人教版初二数学上学期期末复习测试卷(2)含答案[精选]

合集下载

人教版八年级数学上册第11章第2---3节期末复习题(含答案)

人教版八年级数学上册第11章第2---3节期末复习题(含答案)

11.2三角形-与三角形有关的角一、选择题1.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形2.如图所示,BD平分∠ABC,DE∥BC,且∠D=30°,则∠AED的度数为()。

A.50°B.60°C.70°D.80°3.如图,在△ABC中,∠ABC=500,∠ACB=800,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是( )A.1000B.1100C.1150D.12004.在△ABC中,∠ABC和∠ACB平分线交于点O,且∠BOC=110°,则∠A度数是( ).A.70°B.55°C.40°D.35°5.如图,C在AB的延长线上,CE⊥AF于E,交FB于D,若∠F=40°,∠C=20°,则∠FBA的度数为( ).A.50°B.60°C.70°D.80°6.如图,下列说法正确的是().A.∠B>∠2B.∠2+∠D<180°C.∠1>∠B+∠DD.∠A>∠17.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于( )A.60°B.70°C. 80°D. 90°8.已知三角形ABC的三个内角满足关系∠B+∠C=3∠A,则此三角形( ).A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形9.如图,在△ABC中,∠C=50°,按图中虚线将∠C剪去后,∠1+∠2等于( )A.130°B.210°C.230°D.310°10.如图,AD=AB=BC,那么∠1和∠2之间的关系是().A.∠1=∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°二、填空题11.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A、B两岛的视角∠ACB=________.12.△ABC中,∠A:∠B:∠C=1:2:3,则△ABC是三角形.13.已知在△ABC中,∠A=40°,∠B-∠C=40°,则∠B=_____,∠C=______.14.△ABC的三个外角的度数之比为2:3:4,此三角形最小的内角等于°.15.如图,∠C、∠l、∠2之间的大小关系是____________16.如图,l∥m,等腰直角三角形ABC的直角顶点C在直线m上,若∠β=20°,则∠α的度数为________三、解答题17.如图,已知∠A=20°,∠B=27°,AC⊥DE,求∠1,∠D的度数.18.已知在△ABC中,∠A:∠B:∠C=2:3:4,CD是∠ACB平分线,求∠A和∠CDB的度数.19.如图,已知△ABC中,∠A=70°,∠ABC=48°,BD⊥AC于D,CE是∠ACB的平分线,BD与CE交于点F,求∠CBD、∠EFD的度数.20.如图,∠ABC=38°,∠ACB=100°,AD平分∠BAC,AE是BC边上的高,求∠DAE度数.21.如图,已知∠A=60°,∠B=30°,∠C=20°,求∠BDC的度数.22.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,并证明你的结论.参考答案1.B2.B3.C4.C.5.C6.B7.C8.A.9.C10.D11.答案为:70.12.答案为:直角.13.答案为:90°;50°.14.答案为:20.15.答案为:∠1>∠2>∠C16.答案为:6,与它不相邻的两个内角,360017.解:∵AC⊥DE∴∠APE=90°∵∠1=∠A+∠APE,∠A=20°∴∠1=110°∵∠1+∠B+∠D=180°, ∠B=27°∴∠D=43°18.解:∵在△ABC中,∠A:∠B:∠C=2:3:4,∠A+∠ACB+∠B=180°,∴∠A=×180°=40°,∠ACB=×180°=80°∵CD是∠ACB平分线,∴∠ACD=0.5∠ACB=40°∴∠CDB=∠A+∠ACD=40°+40°=80°19.∴∠ACB=180°﹣∠A﹣∠ABC=180°﹣70°﹣48°=62°.∵BD⊥AC,∴∠BDC=90°.∴∠CBD=90°﹣∠ACB=90°﹣62°=28°;∵CE是∠ACB的平分线,∴∠ACE=∠ACB=×62°=31°.∴∠EFD=∠ACE+∠BDC=31°+90°=121°.故答案为:∠CBD、∠EFD的度数分别为28°,121°.20.解:21.解:∠BDC=110°;22.11.3 多边形及其内角和一、选择题(本大题共10道小题)1. 若正多边形的内角和是540°,则该正多边形的一个外角为A.45°B.60°C.72°D.90°2. 八边形的内角和等于( )A.360°B.1080°C.1440°D.2160°3. 从九边形的一个顶点出发可以引出的对角线的条数为( )A.3 B.4 C.6 D.94. 如图,足球图片正中的黑色正五边形的内角和是A.180°B.360°C.540°D.720°5. 若一个正多边形的每一个外角都等于40°,则它是( )A.正九边形B.正十边形C.正十一边形D.正十二边形6.若一个多边形的一个顶点处的所有对角线把多边形分成4个三角形,则这个多边形的边数为( )A.3 B.4C.5 D.67. 下列哪一个度数可以作为某一个多边形的内角和 ( )A.240°B.600°C.540°D.2180°8. 一个正多边形的每个外角不可能等于( )A.30°B.50°C.40°D.60°9.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A.7 B.7或8C.8或9 D.7或8或910. 如图,已知长方形ABCD,一条直线将长方形ABCD分割成两个多边形.若这两个多边形的内角和分别为M和N,则M+N不可能是()A.360°B.540°C.720°D.630°二、填空题(本大题共7道小题)11. 一个正多边形的一个外角为45°,则这个正多边形的边数是________.12. 如图,若A表示四边形,B表示正多边形,则阴影部分表示________.13. 已知一个多边形的内角和是外角和的,则这个多边形的边数是.14.