函数与数列的极限的强化练习题答案(含详细分析)

合集下载

函数与数列的极限的强化练习题答案28页word文档

函数与数列的极限的强化练习题答案28页word文档

第一讲:函数与数列的极限的强化练习题答案一、单项选择题1.下面函数与y x=为同一函数的是()2.A y=.B y=ln.xC y e=.ln xD y e=解:ln lnxy e x e x===Q,且定义域(),-∞+∞,∴选D2.已知ϕ是f的反函数,则()2f x的反函数是()()1.2A y xϕ=().2B y xϕ=()1.22C y xϕ=().22D y xϕ=解:令()2,y f x=反解出x:()1,2x y=ϕ互换x,y位置得反函数()12y x=ϕ,选A3.设()f x在(),-∞+∞有定义,则下列函数为奇函数的是()()().A y f x f x=+-()().B y x f x f x=--⎡⎤⎣⎦()32.C y x f x=()().D y f x f x=-⋅解:()32y x f x=Q的定义域(),-∞+∞且()()()()()3232y x x f x x f x y x-=-=-=-∴选C4.下列函数在(),-∞+∞内无界的是()21.1A yx=+.arctanB y x=.sin cosC y x x=+.sinD y x x=解: 排除法:A21122xxx x≤=+有界,B arctan2xπ<有界,Csin cosx x+≤故选D5.数列{}n x有界是lim nnx→∞存在的()A 必要条件B 充分条件C 充分必要条件D 无关条件解:Q {}n x 收敛时,数列n x 有界(即n x M ≤),反之不成立,(如(){}11n --有界,但不收敛,选A6.当n →∞时,21sin n 与1k n为等价无穷小,则k = ( )A 12B 1C 2D -2解:Q 2211sin lim lim 111n n k kn n n n →∞→∞==,2k = 选C二、填空题(每小题4分,共24分)7.设()11f x x=+,则()f f x ⎡⎤⎣⎦的定义域为解: ∵()f f x ⎡⎤⎣⎦()111111f x x==+++ 112x xx≠-+=+ ∴()f f x ⎡⎤⎣⎦定义域为(,2)(2,1)(1,)-∞-⋃--⋃-+∞8.设2(2)1,f x x +=+ 则(1)f x -=解:(1)令()22,45x t f t t t +==-+()245f x x x =-+(2)()221(1)4(1)5610f x x x x x -=---+=-+9.函数44log log 2y =的反函数是 解:(1)4log y =,反解出x :214y x -=(2)互换,x y 位置,得反函数214x y -= 10.n =解:原式32n =有理化11.若105lim 1,knn e n --→∞⎛⎫+= ⎪⎝⎭则k =解:左式=5lim ()510n kn k ne e e →∞---== 故2k =12.2352limsin 53n n n n→∞++= 解:Q 当n →∞时,2sinn ~2n∴原式=2532lim 53n n n n →∞+⋅+= 65三、计算题(每小题8分,共64分)13.求函数21arcsinx y -=解:{21113471110x x x x x --≤≤-≤≤><-->⎧⎪⎨⎪⎩⇔Q 或 ∴函数的定义域为[](3,1)1,4--⋃ 14.设sin 1cos 2x f x ⎛⎫=+ ⎪⎝⎭ 求()f x解:22sin 2cos 21sin 222x x x f ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭Q ()()221f⎡⎤∴=-⎣⎦故()()221f x x =-15.设()f x ln x =,()g x 的反函数()()1211x g x x -+=-,求()()f g x 解: (1) 求22():1x g x y x +=-Q ∴反解出x :22xy y x -=+22x y y =+- 互换,x y 位置得()22g x x x =+-(2)()()ln ln 22f g x g x x x ==⎡⎤⎣⎦+- 16.判别()fx (ln x =的奇偶性。

函数极限习题及解析

函数极限习题及解析

函数极限习题及解析1. 极限的定义函数极限是研究函数变化趋势的重要概念,通过求取函数在某一点附近的极限值,可以推断函数在该点的行为。

函数极限的定义如下:对于函数 f(x),当 x 趋近于 a 时,如果存在一个常数 L,使得对于任意给定的正数ε,都存在一个正数δ,满足当 0 < |x-a| < δ 时,有 |f(x)-L| < ε 成立,那么称函数 f(x) 在 x=a 处具有极限 L,记作lim(x→a) f(x) = L。

