )if n is positive and by multiplication by a i (n )if nis negative.The V (H,Z +12Zso thatV (H,Z +12Zwe define a normal ordering:b 1(n 1)···b k (n k ):=(−1)|σ|b i 1(n i 1)···b i k (n i k )such that n i 1≤···≤n i k where σis the permutation of {1,...,k }by sending j to i j .For a ∈H set Y (a (−1/2),z )=n ∈12)···b k (−n k −12)where n i arenonnegative integers.We setY (v,z )=:(∂n 1b 1(z ))···(∂n k b k (z )):where ∂n =1dz)n .Then we have a linear map:V (H,Z +12))[[z,z −1]]v→Y (v,z )=n ∈Z v n z −n −1(v n ∈End V (H,Z +12li =1a i (−32).The following result is well known (cf.[FFR],[KW]and [Li1]).Theorem7.1.(V(H,Z+12)for i=1,...,l.We have already mentioned in Section2that any vertex operator superalgebra has a canonical automorphismσsuch thatσ=1on V¯0andσ=−1on V¯1.Note thatV(H,Z+12)¯1.We next discuss theσ-twisted V(H,Z+1∂b i(−n)∗if n is nonnegative and multiplication by b i(n)if n is nega-tive.Similarly,b i(n)∗acts as∂2)-module such thatY V(H,Z)(u(−12)is isomorphic to thematrix algebra M2k×2k(C)and V(H,Z)is the unique irreducibleσ-twisted V(H,Z+12)is isomorphic to thematrix algebra M2k×2k(C).Since g=σ,the decomposition(2.10)becomes V=V0∗.By lemma3.2(i),Res z (1+z)1z2+ma i(z)v= s≥0c s a i(−m+s−3lies in O σ(V (H,Z +12s.This implies that a i (−m −32+s )vmod O σ(V (H,Z +12))is spanned by b 1(−1/2)s 1···b k (−1/2)s k b ∗1(−1/2)t 1···b ∗k (−1/2)t kwith s i ,t i =0,1.As a result,dim A σ(V (H,Z +12)-module.By Theorem 5.1,Ω(V (H,Z ))is a simple A σ(V (H,Z +12)≥dim Ω(V (H,Z ))=22k .This forces dim A σ(V (H,Z +12))∼=M 2k ×2k (C ).We now deal with the case dim H =2k +1for some nonnegative integer k.Then H can be decomposed into:H =k i =1C b i +k i =1C b ∗i +C ewith (b i ,b j )=(b ∗i ,b ∗j )=0,(b i ,b ∗j )=δi,j ,(e,b i )=(e,b ∗i )=0,(e,e )=2.Let A (H,Z )be the associative algebra generated same as above,and A (H,Z )+be the subalgebra generated by {b i (n ),b ∗i (m ),e (n )|m,n ∈Z ,m >0,n ≥0,i =1,···,k }and make C a 1-dimensional A (H,Z )+-module so that b i (n )1=0for n ≥0and b ∗i (m )1=e (m )1=0for m >0,i =1,···,k.SetV (H,Z )=A (H,Z )⊗A (H,Z )+C∼=Λ[b i (−n ),b ∗i (−m ),e (−m )|n,m ∈Z ,n >0,m ≥0]and letW (H,Z )=Λ[b i (−n ),b ∗i (−m ),e (−n )|n,m ∈Z ,n >0,m ≥0]=W (H,Z )even⊕W (H,Z )odd be the decomposition into the even and old parity subspaces.Also defineV ±(H,Z )=(1±e (0))W (H,Z )even ⊕(1∓e (0))W (H,Z )odd .ThenV (H,Z )=V +(H,Z )⊕V −(H,Z )and V ±(H,Z )are irreducible A (H,Z )-modules.The actions of b i (n ),b ∗i (n )are the same as before.The e (n )acts as 2∂2),z )=u (z )=n ∈Zu (n )z −n −1/2for u ∈H.Proposition7.3.If dim H=2k+1is odd,then Aσ(V(H,Z+12)has exactly two irreducibleσ-twisted modulesV±(H,Z)up to isomorphism.Proof:The proof is similar to that of Proposition7.2.Note that the automorphismσof V(H,Z+12)as follows:For any a1(−n1)···a s(−n s)∈V(H,Z+1/2),τ(a1(−n1)a2(−n2)···a m(−n m))=(τa1)(−n1)(τa2)(−n2)···(τa m)(−n m).Let o(τσ)=N.We decompose H into eigenspaces with respect to theτσandτas follows:H=⊕r∈Z/N Z H r∗(7.4)H=⊕r∈Z/N0ZH r(7.5) where H r∗={v∈H|τσv=e2πir/N v},and H r={v∈H|τv=e2πir/N0v}.Let l0=dim H0∗.As before we need to consider two separate cases:l0is even or odd. If l0=2k0for some nonnegative integer k0,we haveH0∗=k0i=1C h i+k0 i=1C h∗iwith(h i,h j)=(h∗i,h∗j)=0,(h i,h∗j)=δi,j.Let l r=dim H r∗with r=0.If r=N−r,wefix bases b r,1,b r,2,···b r,lr∈H r∗and b∗r,1,b∗r,2,···b∗r,lr∈H(N−r)∗such that(b r,i,b∗r,j)=(b∗r,j,b