如图,小明从点A出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°……照这样走下去,他第一次回到出发地点A时,一共走了________米.15. 有一程序,如果机器人在平地上按如图所示的步骤行走,那么机器人回到A处行走的路程是.16. 模拟某人为机器人编制了一段程序(如图),如果机器人以2 cm/s的速度在平地上按照程序中的步骤行走,那么该机器人从开始到停止所需的时间为________s.17. 如图,若该图案是由8个形状和大小相同的梯形拼成的,则∠1=________°.三、解答题(本大题共4道小题)18.如图,△ABC是正三角形,剪去三个边长均不相等的小正三角形(即△ADN,△BEF ,△CGM)后,得到一个六边形DEFGMN.(1)六边形DEFGMN的每个内角是多少度?为什么?(2)六边形DEFGMN是正六边形吗?为什么?19. 某单位修建正多边形花台,已知正多边形花台的一个外角的度数比一个内角度数的多12°.(1)求出这个正多边形的一个内角的度数;(2)求这个正多边形的边数.20. 小华与小明在讨论一个凸多边形的问题,他们的对话如下:小华说:“这个凸多边形的内角和是2020°.”小明说:“不可能吧!你错把一个外角当作内角了!”请根据俩人的对话,回答下列问题:(1)凸多边形的内角和为2020°,小明为什么说不可能?(2)小华求的是几边形的内角和?21.如图,在五边形ABCDE中,∠A+∠B+∠E=310°,CF平分∠DCB,CF的反向延长线与∠EDC处的外角的平分线相交于点P,求∠P的度数.人教版八年级数学11.3 多边形及其内角和同步训练-答案一、选择题(本大题共10道小题)1. 【答案】C【解析】∵正多边形的内角和是540°,∴多边形的边数为540°÷180°+2=5,∵多边形的外角和都是360°,∴多边形的每个外角=360÷5=72°.故选C.2. 【答案】B3. 【答案】 C [解析] 从九边形的一个顶点出发,可以向与这个顶点不相邻的6个顶点引对角线,即能引出6条对角线.4. 【答案】C【解析】黑色正五边形的内角和为:(5–2)×180°=540°,故选C.5. 【答案】 A [解析]由于正多边形的外角和为360°,且每一个外角都相等,因此边数=360°40°=9.6. 【答案】D [解析] 设这个多边形的边数为n,则n-2=4,解得n=6.7. 【答案】C [解析] ∵多边形内角和公式为(n-2)×180°,∴多边形内角和一定是180°的倍数.∵540°=3×180°,∴540°可以作为某一个多边形的内角和.8. 【答案】 B [解析] 设正多边形的边数为n,则当30°n=360°时,n=12,故A可能;当50°n=360°时,n=365,不是整数,故B不可能;当40°n=360°时,n=9,故C可能;当60°n=360°时,n=6,故D可能.9. 【答案】 D [解析] 设内角和为1080°的多边形的边数为n,则(n-2)×180°=1080°,解得n=8.则原多边形的边数为7或8或9.故选D.10. 【答案】D[解析] 一条直线将长方形ABCD分割成两个多边形的情况有以下三种:(1)直线不经过原长方形的顶点,如图①②,此时长方形被分割为一个五边形和一个三角形或两个四边形,∴M+N=540°+180°=720°或M+N=360°+360°=720°;(2)直线经过原长方形的一个顶点,如图③,此时长方形被分割为一个四边形和一个三角形,∴M+N=360°+180°=540°;(3)直线经过原长方形的两个顶点,如图④,此时长方形被分割为两个三角形,∴M+N=180°+180°=360°.二、填空题(本大题共7道小题)11. 【答案】8【解析】由正多边形的每一个外角都是45°,其外角和为360°,可得这个正多边形的边数是360°45°=8.【一题多解】因为正多边形的每一个外角都是45°,所以这个正多边形的每一个内角都是180°-45°=135°,设正多边形的边数为n ,则(n -2)×180°=135°×n ,解得n =8. 方法指导设正多边形的边数为n ,正多边形的外角和为360°,内角和为(n -2)×180°,每个内角的度数为180°×(n -2)n.12. 【答案】正方形13. 【答案】 514. 【答案】120 [解析] 由题意得360°÷36°=10,则他第一次回到出发地点A 时,一共走了12×10=120(米).故答案为120.15. 【答案】30米 [解析] 360°÷24°=15,利用多边形的外角和等于360°,可知机器人回到A 处时,恰好沿着正十五边形的边走了一圈,即可求得路程为15×2=30(米).16. 【答案】16 [解析] 由题意得,该机器人所经过的路径是一个正多边形,多边形的边数为36045=8,则所走的路程是4×8=32(cm),故所用的时间是32÷2=16(s).17. 【答案】67.5三、解答题(本大题共4道小题)18. 【答案】解:(1)六边形DEFGMN的各个内角都是120°.理由:∵△ADN,△BEF,△CGM都是正三角形,∴它们的每个内角都是60°,即六边形DEFGMN的每个外角都是60°.∴六边形DEFGMN的每个内角都是120°.(2)六边形DEFGMN不是正六边形.理由:∵三个小正三角形(即△ADN,△BEF,△CGM)的边长均不相等,∴DN,EF,GM均不相等.∴六边形DEFGMN不是正六边形.19. 【答案】解:(1)设这个多边形的一个内角的度数是x°,则与其相邻的外角度数是x°+12°.由题意,得x+x+12=180,解得x=140.即这个正多边形的一个内角的度数是140°.(2)这个正多边形的每一个外角的度数为180°-140°=40°,所以这个正多边形的边数是=9.20. 【答案】解:(1)∵n边形的内角和是(n-2)×180°,∴多边形的内角和一定是180°的整倍数.∵2020÷180=11……40,∴多边形的内角和不可能为2020°.(2)设小华求的是n边形的内角和,这个内角为x°,则0<x<180.根据题意,得(n-2)×180°-x+(180°-x)=2020°,解得n=12+2x+40 180.∵n为正整数,∴2x+40必为180的整倍数.又∵0<x<180,∴40180<2x+40180<400180.∴n=13或14.∴小华求的是十三边形或十四边形的内角和.21. 【答案】解:延长ED,BC相交于点G.在四边形ABGE中,∠G=360°-(∠A+∠B+∠E)=50°,∠P=∠FCD-∠CDP=12(∠DCB-∠CDG)=12∠G=12×50°=25°.。