2. 基本极限公式在计算极限的过程中,常常会用到一些基本的极限公式,它们的证明可以依靠函数极限的定义以及一些基础的数学概念。

以下是一些常见的基本极限公式:公式1:lim(x→a) c = c,其中 c 为常数。

lim(x→a) c = c,其中 c 为常数。

公式2:lim(x→a) x = a。

lim(x→a) x = a。

公式3:lim(x→∞) kx = ∞,其中 k 为正常数。

lim(x→∞) kx = ∞,其中 k 为正常数。

公式4:lim(x→∞) x^n = ∞,其中 n 为正整数。

lim(x→∞) x^n = ∞,其中 n 为正整数。

公式5:lim(x→a) (f(x) ± g(x)) = lim(x→a) f(x) ± lim(x→a) g(x),其中 f(x) 和 g(x) 在 x=a 处有极限。

lim(x→a) (f(x) ± g(x)) =lim(x→a) f(x) ± lim(x→a) g(x),其中 f(x) 和 g(x) 在 x=a 处有极限。

3. 极限的题和解析题1:求函数 f(x) = (x^2 - 1) / (x - 1) 在 x = 1 处的极限。

解析:直接代入 x = 1,得到 f(x) = 0/0,这种形式的函数是无法通过直接代入求得极限的。

我们可以对该函数进行化简,得到 f(x) = x + 1。

高一数学函数与极限分析练习题及答案

高一数学函数与极限分析练习题及答案

高一数学函数与极限分析练习题及答案一、选择题1. 设函数$f(x)=\sqrt{1-x^2}$,其定义域为$[-1,1]$,关于该函数,下列说法正确的是:A. $f(x)$在$[-1,1]$上单调递增B. $f(x)$在$[-1,1]$上单调递减C. $f(x)$在$x=\frac{\pi}{4}$处取得最大值D. $f(x)$在$x=0$处取得最大值答案:D2. 设函数$f(x)=\frac{1}{x}$,下列说法正确的是:A. $f(x)$在$x=0$处连续B. $f(x)$在$x=0$处可导C. $f(x)$在$x=0$处极限存在D. $f(x)$在$x=0$处极限不存在答案:D3. 设函数$f(x)=e^x$,下列说法正确的是:A. $f(x)$在$x=0$处连续B. $f(x)$在$x=0$处可导C. $f(x)$在$x=0$处极限存在D. $f(x)$在$x=0$处极限不存在答案:A、B、C4. 设函数$f(x)=\sin x$,下列说法正确的是:A. $f(x)$在$x=\frac{\pi}{2}$处连续B. $f(x)$在$x=\frac{\pi}{2}$处可导C. $f(x)$在$x=\frac{\pi}{2}$处极限存在D. $f(x)$在$x=\frac{\pi}{2}$处极限不存在答案:B、C5. 设函数$f(x)=x^3$,下列说法正确的是:A. $f(x)$在$x=0$处连续B. $f(x)$在$x=0$处可导C. $f(x)$在$x=0$处极限存在D. $f(x)$在$x=0$处极限不存在答案:A、B、C二、填空题1. 函数$f(x)=\sin x$在$x=\frac{\pi}{2}$处的导数为______。

答案:12. 函数$f(x)=\frac{1}{x}$在$x=0$处的极限为______。

答案:无穷大或$+\infty$3. 函数$f(x)=e^x$在$x=0$处的连续性、可导性、极限存在性均为______。

函数与极限测试题及答案(二)

函数与极限测试题及答案(二)

