时间序列分析讲义(3)
精选时间序列分析时间序列讲解讲义

§1.2 平稳序列
一· 平稳序列
定义 如果时间序列 {X t} {X t : t N满}足
(1) 对任何的
t
N,
EX
2 t
(2) 对任何的 t N , EX t
(3) 对任何的 t, s N , E[( X t )( X s )] ts
就称是 X平t 稳时间序列,简称时间序列。称实数 为 的{自 t协} 方差X函t 数。
a则j 称 是绝对可{a和j}的。
j
对于绝对可和的实数列
,{a{定Xj}{义tX}零t}均值白噪声 的无穷{滑t动} 和
如下 X t a j t j ,t ,Z则 是{X平t}稳序列。下面说明 是
j
{X t}
平稳序列。
由 Schwarz不等式得到
E[ a jt j ] a j E t j a j
j0
k
q
0, k q
{ X t }平稳
第三十七页,共74页。
例:X t t 0.36 * t1 0.85 * t2 , t ~ WN (0,22 )
第三十八页,共74页。
概率极限定理:
定理 (单调收敛定理) 如果非负随机变量序列单调不减: 0 1 2
lim 则当 n ,a时s ,有 E
{St }
3. 随机项估计即为
方法一:分段趋势法
1 趋势项(年平均)
第五页,共74页。
减去趋势项后,所得数据 {Xt Tˆt}
第六页,共74页。
2、季节项 {Sˆt}
第七页,共74页。
3.随机项的估计 Rˆt xt Tˆt Sˆt ,t 1,2,,24.
第八页,共74页。
方法二:回归直线法
当 0, 2 称1为标准白噪声。
《时间序列分析》讲义 第三章 平稳时间序列分析

k
1 k1 2 k2,k
2
自相关系数
自相关系数的定义
k
k 0
平稳AR(p)模型的自相关系数递推公式
k 1k 1 2 k 2 p k p
常用AR模型自相关系数递推公式
AR(1)模型 k 1k , k 0
AR(2)模型
1,
k
1
1 2
1k1 2 k2
k 0 k 1 k2
自回归系数多项式
(B) 11B 2B2 pBp
特征方程
中心化AR(p)模型
xt 1 xt1 2 xt2 p xt p t
可以看成p阶常系数非齐次线性差分方程
xt 1 xt1 2 xt2 p xt p t
它对应的齐次方程的特征方程为
p 1 p1 p1 p 0
1 12
协方差函数
在平稳AR(p)模型两边同乘xt-k,再求期望
E(xt xtk ) 1E(xt1xtk ) p E(xt p xtk ) E(t xtk )
根据
E( t xtk ) 0 ,k 1
得协方差函数的递推公式
k 1 k1 2 k 2 p k p
例题
例3.3 求平稳AR(1)模型的协方差
12
2 2
,
0,
k 0 k 1
k 2 k 3
偏自相关系数
滞后k偏自相关系数由Yule-Walker方程 确定
zt a1 zt1 a2 zt2 a p zt p h(t)
齐次线性差分方程
zt a1 zt1 a2 zt2 a p zt p 0
齐次线性差分方程的解
特征方程
p a1p1 a2p2 ap 0
特征方程的根称为特征根,记作1,2,…,p
时间序列分析讲义

– 在SAS系统中有一个专门进行计量经济与时间序列分析 的模块:SAS/ETS。SAS/ETS编程语言简洁,输出功能强 大,分析结果精确,是进行时间序列分析与预测的理 想的软件
– 由于SAS系统具有全球一流的数据仓库功能,因此在进 行海量数据的时间序列分析时它具有其它统计软件无 可比拟的优势
例2.3自相关图
时间序列分析讲义
例2.4时序图
时间序列分析讲义
例2.4 自相关图
时间序列分析讲义
例2.5时序图
时间序列分析讲义
例2.5自相关图
时间序列分析讲义
• 例2.3时序为非平稳的,有趋势; • 例2.4时序非平稳性,有趋势 • 例2.5时序是一个平稳的
时间序列分析讲义
非平稳性序列的平稳化
时间序列分析讲义
2020/11/16
时间序列分析讲义
第一章 时间序列分析基本概 念
时间序列分析讲义
第一章 时间序列分析基本概念
1.1 时间序列的定义
• 随机序列:按时间顺序排列的一组随机变量
• 观察值序列:随机序列的 个有序观察值,称之为 序列长度为 的观察值序列
• 随机序列和观察值序列的关系
– 观察值序列是随机序列的一个实现 – 我们研究的目的是想揭示随机时序的性质 – 实现的手段都是通过观察值序列的性质进行推断
满足下列条件的随机序列称为白噪声序列,也称 为纯随机序列:
注1:白噪声序列也是平稳时间序列中的特例. 注2:由于白噪声序列不同时刻的值相互独立,那么 这样的序列数值不能对于将来进行推断与预测,所以 白噪声是不能建立模型的。 时序图1.3符合白噪声序列特征
时间序列分析讲义
若满足时间序列满足: 称该时间序列是周期为T的时间序列.