人教版初二数学上学期期末复习测试卷(2)含答案

人教版初二数学上学期期末复习测试卷(2)含答案

初二数学上学期期末复习测试卷(2)(满分:100分 时间:90分钟)一、选择题(每题2分,共16分)1.在-3,0,4 ( )A .-3B .0C .4D 2.下列各式正确的是 ( )A 4±B 9-C 3-D 112= 3.如图,在四边形ABCD 中,AB =AD ,CB =CD ,若连接AC ,BD 相交于点O ,则图中全等三角形共有 ( )A .1对B .2对C .3对D .4对4.如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为 ( )A .30°B .45°C .60°D .75°5.如图,在△ABC 中,AB =AC ,∠A =36°,若BD 是AC 边上的高,则∠DBC 的度数是 ( )A .18°B .24°C .30°D .36°6.如果一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是 ( )A .13B .17C .22D .17或227.若点A(2,4)在函数y =kx -2的图像上,则下列各点在此函数图像上的是( )A .(1,1)B .(-1,1)C .(-2,-2)D .(2,-2)8.根据下表中一次函数的自变量x 与函数值y 的对应值,可得p 的值为 ( )A .1B .-1C .3D .-3二、填空题(每题2分,共20分)9.若a ,b 为实数,且满足2a +0,则b -a 的值为_______.10.如图,在△ABC 中,∠C =90°,∠CAB =50°,按以下步骤作图:①以点A为圆心、小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E,F为圆心、大于12EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D,则∠ADC=_______.11.已知a,b,c是△ABC a b-=0,则△ABC的形状为_______.12.已知等腰三角形的周长为16,若其中一边长为6,则另两边的长分别为_______.13.在一次函数y=(2-k)x+1中,若y随x的增大而增大,则k的取值范围为_______.14.直线y=2x-1沿y轴平移3个单位长度,平移后直线与3,轴的交点坐标为_______.15.如图,若函数y=ax+b和y=kx的图像交于点P,则二元一次方程组y ax b y kx=+⎧⎨=⎩的解是_______.16.在△ABC中,AB=AC=5,BC=6,若点P在边AC上移动,则BP的最小值是_______.17.设甲、乙两车在同一直线公路上匀速行驶,开始时甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车上的货物转给甲车,然后甲车继续前行,乙车向原地返回、.设xs后两车间的距离为ym,y与x的函数关系如图所示,则甲车的速度是_______m/s.18.已知甲运动的方式为:先竖直向上运动1个单位长度后,再水平向右运动2个单位长度;乙运动的方式为:先竖直向下运动2个单位长度后,再水平向左运动3个单位长度.在平面直角坐标系中,现有一动点P第1次从原点O出发按甲方式运动到点P1,第2次从点P1出发按乙方式运动到点P2,第3次从点P2出发再按甲方式运动到点P3,第4次从点P3出发再按乙方式运动到点P4……依此运动规律,则经过第11次运动后,动点P所在位置P11的坐标是_______.三、解答题(共64分)19.(本题6分)求下列各式的值.(2)()23-20.(本题5分)如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A,B两点作AC⊥l,BD⊥l,垂足分别为点C,D.求证:AC=OD.21.(本题5分)已知在四边形ABCD中,∠A为直角,AB=16,BC=25,CD=15,AD =12,求四边形ABCD的面积.22.(本题6分)分别根据下列条件,确定函数关系式.(1)y与x成正比,且当x=-9时,y=16;(2)y=kx+b的图像经过点(3,2)和点(-2,1).23.(本题8分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A,B在小正方形的顶点上.(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出AABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可).24.(本题6分)如图,在Rt△ABC中,∠BAC=90°,点D在边BC上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)25.(本题8分)某医药公司把一批药品运往外地,现有两种运输方式可供选择,方式一:使用快递公司的邮车运输,装卸收费400元,另外每千米再加收4元;方式二:使用快递公司的火车运输,装卸收费820元,另外每千米再加收2元.(1)请分别写出邮车、火车运输的总费用y1,y2(元)与运输路程x(千米)之间的函数关系;(2)你认为选用哪种运输方式较好,为什么?26.(本题9分)某超市销售一种新鲜酸奶,此酸奶以每瓶3元购进,5元售出,这种酸奶的保质期不超过一天,对当天未售出的酸奶必须全部做销毁处理.(1)该超市某天购进20瓶酸奶进行销售,若设售出酸奶的瓶数为x(瓶),销售酸奶的利润为y(元),写出这一天销售酸奶的利润y(元)与售出的瓶数x(瓶)之间的函数关系式.为确保超市在销售这20瓶酸奶时不亏本,当天至少应售出多少瓶?(2)小明在社会调查活动中了解到近10天该超市每天购进酸奶20瓶的销售情况,统计如下:根据上表,求该超市这10天每天销售酸奶的利润的平均数.(3)小明根据(2)中的销售情况统计,计算得出在近10天当中,其实每天购进19瓶总获利要比每天购进20瓶总获利还多.你认为小明的说法有道理吗?试通过计算说明.27.(本题15分)(1)如图1,已知在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,E,证明:DE=BD+CE.(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=a,其中口为任意锐角或钝角.请问结论DE=BD +CE是否成立?若成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图3,D,E是D,A,E三点所在直线m上的两动点(D,A,E 三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD,CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.参考答案一、选择题1.C2.D3.C4.C5.A6.C7.A8.A二、填空题9.2 10.65°11.等腰直角三角形12.6,4或5,5 13.k<2 14.(0,2)或(0,-4)15.42xy=-⎧⎨=-⎩16.24517.20 18.(-3,-4)三、解答题19.(1)714(2)9111020.略21.24622.(1)y=169x (2)y=1755y x=+23.(1)正确画图(参考图1-图4,画出一个即可) (2)正确画图(参考图5-图8,画出一个即可)24.6+25.(1)y1=4x+400, y2=2x+820 (2)运输路程小于210km时,选择邮车运输较好;当运输路程等于210km时,选择两种方式一样;当运输路程大于210km时,选择火车运输较好26.(1)12瓶 (2)35.5(元) (3)小明说的有道理.27.(1)略 (2)成立.(3)等边三角形。

人教版八年级上学期期末考试数学试卷(附带答案)精选全文

人教版八年级上学期期末考试数学试卷(附带答案)精选全文

精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。

期末初二数学测试卷

期末初二数学测试卷

一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. 0.1010010001…B. -3C. 1/2D. √22. 若a > 0,b < 0,则下列不等式中正确的是()A. a + b > 0B. a - b < 0C. a - b > 0D. a + b < 03. 已知函数y = -2x + 3,当x = -1时,y的值为()A. -5B. -1C. 1D. 54. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)5. 下列各图中,能正确表示y = x²的函数图象的是()A.B.C.D.6. 下列方程中,解集为空集的是()A. x + 3 = 0B. 2x - 5 = 0C. 3x + 2 = 0D. 4x + 1 = 07. 已知等腰三角形ABC中,底边BC = 8cm,腰AB = AC = 10cm,则三角形ABC的周长为()A. 24cmB. 26cmC. 28cmD. 30cm8. 在梯形ABCD中,AD // BC,AB = CD,AD = 6cm,BC = 8cm,则梯形ABCD的高为()A. 4cmB. 6cmC. 8cmD. 10cm9. 下列各式中,能化简为最简二次根式的是()A. √(36a²)B. √(81a² - 1)C. √(49a² - 16)D. √(64a² - 9)10. 已知二次函数y = ax² + bx + c(a ≠ 0)的图象开口向上,且顶点坐标为(1,-2),则下列结论正确的是()A. a > 0,b > 0B. a > 0,b < 0C. a < 0,b > 0D. a < 0,b < 0二、填空题(每题5分,共50分)11. 若x² - 2x + 1 = 0,则x的值为______。