函数与极限测试题(二)一. 选择题1.设 F(x) 是连续函数 f (x) 的一个原函数, "M 一 N" 表示“M 的充分必要条件是 N”,则必 有( ).(A) F(x) 是偶函数 一 f (x) )是奇函数. (B) F(x) 是奇函数 一 f (x) 是偶函数. (C) F(x) 是周期函数 一 f (x) 是周期函数 . (D) F(x) 是单调函数 一 f (x) 是单调函数 2.设函数 f (x) = 1x, 则( ) e x 11(A) x = 0, x = 1都是 f (x) 的第一类间断点 .(B) x = 0, x = 1都是 f (x) 的第二类间断点(C) x = 0 是 f (x) 的第一类间断点, x = 1 是 f (x) 的第二类间断点 . (D) x = 0 是 f (x) 的第二类间断点, x = 1是 f (x) 的第一类间断点 . 3.设 f (x ) =x 1x, x 丰 0、1,,则 f [1f(x)] = ( )11A) 1x B) 1 x C) X D) x4.下列各式正确的是 ( )1 x1xx0+x x0+x C) lim (1 1)x= e D) lim (1+ 1) x= exx xx5.已知 lim (x + a )x= 9 ,则 a = ( )。

x x aA.1;B. ;C. ln 3;D. 2 ln 3 。

6.极限: lim (x 1)x= ( )xx +1A.1;B. ;C. e 2;D. e 2 。

7 .极限: lim x 3+ 2 = ( )x x 3A.1;B. ;C.0;D.2.A) lim (1+ ) = 1 B) lim (1+ ) = e8.极限: lim x + 1 - 1 = ( )A.0;B. w ; C 1; D.2.29. 极限:x( x 2 + x - x) = ( )A.0;B. w ;C.2;D. 1 . 210.极限 : limtan x - sin x = ( )A.0;B. w ;C. 1 ;D.16.16二. 填空题 11.极限 x li wm x sin=; 12. x l 0im arctanxx=;13. 若 y = f (x) 在点 x 0 连续,则 lim [f (x) - f (x 0 )]= ;x)x 014. lim = ;x)0x215. lim (1 - )n = ;n)wn16. 若函数 y =,则它的间断点是17. 绝对值函数(x, x > 0;f (x) = x =〈|l0,-x, x x 00;.其定义域是, 值域是。

高三数学函数极限试题答案及解析

高三数学函数极限试题答案及解析

高三数学函数极限试题答案及解析1.已知定义在上的函数满足.当时.设在上的最大值为,且数列的前项和为,则 . (其中)【答案】【解析】依题意可得函数.所以,,,…,.所以数列是一个首项为1,公比为的等比数列.所以.所以.【考点】1.函数的性质.2.数列的通项.3.函数的最值.4.极限问题.2.计算:= .【答案】【解析】这属于“”型极限问题,求极限的方法是分子分母同时除以(的最高次幂),化为一般可求极限型,即.【考点】“”型极限3.计算:=_________.【答案】3【解析】这种极限可先把待求极限式变形,然后观察是哪种展开式的极限再选用相应的方法,.【考点】“”型极限.4.若,则.【答案】【解析】由已知可得,所以,解得.【考点】极限的计算5.函数在处的极限是()A.不存在B.等于C.等于D.等于【答案】A【解析】分段函数在x=3处不是无限靠近同一个值,故不存在极限.[点评]对于分段函数,掌握好定义域的范围是关键。

6.等差数列,的前n项和分别为,则【答案】【解析】解:7.已知,则_______【答案】-2【解析】得,所以-2.8.若展开式的第项为,则________【答案】 2【解析】略9.设,求的最大值【答案】【解析】略10.___________【答案】【解析】略11.函数在点处可导,则,b=【答案】【解析】略12.极限存在是函数在点处连续的()A.充分而不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要的条件【答案】B【解析】略13.函数f (x)=在点x=1和x=2处的极限值都为0,而在点x=-2处不连续,则x·f(x)<0的解集是()A.(-2,0)∪(1,2)B.(-2,2)C.(-∞,-2)∪(1,2)D.(-2,0)∪(2,+∞)【答案】A【解析】略14.()A.B.0C.D.不存在【答案】A【解析】略15.= .【答案】-1【解析】略16.已知,则的值为()A.a B.2a C.3a D.9a【答案】D【解析】则17. .【答案】【解析】略18.=A.—1B.—C.D.1【答案】B【解析】=19.已知,则的值为 .【答案】-8【解析】略20. ( )A.0B.1C.2D.3【答案】C【解析】本题主要考查极限的运算,故原式,故选C。