r,i)=δi,j.If r=N−r,let{c1,c2,···c lN 2∗.Then M= N−1r=1Λ[b(−n)|n∈r2)-module so that for u∈H r∗, Y M(u(−1N +Zu(n)z−n−1/2(see[Li2]).Note that b r,i(n)acts as∂∂c i(−n)if n is positive andacts as multiplication by c i(n)if n is negative.Also,h i(n)acts as∂∂h i(−n)if n is positive,and acts as multiplication by h∗i(n)if nis nonnegative.One can easily calculate thatΩ(M)=Λ[h∗i(0)|h∗i∈H0∗,i=1,2,···k0]. So dimΩ(M)=2k0.Proposition7.4.If dim H0∗=l0=2k0then M= N−1r=1Λ[b(−n)|n∈r2)-module.Proof:As in the proof of Proposition7.2,it is sufficient to show that dim Aτ(V(H,Z+ 1N−1 z1+m a(z)b=∞l=0 r2l a(−m−12)).So using the same calculation done in Proposition7.2,we conclude that Aτ(V)is spanned byh1(−1/2)s1···h k0(−1/2)s k0h∗1(−1/2)t1···h∗k(−1/2)t k0with s i,t i=0,1.Hence dim Aτ(V(H,Z+1N+Z,1≤r≤N−1,n>0] are irreducibleτ-twisted V(H,Z+1∂e(−n)if n>0andas multiplication by e(n)if n≤0.The proof of Proposition7.4gives Proposition7.5.If dim H0∗=2k0+1is odd,V(H,Z+1[DVVV]R.Dijkgraaf,C.Vafa,E.Verlinde and H.Verlinde,The operator algebra of orbifold models,Comm.Math.Phys.123(1989),485-526.[DHVW]L.Dixon,J.Harvey,C.Vafa and E.Witten,Strings on orbifolds,Nucl.Phys.B261(1985),651;II,Nucl.Phys.B274(1986),285.[D] C.Dong,Twisted modules for vertex algebras associated with even lattice,J.of Algebra165(1994),91-112.[DL1] C.Dong and J.Lepowsky,Generalized Vertex Algebras and Relative Vertex Operators,Progress in Math.,Vol.112,Birkh¨a user Boston,1993.[DL2] C.Dong and J.Lepowsky,The algebraic structure of relative twisted vertex operators,J.Pure and Applied Algebra110(1996),259-295.[DLM1] C.Dong,H.Li and G.Mason,Regularity of rational vertex operator algebras, Adv.Math.132(1997),148–166.[DLM2] C.Dong,H.Li and G.Mason,Twisted representations of vertex operator alge-bras,Math.Ann.310(1998),571–600.[FFR]Alex J.Feingold,Igor B.Frenkel and John F.X.Ries,Spinor Construction of Vertex Operator Algebras,Triality,and E(1)8,Contemporary Math.121,1991.[FHL]I.Frenkel,Y.Huang and J.Lepowsky,On axiomatic approaches to vertex oper-ator algebras and modules,Mem.Amer.Math.Soc.1041993.[FLM1]I.B.Frenkel,J.Lepowsky and A.Meurman,A natural representation of the Fischer-Griess Monster with the modular function J as character,Proc.Natl.A81(1984),3256-3260.[FLM2]I.B.Frenkel,J.Lepowsky and A.Meurman,Vertex operator calculus,in:Math-ematical Aspects of String Theory,Proc.1986Conference,San Diego.ed.byS.-T.Yau,World Scientific,Singapore,1987,150-188.[FLM3]I.B.Frenkel,J.Lepowsky and A.Meurman,Vertex Operator Algebras and the Monster,Pure and Applied Math.,Vol.134,Academic Press,1988.[FZ]I.Frenkel and Y.Zhu,Vertex operator algebras associated to representations of affine and Virasoro algebras,Duke Math.J.66(1992),123-168.[KW]V.Kac and W.Wang,Vertex operator superalgebras and representations,Con-tem.Math.,AMS Vol.175(1994),161-191.[Le1]J.Lepowsky,Calculus of twisted vertex operators,Proc.Natl.Acad A 82(1985),8295-8299.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