初二数学上下册期末测试卷

初二数学上下册期末测试卷

一、选择题(每题2分,共20分)1. 下列各数中,是负数的是()A. -2B. 0C. 2D. 52. 下列各数中,是整数的是()A. 1.2B. 3.5C. -1.8D. 23. 如果a<b,那么下列不等式中正确的是()A. a+b<b+cB. a-b<b-cC. a+b>b+cD. a-b>b-c4. 下列各式中,是同类项的是()A. 2xyB. 3x^2C. 4y^2D. 5x^2y5. 下列各式中,是分式的是()A. 3/4B. 5/2C. 1/3D. 2/56. 下列各式中,是方程的是()A. 2x+3=7B. 3x-5=0C. 4x^2+2x-3=0D. 5x+2y=107. 下列各式中,是二次根式的是()A. √9B. √16C. √25D. √368. 下列各式中,是绝对值的是()A. |3|B. |-5|C. |0|D. |2|9. 下列各式中,是指数式的是()A. 2^3B. 3^2C. 4^3D. 5^210. 下列各式中,是开方式的是()A. √9B. √16C. √25D. √36二、填空题(每题2分,共20分)11. 下列各数中,是正数的是()A. -2B. 0C. 2D. 512. 下列各数中,是整数的是()A. 1.2B. 3.5C. -1.8D. 213. 如果a<b,那么下列不等式中正确的是()A. a+b<b+cB. a-b<b-cC. a+b>b+cD. a-b>b-c14. 下列各式中,是同类项的是()A. 2xyB. 3x^2C. 4y^2D. 5x^2y15. 下列各式中,是分式的是()A. 3/4B. 5/2C. 1/3D. 2/516. 下列各式中,是方程的是()A. 2x+3=7B. 3x-5=0C. 4x^2+2x-3=0D. 5x+2y=1017. 下列各式中,是二次根式的是()A. √9B. √16C. √25D. √3618. 下列各式中,是绝对值的是()A. |3|B. |-5|C. |0|D. |2|19. 下列各式中,是指数式的是()A. 2^3B. 3^2C. 4^3D. 5^220. 下列各式中,是开方式的是()A. √9B. √16C. √25D. √36三、解答题(每题10分,共30分)21. 解方程:3x-2=722. 解不等式:2x+3<523. 简化下列各式:(1)2a^2b^3c^2 ÷ 2a^2b^2c(2)(a+b)^2 - 2ab四、应用题(每题10分,共20分)24. 某工厂生产一批产品,计划每天生产120件,实际每天生产150件。

人教版八年级(上)数学期末试卷(含答案)

人教版八年级(上)数学期末试卷(含答案)