高中数学函数的极限与连续练习题及参考答案2023

高中数学函数的极限与连续练习题及参考答案2023

高中数学函数的极限与连续练习题及参考答案2023题目一:函数极限1. 计算以下极限:a) lim(x→2) (x^2 + 3x - 4)b) lim(h→0) [(4+h)^2 - 16]/hc) lim(x→∞) [(x+1)/(x-1)]^2d) lim(x→0) (1/x - 1)/(1 - sqrt(1 + x))解答:a) 将x代入函数,得到:lim(x→2) (2^2 + 3*2 - 4) = 8b) 将h代入函数,得到:lim(h→0) [(4+0)^2 - 16]/0 = 0c) 当x趋向于正无穷大时,[(x+1)/(x-1)]^2 = 1d) 将x代入函数,得到:lim(x→0) (1/0 - 1)/(1 - sqrt(1)) = undefined题目二:连续函数2. 判断以下函数在给定区间是否连续:a) f(x) = x^2 - 5x + 6, 在区间[1, 5]上b) g(x) = √(x + 2), 在区间[-2, 3]上c) h(x) = 1/(x-2), 在区间(-∞, 2)上解答:a) 函数f(x)是一个二次函数,对于任意实数x,f(x)都是连续的。

因此,f(x)在区间[1, 5]上连续。

b) 函数g(x)是一个开根号函数,对于非负实数x,g(x)都是连续的。

在区间[-2, 3]上,g(x)的定义域为[-2, ∞),因此在该区间上连续。

c) 函数h(x)在x=2处的定义域为无穷,因此在该点不连续。

在区间(-∞, 2)上除x=2之外的点,h(x)为一个连续函数。

题目三:函数极限的性质3. 判断以下命题的真假,并简要说明理由:a) 若lim(x→a) f(x) = L,且L≠0,则lim(x→a) [f(x)]^2 = L^2。

b) 若lim(x→a) f(x) = L,且f(x) > 0,那么lim(x→a) 1/f(x) = 1/L。

c) 若lim(x→a) f(x) = L,且lim(x→a) g(x) = M,则lim(x→a) [f(x) +g(x)] = L + M。

高三数学数列极限试题答案及解析

高三数学数列极限试题答案及解析

高三数学数列极限试题答案及解析1.已知数列是公差为2的等差数列,是的前n项和,则= .【答案】【解析】由题意得:,因此【考点】数列极限2..【答案】【解析】.【考点】数列的极限.3.计算:.【答案】1【解析】这是“”型极限问题,求极限的方法是转化,分子分母同时除以化为一般的极限问题,.【考点】“”型极限.4.已知点列在直线上,P1为直线轴的交点,等差数列的公差为1 。

(1)求、的通项公式;;(2)若,试证数列为等比数列,并求的通项公式。

(3).【答案】(1)(2)是以2为公比,4为首项的等比数列.(3)1【解析】(1)在直线∵P1为直线l与y轴的交点,∴P1(0,1),又数列的公差为1(2)是以2为公比,4为首项的等比数列.(3)【考点】本题考查了数列的通项及前n项和点评:等差数列的通项公式及应用是数列的重点内容,数列的大题对逻辑推理能力有较高的要求,在数列中突出考查学生的理性思维,这是近几年新课标高考对数列考查的一个亮点,也是一种趋势.随着新课标实施的深入,高考关注的重点为等差、等比数列的通项公式,错位相减法、裂项相消法等求数列的前n项的和等等5.设,,则等于( ).A.B.C.或D.不存在【答案】B【解析】即.6.… =_______________【答案】【解析】,所以.7.数列中,则数列的极限值()A.等于B.等于C.等于或D.不存在【答案】B【解析】解:因为数列中,,可知数列有规律,那么利用极限概念可知其项的值趋近于1,选B.8.计算.【答案】【解析】略9.数列{an}中,a1=,an+an+1=,则(a1+a2+…+an) = ()A.B.C.D.【答案】B【解析】本题考查数列求和技巧及无穷等比数列各项和知识。