JOURNAL OF FORMALIZED MATHEMATICSVolume6,Released1994,Published2003Inst.of Computer Science,Univ.of BiałystokOn Kolmogorov Topological Spaces1Zbigniew KarnoWarsaw UniversityBiałystokSummary.Let X be a topological space.X is said to be T0-space(or Kolmogorov space)provided for every pair of distinct points x,y∈X there exists an open subset of Xcontaining exactly one of these points;equivalently,for every pair of distinct points x,y∈Xthere exists a closed subset of X containing exactly one of these points(see[1],[6],[2]).The purpose is to list some of the standard facts on Kolmogorov spaces,using Mizar formalism.As a sample we formulate the following characteristics of such spaces:X is aKolmogorov space iff for every pair of distinct points x,y∈X the closures{y}aredistinct.There is also reviewed analogous facts on Kolmogorov subspaces of topological spaces.In the presented approach T0-subsets are introduced and some of their properties developed.MML Identifier:TSP_1.WWW:/JFM/Vol6/tsp_1.htmlThe articles[8],[10],[7],[9],[3],[4],[11],and[5]provide the notation and terminology for this paper.1.S UBSPACESLet Y be a topological structure.We see that the subspace of Y is a topological structure and it can be characterized by the following(equivalent)condition:(Def.1)(i)The carrier of it⊆the carrier of Y,and(ii)for every subset G0of it holds G0is open iff there exists a subset G of Y such that G is open and G0=G∩the carrier of it.Next we state the proposition(2)1Let Y be a topological structure,Y0be a subspace of Y,and G be a subset of Y.Suppose Gis open.Then there exists a subset G0of Y0such that G0is open and G0=G∩the carrier of Y0.Let Y be a topological structure.We see that the subspace of Y is a topological structure and it can be characterized by the following(equivalent)condition:(Def.2)(i)The carrier of it⊆the carrier of Y,and(ii)for every subset F0of it holds F0is closed iff there exists a subset F of Y such that F is closed and F0=F∩the carrier of it.Next we state the proposition(4)2Let Y be a topological structure,Y0be a subspace of Y,and F be a subset of Y.SupposeF is closed.Then there exists a subset F0of Y0such that F0is closed and F0=F∩the carrierof Y0.2.K OLMOGOROV S PACESLet T be a topological structure.Let us observe that T is discernible if and only if the conditions (Def.3)are satisfied.(Def.3)(i)T is empty,or(ii)for all points x,y of T such that x=y holds there exists a subset V of T such that V is open and x∈V and y/∈V or there exists a subset W of T such that W is open and x/∈W and y∈W. We introduce T is T0as a synonym of T is discernible.Let Y be a topological structure.Let us observe that Y is T0if and only if the conditions(Def.4) are satisfied.(Def.4)(i)Y is empty,or(ii)for all points x,y of Y such that x=y holds there exists a subset E of Y such that E is closed and x∈E and y/∈E or there exists a subset F of Y such that F is closed and x/∈F and y∈F.Let us note that every non empty topological structure which is trivial is also T0and every non empty topological structure which is non T0is also non trivial.Let us mention that there exists a topological space which is strict,T0,and non empty and there exists a topological space which is strict,non T0,and non empty.One can check the following observations:∗every non empty topological space which is discrete is also T0,∗every non empty topological space which is non T0is also non discrete,∗every non empty topological space which is anti-discrete and non trivial is also non T0,∗every non empty topological space which is anti-discrete and T0is also trivial,and∗every non empty topological space which is T0and non trivial is also non anti-discrete.Let X be a non empty topological space.Let us observe that X is T0if and