人教版八年级(上)数学期末试卷一、选择题(共10小题,每小题3分,计30分)1.下列长度的线段能组成三角形的是()A.3,4,8B.5,6,11C.5,6,10D.6,10,42.下列图案中不是轴对称图形的是()A.B.C.D.3.分式有意义的条件是()A.x≠﹣4B.x≠6C.x≠﹣4且x≠6D.x=44.甲、乙、丙、丁4名运动员参加射击训练,他们10次射击的平均成绩都是8.5环,方差分别是S甲2=3,S乙2=4,S丙2=6,S丁2=2,则这4名运动员10次射击成绩最稳定的是()A.甲B.乙C.丙D.丁5.用加减消元法解二元一次方程组时,下列方法中无法消元的是()A.①×2﹣②B.②×3+①C.①﹣②×3D.①×(﹣2)+②6.下列各组线段不能构成直角三角形的是()A.2,3,4B.3,4,5C.1,1,D.6,8,107.已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其正确的个数有()个.A.1B.2C.3D.48.如图,七边形ABCDEFG中,AB、ED的延长线交于点O,着∠1、∠2、∠3、∠4对应的邻补角和等于215°,则∠BOD的度数为()A.30°B.35°C.40°D.45°9.已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是()A.a>B.a>﹣1C.﹣1<a<D.a<10.关于x的分式方程有整数解,关于x的不等式组无解,所有满足条件的整数a的和为()A.2B.﹣6C.﹣3D.4二、填空题(共8小题,每空3分,计24分)11.(3分)开州区云枫街道一位巧娘,用了7年时间,绣出了21米长的《清明上河图》.全图长21米,宽0.65米,扎了600多万针.每针只约占0.000002275平方米.数据0.000002275用科学记数法表示为.12.(3分)计算:(﹣1)2019+(﹣)﹣2﹣(π﹣)0=.13.(3分)如图,若AB∥CD,∠A=110°,则∠1=°.14.(3分)一次函数y=2x+1的图象不经过第象限.15.(3分)将一根长为24cm的筷子置于底面直径为12cm,高为16cm的圆柱形水杯中,则筷子露在杯子外面的最短长度为cm.16.(3分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.17.(3分)已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ,已知PQ=5,NQ=9,则MH长为.18.(3分)如图,∠AOB=30°,点M、N分别是射线OB、OA上的动点,点P为∠AOB内一点,且OP=8,则△PMN的周长的最小值=.三、计算题(共3小题,计16分)19.(6分)化简:(1)(3x+2y)(x﹣3y)﹣6xy(2)(a+2b)2+(2a3b+8ab3)÷(2ab)20.(4分)解方程组.21.(6分)(1)计算:a﹣2b2•(a2b﹣2)﹣3÷(a﹣4)2(2)解方程:=﹣1四、操作题(5分)22.(5分)在平面直角坐标系中,已知点A(1,3),B(3,1),C(4,3).(1)画出△ABC;(2)画出△ABC关于x轴对称的△A1B1C1.连接A1B并直接写出线段A1B的长.五、解答题(共3小题,计25分)23.(8分)2018中国重庆开州汉丰湖国际摩托艇公开赛第二年举办.邻近区县一旅行社去年组团观看比赛,全团共花费9600元.今年赛事宣传工作得力,该旅行社继续组团前来观看比赛,人数比去年增加了50%,总费用增加了3900元,人均费用反而下降了20元.(1)求该旅行社今年有多少人前来观看赛事?(2)今年该旅行社本次费用中,其它费用不低于交通费的2倍,求人均交通费最多为多少元?24.(8分)如图,在△ABC中,∠A=30°,∠ACB=80°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.25.(9分)如图1,在平面直角坐标系中,A(﹣3,0)、B(0,7)、C(7,0),∠ABC+∠ADC=180°,BC⊥CD.(1)求证:∠ABO=∠CAD;(2)求四边形ABCD的面积;(3)如图2,E为∠BCO的邻补角的平分线上的一点,且∠BEO=45°,OE交BC于点F,求BF的长.人教版八年级(上)数学期末试卷参考答案与试题解析一、选择题1.【解答】解:A、3+4<8,不能构成三角形,故此选项不符合题意;B、5+6<11,不能构成三角形,故此选项不符合题意;C、6+5>10,能构成三角形,故此选项符合题意;D、6+4=10,不能构成三角形,故此选项不符合题意.故选:C.2.【解答】解:A、是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项不合题意;C、是轴对称图形,故本选项不合题意;D、不是轴对称图形,故本选项符合题意;故选:D.3.【解答】解:要使分式有意义,必须x+4≠0,解得,x≠﹣4,故选:A.4.【解答】解:∵S甲2=3,S乙2=4,S丙2=6,S丁2=2,∴S丁2<S甲2<S乙2<S丙2,∴这4名运动员10次射击成绩最稳定的是丁,故选:D.5.【解答】解:A.,①×2﹣②,得7y=7,能消元,故本选项不符合题意;B.,②×3+①,得7x=7,能消元,故本选项不符合题意;C.,①﹣②×3,得﹣5x+6y=1,不能消元,故本选项符合题意;D.,①×(﹣2)+②,得﹣7y=﹣7,能消元,故本选项不符合题意;故选:C.6.【解答】解:A、∵22+32≠42,∴三角形不是直角三角形,故本选项正确;B、∵32+42=52,∴三角形是直角三角形,故本选项错误;C、∵12+12=()2,∴三角形是直角三角形,故本选项错误;D、∵62+82=102,∴三角形不是直角三角形,故本选项错误.故选:A.7.【解答】证明:∵△ABC是等边三角形,∴AB=AC,∠BAE=∠C=60°,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴∠1=∠2,∴∠BPQ=∠2+∠3=∠1+∠3=∠BAC=60°,∴∠APE=∠C=60°,故①正确∵BQ⊥AD,∴∠PBQ=90°﹣∠BPQ=90°﹣60°=30°,∴BP=2PQ.故③正确,∵AC=BC.AE=DC,∴BD=CE,∴AE+BD=AE+EC=AC=AB,故④正确,无法判断BQ=AQ,故②错误,故选:C.8.【解答】解:∵∠1、∠2、∠3、∠4的外角的角度和为215°,∴∠1+∠2+∠3+∠4+215°=4×180°,∴∠1+∠2+∠3+∠4=505°,∵五边形OAGFE内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°﹣505°=35°,故选:B.9.【解答】解:∵点P(a+1,2a﹣3)关于x轴的对称点在第一象限,∴点P在四象限,∴,解得:﹣1<a,故选:C.10.【解答】解:将不等式组整理得:,由不等式组无解,得到﹣1≥,解得:a≤3,分式方程去分母得:1﹣ax+4(x﹣3)=﹣5,去括号得:1﹣ax+4x﹣12=﹣5,移项合并得:(4﹣a)x=6,解得:x=,∵x﹣3≠0,当a=﹣2、1、3时,符合题意;∴所有满足条件的a的值之和为:﹣2+1+3=2,故选:A.二、填空题11.【解答】解:0.000002275=2.275×10﹣6.故答案是:2.275×10﹣6.12.【解答】解:原式=﹣1+9﹣1=7.故答案为:7.13.【解答】解:∵AB∥CD,∴∠2=∠A=110°.又∵∠1+∠2=180°,∴∠1=180°﹣∠2=180°﹣110°=70°.故答案为:70.14.【解答】解:∵2>0,1>0,∴一次函数y=2x+1的图象经过一、二、三象限,即不经过第四象限.故答案为:四.15.【解答】解:设筷子露在杯子外面的长度为h,当筷子与杯底及杯高构成直角三角形时h最小,如图所示:此时,AB===20(cm),故h=24﹣20=4(cm).故筷子露在杯子外面的最短长度为4cm.故答案为:4.16.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.17.【解答】解:∵MQ⊥PN,NR⊥PM,∴∠NQH=∠NRP=∠HRM=90°,∵∠RHM=∠QHN,∴∠PMH=∠HNQ,在△MQP和△NRP中,,∴△MQP≌△NQH(ASA),∴PQ=QH=5,∵NQ=MQ=9,∴MH=MQ﹣HQ=9﹣5=4,故答案为4.18.【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=8cm∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=8.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=8.故答案为:8.三、计算题19.【解答】解:(1)(3x+2y)(x﹣3y)﹣6xy =3x2﹣9xy+2xy﹣6y2﹣6xy=3x2﹣13xy﹣6y2;(2)(a+2b)2+(2a3b+8ab3)÷(2ab)=a2+4ab+4b2+a2+4b2=2a2+4ab+8b2.20.【解答】解:①×3﹣②得:2x=4,解得:x=2,把x=2代入①得:4+y=2,解得:y=﹣2,所以原方程组的解为.21.【解答】解:(1)原式=a﹣2b2•a﹣6b6÷a﹣8=a﹣8b8÷a﹣8=b8;(2)两边都乘以(x+1)(x﹣1),得:3(x﹣1)=x(x+1)﹣(x+1)(x﹣1),解得:x=2,检验:x=2时,(x+1)(x﹣1)=3≠0,∴分式方程的解为x=2.四、操作题22.【解答】解:(1)如图,△ABC为所作;(2)如图,△A1B1C1为所作;A1B==2.五、解答题23.【解答】解:(1)设该旅行社去年有x人前来观看赛事,根据题意,得:,解得:x=30,经检验:x=30是原方程的解,所以原方程的解为x=30,∴(1+50%)x=45,答:该旅行社今年的有45人前来观看赛事;(2)今年该旅行社本次费用中,人均交通费为x元,由题意得:9600+3900﹣45x≥2×45x,解得:x≤100,答:人均交通费最多为100元.24.【解答】解:(1)∵在△ABC中,∠A=30°,∠ACB=80°,∴∠CBD=∠A+∠ACB=110°,∵BE是∠CBD的平分线,∴∠CBE=∠CBD=55°;(2)∵∠ACB=80°,∠CBE=55°,∴∠CEB=∠ACB﹣∠CBE=80°﹣55°=25°,∵DF∥BE,∴∠F=∠CEB=25°.25.【解答】解:(1)在四边形ABCD中,∵∠ABC+∠ADC=180°,∴∠BAD+∠BCD=180°,∵BC⊥CD,∴∠BCD=90°,∴∠BAD=90°,∴∠BAC+∠CAD=90°,∵∠BAC+∠ABO=90°,∴∠ABO=∠CAD;(2)过点A作AF⊥BC于点F,作AE⊥CD的延长线于点E,作DG⊥x轴于点G,∵B(0,7),C(7,0),∴OB=OC,∴∠BCO=45°,∵BC⊥CD,∴∠BCO=∠DCO=45°,∵AF⊥BC,AE⊥CD,∴AF=AE,∠FAE=90°,∴∠BAF=∠DAE,在△ABF和△ADE中,,∴△ABF≌△ADE(ASA),∴AB=AD,同理,△ABO≌△DAG,∴DG=AO,BO=AG,∵A(﹣3,0)B(0,7),∴D(4,﹣3),S四ABCD=AC•(BO+DG)=50;(3)过点E作EH⊥BC于点H,作EG⊥x轴于点G,∵E点在∠BCO的邻补角的平分线上,∴EH=EG,∵∠BCO=∠BEO=45°,∴∠EBC=∠EOC,在△EBH和△EOG中,,∴△EBH≌△EOG(AAS),∴EB=EO,∵∠BEO=45°,∴∠EBO=∠EOB=67.5°,又∠OBC=45°,∴∠BOE=∠BFO=67.5°,∴BF=BO=7.。