时间序列分析法讲义

2004
(4) 1451604 1494570 1478651 1577307 6002132
季别累计
(5) 5277839 5503950 5333203 5724816 21839808
季别平均 季节指数
(6) 1319460 1375988 1333301 1431204 1364988
(7) 0.9666 1.0081 0.9768 1.0485 4.0000
97
8
20 -1 503 - 1
07
50
3
20 0 526 0 0 08
20 1 559 55 1
09
9
解:设t表示年次,y表示年发电量,则方成为:y=a+bt
a y 2677 535.4
n5
b ty 278 27.8 t 2 10
y=535.4+27.8t
当t=3时,y=618.8
指数平滑法是生产预测中常用的一种方法。 也用于中短期经济发展趋势预测,
(1) 一次指数平滑法(单重指数平滑法)
X t1
S (1) t
X t
(1
)S
(1) t 1
一次指数平滑法的初值的确定有几种方法
(A) 取第一期的实际值为初值(数据资料较多);S0(1) X1 (B) 取最初几期的平均值为初值(数据资料较少)。
2、指数的分类 (1)个体指数:反映某一具体经济现象动态变动的相
对数
(2)综合指数:反映全部经济现象动态变动的相对数
(3)数量指标指数:它是表明经济活动结果数量 多少的指数。
(4)质量指标指数:它是表明经济工作质量好坏 的指数。
(5)定基指数:它是指各个指数都是以某一个固 定时期为基期而进行计算的一系列指数。
时间序列分析课件讲义

3.5E+09 3.0E+09 2.5E+09 2.0E+09 1.5E+09 1.0E+09
5.0E+08 99:01 99:07 00:01 00:07 01:01 01:07 02:01 02:07
Y
8
单变量时间序列分析
趋势模型
确定型趋势模型
平滑模型 季节模型
水平模型
加法模型
9
乘法模型
ARMA模型 ARIMA模型 (G)ARCH类模型
42
(2)ADF检验 DF检验只对存在一阶自相关的序列适用。 ADF检验 适用于存在高阶滞后相关的序列。 y = y t 1 + t
表述为
y t = y t 1 + t
t
存在高阶滞后相关的序列,经过处理可以表述为 y t = y t 1 + 1yt 1+ 2yt 2 + ....... + p1yt p1 + t 上式中,检验假设为
34
特别地,若 其中,{ t }为独立同分布,且E( t ) = 0,
D( t )
2 = <
yt= y t 1+ t
t = 1,2,......