only if:(Def.5)For all points x,y of X such that x=y holds{y}.Let X be a non empty topological space.Let us observe that X is T0if and only if:(Def.6)For all points x,y of X such that x=y holds x/∈{x}.Let X be a non empty topological space.Let us observe that X is T0if and only if:(Def.7)For all points x,y of X such that x=y and x∈{y}⊆2The proposition(3)has been removed.3.T0-S UBSETSLet Y be a topological structure and let I1be a subset of Y.We say that I1is T0if and only if the condition(Def.8)is satisfied.(Def.8)Let x,y be points of Y.Suppose x∈I1and y∈I1and x=y.Then there exists a subset V of Y such that V is open and x∈V and y/∈V or there exists a subset W of Y such that W is open and x/∈W and y∈W.Let Y be a non empty topological structure and let A be a subset of Y.Let us observe that A is T0if and only if the condition(Def.9)is satisfied.(Def.9)Let x,y be points of Y.Suppose x∈A and y∈A and x=y.Then(i)there exists a subset E of Y such that E is closed and x∈E and y/∈E,or(ii)there exists a subset F of Y such that F is closed and x/∈F and y∈F.Next we state two propositions:(5)Let Y0,Y1be topological structures,D0be a subset of Y0,and D1be a subset of Y1.Supposethe topological structure of Y0=the topological structure of Y1and D0=D1.If D0is T0,then D1is T0.(6)Let Y be a non empty topological structure and A be a subset of Y.Suppose A=the carrierof Y.Then A is T0if and only if Y is T0.In the sequel Y is a non empty topological structure.One can prove the following propositions:(7)For all subsets A,B of Y such that B⊆A holds if A is T0,then B is T0.(8)For all subsets A,B of Y such that A is T0or B is T0holds A∩B is T0.(9)Let A,B be subsets of Y.Suppose A is open or B is open.If A is T0and B is T0,then A∪Bis T0.(10)Let A,B be subsets of Y.Suppose A is closed or B is closed.If A is T0and B is T0,thenA∪B is T0.(11)For every subset A of Y such that A is discrete holds A is T0.(12)For every non empty subset A of Y such that A is anti-discrete and A is not trivial holds Ais not T0.Let X be a non empty topological space and let A be a subset of X.Let us observe that A is T0if and only if:(Def.10)For all points x,y of X such that x∈A and y∈A and x=y holds{y}.Let X be a non empty topological space and let A be a subset of X.Let us observe that A is T0if and only if:(Def.11)For all points x,y of X such that x∈A and y∈A and x=y holds x/∈{x}.Let X be a non empty topological space and let A be a subset of X.Let us observe that A is T0if and only if:(Def.12)For all points x,y of X such that x∈A and y∈A and x=y holds if x∈{y}⊆4.K OLMOGOROV S UBSPACESLet Y be a non empty topological structure.One can verify that there exists a subspace of Y which is strict,T0,and non empty.Let Y be a topological structure and let Y0be a subspace of Y.Let us observe that Y0is T0if and only if the conditions(Def.13)are satisfied.(Def.13)(i)Y0is empty,or(ii)for all points x,y of Y such that x is a point of Y0and y is a point of Y0and x=y holds there exists a subset V of Y such that V is open and x∈V and y/∈V or there exists a subset W of Y such that W is open and x/∈W and y∈W.Let Y be a topological structure and let Y0be a subspace of Y.Let us observe that Y0is T0if and only if the conditions(Def.14)are satisfied.