人教版 八年级上册 数学第13--14章 期末复习题(含答案)

人教版 八年级上册 数学第13--14章 期末复习题(含答案)

人教版八年级上册第13章轴对称章末综合训练一、选择题1. 以下列各组数据为边长,可以构成等腰三角形的是()A.1,1,2 B.1,1,3C.2,2,1 D.2,2,52. 如图,△ABC是等边三角形,D是AC的中点,DE⊥BC于点E,CE=3,则AB的长为()A.11 B.12 C.13 D.143. 在△ABC中,与∠A相邻的外角是110°,要使△ABC为等腰三角形,则∠B 的度数是()A.70°B.55°C.70°或55°D.70°或55°或40°4. 如果点(m-1,-1)与点(5,-1)关于y轴对称,那么m的值为()A.4 B.-4 C.5 D.-55. 如图直线a∥b∥c,等边三角形ABC的顶点B,C分别在直线b和c上,边BC与直线c所夹的锐角为20°,则∠α的度数为()A.20°B.40°C.60°D.80°6. 若点A(2m,2-m)和点B(3+n,n)关于y轴对称,则m,n的值分别为()A.1,-1 B.5 3,13C.-5,7 D.-13,-737. 如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A. 5B. 6C. 8D. 108. 如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°9. 在平面直角坐标系中,已知在y轴与直线x=3之间有一点M(a,3).如果该点关于直线x=3的对称点N的坐标为(5,3),那么a的值为()A.4B.3C.2D.110. 如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠BCD的度数为()A.150°B.160°C.130°D.60°二、填空题11. 如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是________.(把所有正确答案的序号都填写在横线上)①∠BAD=∠ACD ②∠BAD=∠CAD③AB+BD=AC+CD ④AB-BD=AC-CD12. 如图,△ABO是关于y轴对称的轴对称图形,点A的坐标为(-2,3),则点B的坐标为________.13. 如图,等腰三角形ABC的底边BC的长为6,面积是24,腰AC的垂直平分线EF分别交AC,AB边于点E,F.若D为BC边的中点,M为线段EF上一动点,则△CDM周长的最小值为________.14. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.15. 定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰三角形ABC中,∠A=80°,则它的特征值k=________.16. 如图,点E在等边三角形ABC的边BC上,BE=6,射线CD⊥BC于点C,P是射线CD上一动点,F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC的长为________.三、解答题17. 如图,已知△ABC中,D为BC边上一点,且AB=AC=BD,AD=CD,求∠BAC的度数.18. 如图,在△ABC中,AB=BD,根据图中的数据,求∠BAC的度数.19. 如图,在等边三角形ABC中,D为AC上一点,E为AB延长线上一点,DE ⊥AC交BC于点F,且DF=EF.(1)求证:CD=BE;(2)若AB=12,求BF的长.20. 如图,在平面直角坐标系中,直线l过点M(3,0),且平行于y轴.(1)如果△ABC三个顶点的坐标分别是A(-2,0),B(-1,0),C(-1,2),△ABC关于y轴对称的图形是△A1B1C1,△A1B1C1关于直线l对称的图形是△A2B2C2,请直接写出△A2B2C2的三个顶点的坐标;(2)如果点P的坐标是(-a,0),其中a>0,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,求PP2的长.21. 如图①所示,A,B两地在一条河的两岸,现要在河岸上造一座桥MN,桥造在何处才能使从A地到B地的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直)[思考1]如图②,如果A,B两地之间有两条平行的河流,我们要建的桥都是与河岸垂直的,我们应该如何找到这个最短的路径呢?[思考2]如图③,如果A,B两地之间有三条平行的河流呢?[拓展]如图④,如果在上述其他条件不变的情况下,两条河并不是平行的,又该如何建桥呢?请将你的思考在下面准备好的图形中表示出来,保留作图痕迹,将行走的路线用实线画出来.链接听P30例2归纳总结人教版八年级上册第13章轴对称章末综合训练-答案一、选择题1. 【答案】 C2. 【答案】B∴∠CDE=30°.∴CD=2CE=6.∵D是AC的中点,∴AC=2CD=12.∴AB=AC=12.3. 【答案】D 当∠B =55°时,可得∠C =55°,∠B =∠C ,△ABC 为等腰三角形;当∠B =40°时,可得∠C =70°=∠A ,△ABC 为等腰三角形.4. 【答案】B5. 【答案】D∵△ABC 是等边三角形,∴∠ACB =60°.∴∠α=∠ACE =∠ACB +∠BCE =60°+20°=80°.6. 【答案】C7. 【答案】C8. 【答案】C∵AC =BC ,∴CG 平分∠ACB ,∠A =∠B =40°.∵∠ACB =180°-∠A -∠B =100°, ∴∠BCG =12∠ACB =50°.9. 【答案】D又∵点M (a ,3)到直线x=3的距离为3-a ,∴3-a=2.∴a=1.10. 【答案】A∴∠E =180°-∠EAB =180°-120°=60°.又∵AD =AE ,∴△ADE 是等边三角形.∴∠EAD =60°.∴∠BAD =∠EAB -∠EAD =120°-60°=60°.∵AB =AC =AD ,∴∠B =∠ACB ,∠ACD =∠ADC.在四边形ABCD 中,∠BCD =∠B +∠ADC =12(360°-∠BAD)=12×(360°-60°)=150°. 故选A.二、填空题12. 【答案】(2,3)13. 【答案】11 ∵△ABC 是等腰三角形,D 是BC 边的中点, ∴AD ⊥BC.∴S △ABC =12BC·AD =12×6×AD =24,解得AD =8.∵EF 是线段AC 的垂直平分线,∴点A 关于直线EF 的对称点为点C ,MA =MC. ∴MC +DM =MA +DM≥AD. ∴AD 的长为MC +DM 的最小值.∴△CDM 周长的最小值=(MC +DM)+CD =AD +12BC =8+12×6=8+3=11.14. 【答案】615. 【答案】85或14 ∴特征值k=80°50°=85.②当∠A 为底角时,顶角的度数为180°-80°-80°=20°, ∴特征值k =20°80°=14. 综上所述,特征值k 为85或14.16. 【答案】10如图,作点E 关于直线CD 的对称点G ,过点G 作GF ⊥AB 于点F ,交CD 于点P ,则此时EP +PF 的值最小.∵∠B =60°,∠BFG =90°,∴∠G =30°. ∵BF =7,∴BG =2BF =14.∴EG =8. ∴CE =CG =4.∴AC =BC =10.三、解答题17. 【答案】解:∵AD =CD ,∴设∠DAC =∠C =x°. ∵AB =AC =BD ,∴∠BAD =∠BDA =∠DAC +∠C =2x°, ∠B =∠C =x°.∴∠BAC =3x°.∵∠B +∠BAC +∠C =180°,∴5x =180, 解得x =36.∴∠BAC =3x°=108°.18. 【答案】解:∵∠ADB =30°+40°=70°,AB =BD , ∴∠BAD =∠ADB =70°.∴∠BAC =∠BAD +∠CAD =100°.19. 【答案】解:(1)证明:如图,过点D 作DM ∥AB ,交CF 于点M ,则∠MDF =∠E.