由an+an+1=(a1+a2+…+an) =10.数列的通项公式为,则A.1B.C.1或D.不存在【答案】B【解析】由数列的极限的定义可知,数列的极限与该数列的前有限项的值无关,所以故选择B11.设正数满足,则【答案】【解析】略12.。

函数与极限测试题及答案(二)

函数与极限测试题及答案(二)

函数与极限测试题及答案(二)1.选择题1.设F(x)是连续函数f(x)的一个原函数,"M N"表示“M的充分必要条件是N”,则必有(。

)。

A)F(x)是偶函数f(x)是奇函数。

(B)F(x)是奇函数f(x)是偶函数。

(C)F(x)是周期函数f(x)是周期函数。

(D)F(x)是单调函数f(x)是单调函数。

答案:D2.设函数f(x) = 1/(ex(x-1)),则(。

)。

A)x = -1,x = 1都是f(x)的第一类间断点。

(B)x = -1,x = 1都是f(x)的第二类间断点。

(C)x = 1是f(x)的第一类间断点,x = 1是f(x)的第二类间断点。

(D)x = 1是f(x)的第二类间断点,x = 1是f(x)的第一类间断点。

答案:C3.设f(x) = [1/(x-1)]。

x ≠ 1,则f[1.x] = (。

),x ≠ 1,则f[1.x] = (。

)。

A)1-x;(B)1-x2;(C)1-x;(D)1-x2.答案:A4.下列各式正确的是(。

)。

A)limx→+∞x/(x+1) = 1;(B)limx→0xsin(1/x) = 0;(C)limx→1(x-1)/(x2-1) = 1/2;(D)limx→∞(1-1/x)e-x = 0.答案:A5.已知limx→∞[(x3+2)/(x3+1)] = a,则a = (。