(Def.14)(i)Y0is empty,or(ii)for all points x,y of Y such that x is a point of Y0and y is a point of Y0and x=y holds there exists a subset E of Y such that E is closed and x∈E and y/∈E or there exists a subsetF of Y such that F is closed and x/∈F and y∈F.In the sequel Y denotes a non empty topological structure.Next we state two propositions:(15)Let Y0be a non empty subspace of Y and A be a subset of Y.Suppose A=the carrier of Y0.Then A is T0if and only if Y0is T0.(16)Let Y0be a non empty subspace of Y and Y1be a T0non empty subspace of Y.If Y0is asubspace of Y1,then Y0is T0.In the sequel X is a non empty topological space.We now state three propositions:(17)Let X1be a T0non empty subspace of X and X2be a non empty subspace of X.If X1meetsX2,then X1∩X2is T0.(18)For all T0non empty subspaces X1,X2of X such that X1is open or X2is open holds X1∪X2is T0.(19)For all T0non empty subspaces X1,X2of X such that X1is closed or X2is closed holdsX1∪X2is T0.Let X be a non empty topological space.A Kolmogorov subspace of X is a T0non empty subspace of X.The following proposition is true(20)Let X be a non empty topological space and A0be a non empty subset of X.Suppose A0isT0.Then there exists a strict Kolmogorov subspace X0of X such that A0=the carrier of X0.Let X be a non trivial non empty topological space.Observe that there exists a Kolmogorov subspace of X which is proper and strict.Let X be a Kolmogorov space.One can verify that every non empty subspace of X is T0.Let X be a non-Kolmogorov space.Note that every non empty subspace of X which is non proper is also non T0and every non empty subspace of X which is T0is also proper.Let X be a non-Kolmogorov space.Observe that there exists a subspace of X which is strict and non T0.Let X be a non-Kolmogorov space.A non-Kolmogorov subspace of X is a non T0subspace of X.We now state the proposition(21)Let X be a non empty non-Kolmogorov space and A0be a subset of X.Suppose A0is notT0.Then there exists a strict non-Kolmogorov subspace X0of X such that A0=the carrier of X0.R EFERENCES[1]P.Alexandroff and H.H.Hopf.Topologie I.Springer-Verlag,Berlin,1935.[2]Ryszard Engelking.General Topology,volume60of Monografie Matematyczne.PWN-Polish Scientific Publishers,Warsaw,1977.[3]Zbigniew Karno.Separated and weakly separated subspaces of topological spaces.Journal of Formalized Mathematics,4,1992./JFM/Vol4/tsep_1.html.[4]Zbigniew Karno.Maximal discrete subspaces of almost discrete topological spaces.Journal of Formalized Mathematics,5,1993./JFM/Vol5/tex_2.html.[5]Zbigniew Karno.Maximal anti-discrete subspaces of topological spaces.Journal of Formalized Mathematics,6,1994.http://mizar.org/JFM/Vol6/tex_4.html.[6]Kazimierz Kuratowski.Topology,volume I.PWN-Polish Scientific Publishers,Academic Press,Warsaw,New York and London,1966.[7]Beata Padlewska and Agata Darmochwał.Topological spaces and continuous functions.Journal of Formalized Mathematics,1,1989./JFM/Vol1/pre_topc.html.[8]Andrzej Trybulec.Tarski Grothendieck set theory.Journal of Formalized Mathematics,Axiomatics,1989./JFM/Axiomatics/tarski.html.[9]Andrzej Trybulec.A Borsuk theorem on homotopy types.Journal of Formalized Mathematics,3,1991./JFM/Vol3/borsuk_1.html.[10]Zinaida Trybulec.Properties of subsets.Journal of Formalized Mathematics,1,1989./JFM/Vol1/subset_1.html.[11]Mariusz˙Zynel and Adam Guzowski.T0topological spaces.Journal of Formalized Mathematics,6,1994./JFM/Vol6/t_0topsp.html.Received July26,1994Published January2,2004。