∵△ABC 是等边三角形, ∴∠CAB =∠CBA =∠C =60°. ∵DM ∥AB ,∴∠CDM =∠CAB =60°,∠CMD =∠CBA =60°. ∴△CDM 是等边三角形. ∴CM =CD =DM.在△DMF 和△EBF 中,⎩⎨⎧∠MDF =∠E ,DF =EF ,∠DFM =∠EFB ,∴△DMF≌△EBF(ASA).∴DM=BE. ∴CD=BE.(2)∵ED⊥AC,∠CAB=∠CBA=60°,∴∠E=∠FDM=30°.∴∠BFE=∠DFM=30°.∴BE=BF,DM=MF.∵△DMF≌△EBF,∴MF=BF.∴CM=MF=BF.又∵BC=AB=12,∴BF=13BC=4.20. 【答案】解:(1)△A2B2C2的三个顶点的坐标分别是A2(4,0),B2(5,0),C2(5,2).(2)如图①,若0<a≤3,∵点P与点P1关于y轴对称,P(-a,0),∴P1(a,0).又∵点P1与点P2关于直线x=3对称,设P2(x,0),可得=3,即x=6-a.∴P2(6-a,0),则PP2=6-a-(-a)=6-a+a=6.如图②,若a>3,∵点P与点P1关于y轴对称,P(-a,0),∴P1(a,0).又∵点P1与点P2关于直线x=3对称,设P2(m,0),可得=3,即m=6-a.∴P2(6-a,0),则PP2=6-a-(-a)=6-a+a=6.综上,PP2的长为6.21. 【答案】如图①所示,MN即为所求.[思考1] 如图②所示,折线AMNEFB即为所求.[思考2] 如图③所示,折线AMNGHFEB即为所求.[拓展] 如图④所示,折线AMNEFB即为所求.人教版 八年级上册 第14章 整式的乘法与因式分解 章末综合训练一、选择题1. 化简(x 3)2,结果正确的是() A .-x 6 B .x 6C .x 5D .-x 52. 计算(x -1)2的结果是() A .x 2-x +1 B .x 2-2x +1 C .x 2-1D .2x -23. 计算(2x +1)(2x -1)的结果为( )A .4x 2-1B .2x 2-1C .4x -1D .4x 2+14. 若3×9m ×27m =321,则m 的值是( )A .3B .4C .5D .65. 下列各式中,能用完全平方公式计算的是()A .(x -y )(x +y )B .(x -y )(x -y )C .(x -y )(-x -y )D .-(x +y )(x -y )6. 下列各式中,计算正确的是()A .()222p q p q -=- B .()22222a b a ab b +=++ C .()2242121a a a +=++ D .()2222s t s st t --=-+7. 化简(-2x -3)(3-2x )的结果是( ) A .4x 2-9B .9-4x 2C .-4x 2-9D .4x 2-6x +98. 若(x +a )2=x 2+bx +25,则( )A .a =3,b =6B .a =5,b =5或a =-5,b =-10C .a =5,b =10D .a =-5,b =-10或a =5,b =109. 若n 为正整数,则(2n +1)2-(2n -1)2的值( )A .一定能被6整除B .一定能被8整除C .一定能被10整除D .一定能被12整除10. 若a ,b ,c 是三角形三边的长,则代数式2222a b c ab +--的值( ).A.大于零B.小于零 C 大于或等于零D .小于或等于零二、填空题11. 观察下列从左到右的变形:⑴()()3322623a b a b ab -=-; ⑵()ma mb c m a b c -+=-+⑶()22261266x xy y x y ++=+;⑷()()22323294a b a b a b +-=- 其中是因式分解的有 (填括号)12. 若x -y =6,xy =7,则x 2+y 2的值等于________.13. 如果(x +my )(x -my )=x 2-9y 2,那么m =________.14. 填空:()()22552516a a a b +-=-15. 课本上,公式(a -b )2=a 2-2ab +b 2是由公式(a +b )2=a 2+2ab +b 2推导得出的.已知(a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4,则(a -b )4=________________.16. 分解因式:432234232a a b a b ab b ++++=_______.三、解答题17. 计算:(41)(41)a a ---+18. 分解因式:44()()a x a x +--19. 分解因式:42231x x -+;20. 分解因式:222332154810ac cx ax c +--21. 分解因式:2222(3)2(3)(3)(3)x x x x -+--+-;人教版 八年级上册 第14章 整式的乘法与因式分解 章末综合训练-答案一、选择题1. 【答案】B2. 【答案】B3. 【答案】A4. 【答案】B5. 【答案】B6. 【答案】C7. 【答案】A8. 【答案】D 所以x 2+2ax +a 2=x 2+bx +25.所以⎩⎨⎧2a =b ,a 2=25,解得⎩⎨⎧a =5,b =10或⎩⎨⎧a =-5,b =-10.9. 【答案】B10. 【答案】B 【解析】222222222(2)()()()a b c ab a ab b c a b c a b c a b c +--=-+-=--=-+--又因为a ,b ,c 是三角形三边的长,所以a c b +>,a b c <+即0a b c -+>,0a b c --<,()()0a b c a b c -+--<,22220a b c ab +--<二、填空题11. 【答案】其中⑴是单项式变形,⑷是多项式的乘法运算,⑵中并没有写成几个整式的乘积的形式,只有⑶是因式分解12. 【答案】50 所以x 2+y 2=(x -y)2+2xy =62+2×7=50.13. 【答案】±314. 【答案】()()2254542516a b a b a b +-=-【解析】()()2254542516a b a b a b +-=-15. 【答案】a 4-4a 3b +6a 2b 2-4ab 3+b 4所以(a -b)4=[a +(-b)]4=a 4+4a 3(-b)+6a 2(-b)2+4a(-b)3+(-b)4=a 4-4a 3b +6a 2b 2-4ab 3+b 4.16. 【答案】222()a b ab ++【解析】4322342222222222232()2()()a a b a b ab b a b ab a b a b a b ab ++++=++++=++三、解答题17. 【答案】222(41)(41)(4)1161a a a a ---+=--=-【解析】222(41)(41)(4)1161a a a a ---+=--=-18. 【答案】228()ax a x +【解析】442222()()()()()()a x a x a x a x a x a x ⎡⎤⎡⎤+--=+--++-⎣⎦⎣⎦[][]22()()()()()()a x a x a x a x a x a x ⎡⎤=+--++-++-⎣⎦222222(22)8()x a a x ax a x =⋅⋅+=+19. 【答案】22(15)(15)x x x x +++-【解析】42422222222312125(1)(5)(15)(15)x x x x x x x x x x x -+=++-=+-=+++-20. 【答案】22(23)(165)c x a c --【解析】222323223215481032101548ac cx ax c ac c cx ax +--=-+- 22222(165)3(516)(23)(165)c a c x c a c x a c =-+-=--21. 【答案】22x x-+(2)(3)【解析】22222222 -+--+-=+-=-+;(3)2(3)(3)(3)(6)(2)(3)x x x x x x x x。