,则{
(random waik process) 。可以看出,随机游动过程是 单位根过程的一个特例。
yt }为一随机游动过程
(2) 季节差分
3. 随机性
23
(四)ARMA模型及其改进 1. 自回归模型 AR(p) 模型的一般形式
( B) yt
=
et
AR (p) 序列的自相关和偏自相关 rk :拖尾性 k :截尾性
时间序列分析课件讲义

3.5E+09 3.0E+09 2.5E+09 2.0E+09 1.5E+09 1.0E+09
5.0E+08 99:01 99:07 00:01 00:07 01:01 01:07 02:01 02:07
Y
8
单变量时间序列分析
趋势模型
确定型趋势模型
平滑模型 季节模型
水平模型
加法模型
9
乘法模型
ARMA模型 ARIMA模型 (G)ARCH类模型
yt 可以用既往的 et 有限加权和表出 et 可以用既往的 yt 无限加权和表出
26
相关函数
平稳与可逆
若一个序列可以用无限阶的自回归模型逼近,即逆 函数存在,称为具有可逆性,也就是可逆的。
27
3. 自回归移动平均混合模型 ARMA( p, q ) 模型的一般形式 ARMA (p , q) 序列 的自相关和偏自相关 4. 改进的ARMA模型 ARIMA( p , d , q ) s ) ARIMA (P,D,Q ARIMA(p,d,q) (P,D,Q ) s
例:我国商品零售量指数
15
(三)模型分析与评价
1. 检验 各种不同模型有不同的检验 关键——模型已提取所有信息 2. 对历史数据拟合的分析 直观判断法 图、表 误差分析法 MAPE 3. 对未来趋势反映的分析 近期趋势的反映 直观判断 误差分析 试预测 预测结果的可能性分析
16
二、ARMA模型
(一)模型的引进
多元线性回归 自回归 移动平均模型 简单平均:序列平稳 围绕均值波动
FT 1 = Y =
FT 2
=
Y
=
y1 y2 ... yT T y1 y2 ... yT yT 1 T
时间序列分析讲义(2)

(3) 最大似然估计法(MLE )首先大家打开教材第43页看,我们纠正教材中的错误。
它说: “对于一组相互独立的随机变量),,2,1(,T t tx =,当得到一个样本),,,(21T x x x 时,似然函数可表示为∏===T t t x f x f x f x f T x x x L 1)()2()2()1(),,2,1(γγγγγ 式中),,,(21k γγγγ =是一组未知参数”。
我们知道时间序列一般不是独立的,而是相依的离散时间随机过程。
因此,得到的样本),,,(21T x x x 不可能是相互独立的,似然函数绝不是以上概率密度乘积的形式。
所以,教材中这一段是错误的。
似然函数在估计理论中有着根本的重要性的一个原因是因为“似然原理”。
这个原理说:已知假定的模型是正确的,数据非得告诉我们的关于参数的全部包含在似然函数中,数据的所有其他方面是不切题的。
实际上,一般的ARMA 过程(含AR 、MA 过程)参数的最大似 然估计计算过程很复杂。
至少有三种方法写出精确的似然函数:向后预报法、递推预报法、状态空间与卡尔曼(Kalman )滤波法。
我们讲只对递推预报法最简要介绍,从而为引出模型选择的AIC 、BIC 信息准则铺平道路。
我们先以最简单的因果的AR(1)过程的MLE 为例,说明MLE 的主要思想。
考虑因果的AR(1)过程,满足模型tu t X t X +-+=110φφ, ),0(~2σN IID t u , 且11<φ。
则均值为 )(110t X E =-=φφμ。
我们以),1,(2σφμ为三个未知参数,而)11(0φμφ-=不作独立的未知参数。
模型中心化为 tu t X t X +--=-)1(1μφμ。
设已得到了样本值),,,(21T x x x 。
则关于参数),1,(2σφμ的似然函数为 )2,1,;1()2,1,;12()2,1,;2,,2,11()2,1,;1,,1(),,2,1;2,1,(σφμσφμσφμσφμσφμx f x x f T x x x T x f T x x T x f Tx x x L ⨯---= 联合概率密度在样本值),,,(21T x x x 处的值写为条件概率密度和最后一个无条件概率密度的乘积。