)。

A)1;(B)∞;(C)e;(D)2ln3.答案:C6.极限:lim(x→+∞)[(x+1)/(x2+2)] = ()。

A)1;(B)∞;(C)e;(D)2.答案:A7.极限:lim(x→0)(x+1-1)/x2 = ()。

A)0;(B)∞;(C)1;(D)2.答案:C8.极限:lim(x→∞)(x+1-1)/x2 = ()。

A)0;(B)∞;(C)1;(D)2.答案:A9.极限:lim(x→+∞)(x2+x-x)/x = ()。

A)0;(B)∞;(C)2;(D)1.答案:C10.极限:lim(x→π/4)(tanx-sinx)/(sin3x/2) = ()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲:函数与数列的极限的强化练习题答案一、单项选择题1.下面函数与y x=为同一函数的是()2.A y=.B y=ln.xC y e=.ln xD y e=解:ln lnxy e x e x===,且定义域(),-∞+∞,∴选D2.已知ϕ是f的反函数,则()2f x的反函数是()()1.2A y xϕ=().2B y xϕ=()1.22C y xϕ=().22D y xϕ=解:令()2,y f x=反解出x:()1,2x y=ϕ互换x,y位置得反函数()12y x=ϕ,选A3.设()f x在(),-∞+∞有定义,则下列函数为奇函数的是()()().A y f x f x=+-()().B y x f x f x=--⎡⎤⎣⎦()32.C y x f x=()().D y f x f x=-⋅解:()32y x f x=的定义域(),-∞+∞且()()()()()3232y x x f x x f x y x-=-=-=-∴选C4.下列函数在(),-∞+∞内无界的是()21.1A yx=+.arctanB y x=.sin cosC y x x=+.sinD y x x=解: 排除法:A21122xxx x≤=+有界,B arctan2xπ<有界,C sin cosx x+≤故选D5.数列{}n x有界是lim nnx→∞存在的()A 必要条件B 充分条件C 充分必要条件D 无关条件解: {}n x收敛时,数列n x有界(即nx M≤),反之不成立,(如(){}11n--有界,但不收敛,选A6.当n→∞时,21sinn与1kn为等价无穷小,则k= ()A12B 1C 2D -2解:2211sinlim lim111n nk kn nn n→∞→∞==,2k=选C二、填空题(每小题4分,共24分)7.设()11f xx=+,则()f f x⎡⎤⎣⎦的定义域为解:∵()f f x⎡⎤⎣⎦()111111f xx==+++112x xx≠-+=+ ∴()f f x ⎡⎤⎣⎦定义域为(,2)(2,1)(1,)-∞-⋃--⋃-+∞8.设2(2)1,f x x +=+ 则(1)f x -=解:(1)令()22,45x t f t t t +==-+()245f x x x =-+(2)()221(1)4(1)5610f x x x x x -=---+=-+9.函数44log log 2y =的反函数是解:(1)4log y =,反解出x :214y x -=(2)互换,x y 位置,得反函数214x y -= 10.n =解:原式32n =有理化11.若105lim 1,knn e n --→∞⎛⎫+= ⎪⎝⎭则k =解:左式=5lim ()510n kn k ne e e →∞---==故2k =12.2352limsin 53n n n n→∞++= 解: 当n →∞时,2sinn ~2n∴原式=2532lim 53n n n n →∞+⋅+= 65三、计算题(每小题8分,共64分)13.求函数21arcsinx y -=解:{21113471110x x x x x --≤≤-≤≤><-->⎧⎪⎨⎪⎩⇔ 或∴函数的定义域为[](3,1)1,4--⋃ 14.设sin1cos 2x f x ⎛⎫=+ ⎪⎝⎭求()f x 解:22sin 2cos21sin 222x x x f⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭()()221f⎡⎤∴=-⎣⎦故()()221f x x =-15.设()f x ln x =,()g x 的反函数()()1211x g x x -+=-,求()()f g x 解: (1) 求22():1x g x y x +=- ∴反解出x :22xy y x -=+22x y y =+- 互换,x y 位置得()22g x x x =+- (2)()()ln ln 22f g x g x x x ==⎡⎤⎣⎦+-16.判别()fx (ln x =的奇偶性。

解法(1):()f x 的定义域(),-∞+∞,关于原点对称()(ln x x f -=-+=(1ln ln(x x -=+=-+()f x =-()ln(f x x ∴=为奇函数解法(2):()()f x f x +-(ln(ln x x =++-+)ln (ln10x x ⎡⎤=+==⎢⎥⎣⎦()()f x f x ∴-=- 故()f x 为奇函数17.已知()f x 为偶函数,()g x 为奇函数,且()()11f xg x x +=-,求()f x 及()g x 解: 已知()()f x g x +()11x =⋯1- 1()()1f x g x x -+-=-- 即有1()()1f xg x x --=+()2⋯()()2∴1+得()11211f x x x =--+ 故 21()1f x x =- ()()21-得()11211g x x x =+-+ 故2()1xg x x =- 18.设32lim 8n n n a n a →∞+⎛⎫=⎪-⎝⎭,求a 的值。

解: 3323lim lim 1n nn n n a a n a n a →∞→∞+⎛⎫⎛⎫=+⎪ ⎪--⎝⎭⎝⎭lim,n naa n aee →∞-==8a e ∴=故ln83ln 2a ==19.求()111lim 12231nn n n →∞⎛⎫++⋯+ ⎪ ⎪⋅⋅+⎝⎭ 解:(1)拆项,11(1)(1)k kk k k k+-=++ 111,2,,1k n k k =-=⋯+ ()11112231n n ++⋯+⋅⋅+ 1111112231n n ⎛⎫⎛⎫⎛⎫=-+-+⋯- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭ 111n =-+ (2)原式=lim 11111lim n nn n n e e n →∞--+→∞⎛⎫-== ⎪+⎝⎭20.设()()0,1,xf x aa a =>≠求()()()21limln 12n f f f n n →∞⋅⋯⎡⎤⎣⎦ 解: 原式=()122ln 1limn n a a a n→∞⋅⋯ []2ln 2ln ln 1lim n a a n a n→∞=++⋯+ 2ln 12limn a nn →∞⋯+=⋅++2(1)ln 2limn n na n →∞+=⋅⋅()ln 0,112a a a =>≠ 四、综合题(每小题10分,共20分) 21.设()f x()3f x =(){}f f f x ⎡⎤⎣⎦并讨论()3f x 的奇偶性与有界性。