随机时间序列分析模型讲义

随机时间序列分析模型讲义【讲义】随机时间序列分析模型一、引言随机时间序列分析是一种经济学、统计学和数学领域的重要研究方法,用于描述和预测随机现象(例如经济指标、股票价格)随时间发展的变化规律。
本讲义将介绍常见的随机时间序列分析模型。
二、自回归模型(AR)1. 定义:自回归模型是一种常见的线性时序模型,它假设当前时刻的数值与过去若干时刻的数值相关。
AR(p)模型表示当前时刻的值与前p个时刻的值相关。
2. 公式:AR(p)模型的数学公式可表示为:y_t = c + φ_1 * y_(t-1) + φ_2 * y_(t-2) + ... + φ_p * y_(t-p) + ε_t其中,y_t代表当前时刻的数值,c为常数,φ_i为自回归系数,ε_t为误差项,服从均值为0,方差为σ^2的正态分布。
3. 参数估计:通过样本数据拟合AR(p)模型,可使用最小二乘法或极大似然法估计自回归系数。
三、移动平均模型(MA)1. 定义:移动平均模型是一种常见的线性时序模型,它假设当前时刻的数值与过去若干时刻的误差相关。
MA(q)模型表示当前时刻的值与过去q个时刻的误差相关。
2. 公式:MA(q)模型的数学公式可表示为:y_t = c + ε_t + θ_1 * ε_(t-1) + θ_2 * ε_(t-2) + ... + θ_q * ε_(t-q)其中,y_t代表当前时刻的数值,c为常数,θ_i为移动平均系数,ε_t为误差项。
3. 参数估计:通过样本数据拟合MA(q)模型,可使用最小二乘法或极大似然法估计移动平均系数。
四、自回归移动平均模型(ARMA)1. 定义:自回归移动平均模型是自回归模型与移动平均模型的结合,综合考虑了过去若干时刻的数值和误差对当前时刻数值的影响。
ARMA(p, q)模型表示当前时刻的值与过去p个时刻的值和过去q个时刻的误差相关。
2. 公式:ARMA(p, q)模型的数学公式可表示为:y_t = c + φ_1 * y_(t-1) + φ_2 * y_(t-2) + ... + φ_p * y_(t-p) + ε_t + θ_1 * ε_(t-1) + θ_2 * ε_(t-2) + ... + θ_q * ε_(t-q)3. 参数估计:通过样本数据拟合ARMA(p, q)模型,可使用最小二乘法或极大似然法估计自回归系数和移动平均系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四次作业第1题 已知某地区每年常驻人口数量近似服从MA (3) 模型(单位:万人)3212.06.08.0100----+-+=t t t t t Y εεεε,()25,0~N iid t ε。
2002—2004 年的常驻人口数量及1步预测数量下表。
(1)计算此模型的均值函数t Y E 和自相关函数k ρ。
(2)预测未来5年该地区常驻人口数量的95%的置信区间。
第2题 一个销售序列的拟合ARIMA (1, 1, 0)模型为)2,0(IID ~,)1)(43.01(N a a Z B B t t t =--。
已知观测值9.33,4.335049==Z Z 。
计算535251,,Z Z Z 的预报值,以及它们的90%置信的预报区间。
第3题 基于样本100,,2,1y y y 估计模型(c2),得到)0698.0()1543.0()214.7(19013.0188.026.13t u t Y t t Y +-++=. 在通常的检验水平上(=α10%,5%,1%)检验该模型是否存在单位根。
◆ 自回归求和移动平均(ARIMA )过程的预测(实际问题中常用到的补充内容,教材没有。
期末必考一题)回忆在教材的第二章第二节我们学习过ARIMA(p,d,q)过程。
定义 设1≥d 为整数。
对时间序列{}Z t t X ∈,,如果它的d 次向后 差分序列tX d L t Y )1(:-=是因果平稳的ARMA(p,q)过程,则称{}t X 是ARIMA(p,d,q)过程,即满足模型)2,0(~)(0)1)(()(σφWN tu t u L t X d L L t X L Θ+=-Φ=*Φ。
其中011)(=---=Φpx px x φφ 的p 个根都在单位圆1||=z 以外,并且0)(=Φx 与011)(=+++=Θqx q x x θθ 没有公共根。
由于方程0)1)(()(=-Φ=*Φd x x x 有d 重单位根1=x 位于单位圆1||=z 上,称{}t X 是单位根过程,它必然不能是平稳的(既不是因果平稳的,也不是非因果平稳的)。
而ARIMA(p,d,q)过程存在是否可逆的问题。
回忆时间序列可逆性的定义。
定义 称(可以是平稳的或非平稳的)时间序列{}Z t t X ∈,是可逆的,如果存在数列{}0,≥j j π满足∞<∑∞=|0|jj π以及常数λ,使得).(0s m j jt X j t u ∑∞=-+=πλ 是白噪声)2,0(σWN 。
可逆性是与因果平稳性没有关联的性质。
由于以上ARIMA(p,d,q)过程可以看作是ARMA(p+d,q)过程)2,0(~)(0)(σφWN tu tuL t X L Θ+=*Φ,因此可以通过ARMA 过程可逆性的判定定理去判别ARIMA(p,d,q)过程的可逆性。
补充推论 以上ARIMA(p,d,q)过程{}t X 是可逆的,当且仅当方程011)(=+++=Θqx q x x θθ 的q 个根都在单位圆1||=z 以外。
此时{}tX 有唯一的逆转形式.).(0)(s m j jt X j t X L t u ∑∞=-+=*∏+=πλλ,其中∑=+-=Θ-=q j j110)1(0θφφλ,∑∞=*=*∏0)(j j x j x π满足10=*π和∞<∑∞=*0||j j π,由)()1)(()()()(x d x x x x x Θ-Φ=Θ*Φ=*∏唯一确定。
还注意到由于0)1()11)(1(0)1(=Θ-Φ=∑∞=*=*∏d j j π,且10=*π,因此有101-=*-=∑∞=*ππj j 。
注解 设)(t f 是至多1-d 次确定性的(非随机的)多项式。
则对以上ARIMA(p,d,q)过程{}t X ,有tuL t X d L L t f d L t X d L L t f t X d L L )(0)1)(()]()1()1)[(()]([)1)((Θ+=-Φ=-+-Φ=+-Φφ,因为0)()1(=-t f d L 。
例如,0]2210[3)1(=++-t t L βββ。
所以,ARIMA(p,d,q)过程可以表示带有确定性多项式趋势的序列,{}tX 不能被tu L t X d L L )(0)1)((Θ+=-Φφ唯一确定。
注解 对ARIMA(p,d,q)过程{}tX 的建模可以先对它进行d 次差分,然后对差分序列tX d L t Y )1(:-=建立因果平稳的ARMA(p,q)过程,经过初步识别、参数估计、用信息准则定阶、诊断式检验的完整步骤。
现在我们开始讨论ARIMA(p,d,q)过程的预测问题。
设有ARIMA(p,d,q)过程{}t X 满足模型)2,0(~)(0)1)(()(σφIID tu tu L t X d L L t X L Θ+=-Φ=*Φ(加强为独立同分布的白噪声)。
其中011)(=---=Φpx px x φφ 与011)(=+++=Θqx qx x θθ 的根都在单位圆1||=z 以外,且没有公共根。
则以上补充推论说{}t X 是可逆的,并且有唯一的逆转形式(见推论中形式)。
由逆转形式可以看出:对∞<≤t 1,如果给定了 ,1,-t XtX (到无穷远过去)的值,则也给定了 ,1,-t ut u (到无穷远过去)的值。
但是反之不然,因为序列{}t X 不能被模型tu L t X d L L )(0)1)((Θ+=-Φφ唯一确定。
当时间原点在t 时,记条件期望⎥⎦⎤⎢⎣⎡-⋅=⋅到无穷远过去)(,1,:)( t X t X E t E 。
我们首先介绍ARIMA(p,d,q)过程的递推预测方法。
记dp x dp x dx p x px d x x x +*+--*-=----=-Φ=*Φφφφφ 11)1)(11()1)(()(为d p +次多项式。
将原模型tu L t X d L L t X L )(0)1)(()(Θ+=-Φ=*Φφ改写为q t uq t u t u d p t X d p t X t X -++-++--*++-*+=θθφφφ 11110。
设时间原点在∞<≤t 1。