解:(1)求()3f x()()2f x f x =()()32f x f x f f x ===⎡⎤⎣⎦(2)讨论()3f x的奇偶性()()33f x f x -==-()3f x ∴为奇函数(3)讨论()3f x 的有界性()3f x =<=()3f x ∴有界22.从一块半径为R 的圆铁片上挖去一个扇形,把留下的中心角为ϕ的扇形做成一个漏斗(如图),试将漏斗的容积V 表示成中心角ϕ的函数。

解:(1)列出函数关系式,设漏斗高为h ,底半径为r ,依题意:漏斗容积V=213r h πh r R π==ϕ 2224R r h π2ϕ∴==故2234R V ππ2ϕ=⋅ =(2)函数的定义域()222240,2ππ-ϕ>ϕ<()0π∴<ϕ<2故)0V π=<ϕ<2 五、证明题(每小题9分,共18分) 23.设()f x 为定义在(),-∞+∞的任意函数,证明()f x 可表示为一个偶函数与一个奇函数之和。

证:(1) ()()()2f x f x f x +-=()()2f x f x --+(2)令()()()()2f x f xg x x +-=-∞<<+∞()()()()2f x f xg x g x -+-==()g x ∴为偶函数(3)令()()()()2f x f x x x --ϕ=-∞<<+∞()()()()2f x f x x x --ϕ-==-ϕ()x ∴ϕ为奇函数(4)综上所述:()f x ()g x =偶函数+()x ϕ奇函数24 设()f x 满足函数方程2()f x +1f x ⎛⎫⎪⎝⎭=1x,证明()f x 为奇函数。

证:(1)()()1121f x f x x⎛⎫+=⋯⋯⎪⎝⎭ 令()11,2t f f t t xt ⎛⎫=+= ⎪⎝⎭函数与自变量的记号无关()()122f f x x x ⎛⎫∴+=⋯⋯ ⎪⎝⎭(2)消去1f x ⎛⎫ ⎪⎝⎭,求出()f x ()()()()2221:4f x f x x x-⨯-=-()()22223,3x x f x f x x x---==(3)()f x 的定义域()(),00,-∞⋃+∞又()()223x f x f x x--==-- ()f x ∴为奇函数*选做题1已知222(1)(21)126n n n n ++++⋯+=,求22233312lim 12n n n n n n →∞⎛⎫++⋯+ ⎪+++⎝⎭解: 222312n n n++⋯++2222233311211n n n n n n ++⋯+≤+⋯+≤+++且222312lim n n n n →∞++⋯++ ()()31(21)1lim36n n n n n n →∞++==+ 222312lim 1n n n →∞++⋯++3(1)(21)1lim6(1)3n n n n n →∞++==+∴由夹逼定理知,原式13=2 若对于任意的,x y ,函数满足:()()()fx y f x f y +=+,证明()f y 为奇函数。