对任何1≥l ,在ql t u q l t u l t u d p l t Xd p l t X l t X-+++-++++--+*++-+*+=+θθφφφ 11110式中各项取条件期望)(⋅tE ,并利用t u 的独立性而得到提前l 期的最小均方误差“近似预测”的递推公式⎪⎪⎩⎪⎪⎨⎧+≥--+*+++-+*+≤≤-++++--+*+++-+*+=+1)()1(101)()1(10)(q l d p l t X t E d p l t X t E q l q l t u q t u l d p l t X t E d p l t X t E lt X t E φφφθθφφφ 其中⎪⎩⎪⎨⎧≤+≥+=+01)()(j j t X j j t X t E j t X t E ,⎪⎩⎪⎨⎧≤+-+-+=+≥=+0)(110)(j j t X j t E j t X jt u j jt u t E 差)(等于提前一期预测误。
我们还需要给出预测误差及其方差的表示式,以便给出预测区间。
回忆有单位根的ARIMA(p,d,q)过程是非平稳的,并没有收敛的传递形 式∑∞=-*+=0j jt uj t X ψμ。
设时间原点在∞<≤t 1。
对任何1≥l ,此时lt X +可以写成截断的传递形式1)()(≥+=+l l tC l t I l t X, 其中∑-=-+*=10)(l j jl t uj l t I ψ 只是未来冲击(新息)lt u t u ++,,1 的线性函数。
回忆前面d p +次多形式)(x *Φ的展开式。
则幂级数∑∞=*=*ψ0)(j j x j x ψ的系数10=*ψ和*j ψ(1≥j )可由等式)()()(x x x Θ=*ψ*Φ,即qx qx x x d p x d p x θθψψφφ+++=+*+*++*+--*- 11]2211][11[唯一确定。
比较等式两端系数,这些系数*jψ满足递推关系式12211≥+*--*+++*-*+*-*=*j jd p j d p j j j θψφψφψφψ ,其中规定10=*ψ,0=*jψ对0<j ,0=jθ对1+≥q j 。
特别地,满足常系数齐次线性差分方程)11()1)(()(=*+*+--*-=*-Φ=**Φjd p L d p L jd L L j L ψφφψψ 当{}1,max ++≥q d p j 时。
这里一步滞后算子L 作用在*jψ的下标j 上。
而)(l tC 只是序列值到无穷远过去)(,1, -t XtX 的非线性函数。
所以由条件期望的性质,我们有)(0))(())(()(l tC l t C t E l t I t E l t X t E +=+=+。
从而到提前l 期预测的误差为[]∑-=-+*==-+=+-+=10)()()()()()(l j j l t uj l tI l tC l t C l t I l t X t E l t X l t e ψ。
由于)2,0(~σIID tu ,显然0)]([=l e E t ,即预测是无偏的。
而预测误差的方差为∑-=*=102)(2)]([l j jl t e Var ψσ。
lt X+(1≥l )的2倍标准差预测区间为∑-=*±+=±+102)(2)()]([2)(l j jl t X t E l t e Var l t X t E ψσ。
例题 考虑常见的ARIMA(1,1,1)过程的预测。
)2,0(~11)21(101σθφφIID tu t u t u t X t X t X t X -++---+=--。
其中1|1|<φ,1|1|<θ且11φθ-≠。
设时间原点在∞<≤t 1。
对任何1≥l ,在11211)11(0-++++-+--+++=+l t ul t u l t X l t X l t X θφφφ 式中各项取条件期望)(⋅tE 。
当1=l : tu t X t X t X t E 1011)11(0)1(θφφφ++--++=+。
当2=l : 01)1()11(0)2(+-+++=+tX t X t E t X t E φφφ。
当3≥l : )2(1)1()11(0)(-+--+++=+l t X t E l t X t E l t XtE φφφ。
为计算预测区间,我们需要得到截断的传递形式中的jψ权。
此时,21)11(1)1)(11()1)(()(x x x x x x x φφφ++-=--=-Φ=*Φ。