解 (1)求()0f :令()()()0,0,02000x y f f f ===→=(2)令()()()()():0x y f f y f y f y f y =-=-+→-=-()f y ∴为奇函数第二讲:函数的极限与洛必达法则的强化练习题答案一、单项选择题(每小题4分,共24分)1. 下列极限正确的( ) A . sin lim 1x x x→∞= B . sin lim sin x x xx x →∞-+不存在C . 1lim sin 1x x x →∞=D . lim arctan 2x x π→∞=解:011sin lim sin lim x t t x tx x t→∞→= ∴选C注:sin 1sin 10lim 0;lim 1sin 101x x xx x A B x x x→∞→∞--===++2. 下列极限正确的是( )A . 10lim 0x x e -→= B . 10lim 0xx e +→= C . sec 0lim(1cos )xx x e →+=D . 1l i m (1)xx x e →∞+=解:101lim 0xx e e e--∞∞→=== ∴选A 注::,:2,:1B C D +∞3. 若()0lim x x f x →=∞,()0lim x x g x →=∞,则下列正确的是 ( ) A . ()()0l i m x x f x g x →+=∞⎡⎤⎣⎦B . ()()0lim x x f x g x →-=∞⎡⎤⎣⎦C . ()()1l i mx x f x g x →=+ D . ()()0lim 0x x kf x k →=∞≠解:()()0lim lim x x x x k kf x k f x k →→≠==⋅∞∞∴选D4.若()2lim2x f x x→=, 则()lim3x xf x →= ( )A .3B .13 C .2 D .12解:()()002323lim lim 32x t tx x t f x f t →→= ()021211lim 23323t f t t→==⋅= ∴选B5.设()1sin (0)0(0)1sin (0)x x x x f x x a x x ⎧<⎪⎪=⎪=⎨⎪+>⎪⎪⎩且()0lim x f x →存在,则a = ( ) A .-1 B .0 C .1 D .2 解:0sin lim 1,x xx→== 01lim sin x x a o a x +→⎡⎤⎛⎫+=+ ⎪⎢⎥⎝⎭⎣⎦ 1a ∴= 选C6.当0x +→时,()1f x =是比x高阶无穷小,则 ( )A .1a >B .0a >C .a 为任意实数D .1a <解:00112lim lim 01a x x xa a x ++→→>=∴> 故选A二 、填空题(每小题4分,共24分)7.lim 1xx x x →∞⎛⎫= ⎪+⎝⎭解:原式lim 1111lim 11x xxx x e e x →∞-∞-+→∞⎛⎫-== ⎪+⎝⎭8.2112lim 11x x x →⎛⎫-= ⎪--⎝⎭解:原式()()()112lim 11x x x x →∞-∞+--+ 111lim12x x →==+9.()()()3100213297lim 31x x x x →∞-+=+解:原式3972132lim lim 3131x x x x x x →∞→∞∞⎛⎫ ⎪∞⎝⎭-+⎛⎫⎛⎫⋅ ⎪ ⎪++⎝⎭⎝⎭328327⎛⎫== ⎪⎝⎭10.已知216lim 1x x ax x→++-存在,则a = 解:()1lim 10x x →-=()21lim 60x x ax →∴++=160,7a a ++==-11.1201arcsin lim sin xx x e x x -→⎛⎫+= ⎪⎝⎭解:11220011sin 1,lim 0lim sin 0x xx x e e x x-→→≤=∴= 又00arcsin limlim 1x x x xxx →→== 故 原式=112.若()220ln 1lim0sin n x x x x→+=且0sin lim01cos n x xx→=-,则正整数n = 解:()22220ln 1limlim sin n n x x x x x x xx→→+⋅= 20420,lim 02n x n x n x→<>2,4,n n ∴>< 故3n =三、计算题(每小题8分,共64分) 13.求sin 32limsin 23x x xx x→∞+-解: 原式=sin 32lim sin 23x xx xx→∞+-sin 31lim0sin 31,lim 0x x x x x x →∞→∞⎛⎫=≤= ⎪⎝⎭sin 21lim0sin 21,lim 0x x x x x x →∞→∞⎛⎫=≤= ⎪⎝⎭∴原式022033+==-- 14.求()1cos x x x →-解:原式有理化x →0tan (1cos )1lim(1cos )2x x x x x →-=⋅-0tan 111limlim 222x x x x x x →∞→=⋅==15.求21lim sin cos xx x x →∞⎛⎫+ ⎪⎝⎭解:令1t x=,当x →∞时,0t → 原式()10lim cos sin 2t t t t →=+ []10lim 1cos 1sin 2t t t t →=+-+()0cos 1sin 2lim2t t ttee→∞-+=16.求0ln cos 2limln cos3x xx→解:原式[][]ln 1cos 21limln 1cos31x x x →--+-变形0cos 21limcos31x x x →--等价()()2021242lim 1932x x x →-=-等价 注:原式02sin 2cos3limcos 23sin 3x x xx x→∞⎛⎫ ⎪∞⎝⎭-⨯- 49=⋯⋯=17.求02lim sin x x x e e xx x-→---解: 原式002lim 1cos x x x e e x -→+-- 00000lim lim 2sin cos x x x xx x e e e e x x--→→++=18.设()fx 1,0x e a x x -⎧+>⎪=<且()0lim x f x →存在,求a 的值。

相关文档
最新文档