2024年人教版初二数学上册期末考试卷(附答案)

2024年人教版初二数学上册期末考试卷(附答案)

2024年人教版初二数学上册期末考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个数是负数?A. 3B. 0C. 5D. 82. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.25D. 1.54. 下列哪个数是整数?A. 0.3B. 2/3C. 0D. 1.25. 下列哪个数是负整数?A. 3B. 0C. 5D. 8二、判断题5道(每题1分,共5分)1. 一个数的绝对值总是非负的。

( )2. 分数和小数都可以表示为整数。

( )3. 任何两个整数相乘的结果都是整数。

( )4. 任何两个正数相加的结果都是正数。

( )5. 任何两个负数相加的结果都是负数。

( )三、填空题5道(每题1分,共5分)1. 一个数的绝对值是它本身的数是______。

2. 下列哪个数是分数?______。

3. 下列哪个数是整数?______。

4. 下列哪个数是负整数?______。

5. 一个数的绝对值总是非负的。

( )四、简答题5道(每题2分,共10分)1. 简述绝对值的概念。

2. 简述分数的概念。

3. 简述整数的概念。

4. 简述负整数的概念。

5. 简述小数的概念。

五、应用题:5道(每题2分,共10分)1. 计算:| 3 | + 2 = ?2. 计算:3/4 + 0.5 = ?3. 计算:0 + 1 = ?4. 计算:3 4 = ?5. 计算:5 2 = ?六、分析题:2道(每题5分,共10分)1. 分析:为什么一个数的绝对值总是非负的?2. 分析:为什么分数和小数都可以表示为整数?七、实践操作题:2道(每题5分,共10分)1. 实践操作:请用尺子和圆规在纸上画一个半径为5cm的圆。

2. 实践操作:请用尺子和圆规在纸上画一个边长为4cm的正方形。

八、专业设计题:5道(每题2分,共10分)1. 设计一个包含10个数的数列,其中前5个数是正整数,后5个数是负整数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学上学期期末复习测试卷(2)
(满分:100分 时间:90分钟)
一、选择题(每题2分,共16分)
1.在-3,0,4 ( )
A .-3
B .0
C .4
D 2.下列各式正确的是 ( )
A 4±
B 9=-
C 3=-
D 112
3.如图,在四边形ABCD 中,AB =AD ,CB =CD ,若连接AC ,BD 相交于点O ,则图中全等三角形共有 ( )
A .1对
B .2对
C .3对
D .4对
4.如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,
必须保证∠1的度数为 ( )
A .30°
B .45°
C .60°
D .75°
5.如图,在△ABC 中,AB =AC ,∠A =36°,若BD 是AC 边上的高,则∠DBC 的度数是 ( )
A .18°
B .24°
C .30°
D .36°
6.如果一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是 ( )
A .13
B .17
C .22
D .17或22
7.若点A(2,4)在函数y =kx -2的图像上,则下列各点在此函数图像上的是 ( )
A .(1,1)
B .(-1,1)
C .(-2,-2)
D .(2,-2)
8.根据下表中一次函数的自变量x 与函数值y 的对应值,可得p 的值为 ( )
A .1
B .-1
C .3
D .-3 二、填空题(每题2分,共20分)
9.若a ,b 为实数,且满足2a +0,则b -a 的值为_______.
10.如图,在△ABC 中,∠C =90°,∠CAB =50°,按以下步骤作图: ①以点A 为圆心、小于AC 的长为半径画弧,分别交AB ,AC 于点E ,F ; ②分别以点E ,F 为圆心、大于12
EF 的长为半径画弧,两弧相交于点G ;
③作射线AG交BC边于点D,则∠ADC=_______.
11.已知a,b,c是△ABC a b
-=0,则△ABC的形状为_______.
12.已知等腰三角形的周长为16,若其中一边长为6,则另两边的长分别为_______.13.在一次函数y=(2-k)x+1中,若y随x的增大而增大,则k的取值范围为_______.14.直线y=2x-1沿y轴平移3个单位长度,平移后直线与3,轴的交点坐标为_______.
15.如图,若函数y=ax+b和y=kx的图像交于点P,则二元一次方程组
y ax b y kx
=+⎧

=

的解是_______.
16.在△ABC中,AB=AC=5,BC=6,若点P在边AC上移动,则BP的最小值是_______.
17.设甲、乙两车在同一直线公路上匀速行驶,开始时甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车上的货物转给甲车,然后甲车继续前行,乙车向原地返回、.设xs后两车间的距离为ym,y与x的函数关系如图所示,则甲车的速度是_______m/s.
18.已知甲运动的方式为:先竖直向上运动1个单位长度后,再水平向右运动2个单位长度;乙运动的方式为:先竖直向下运动2个单位长度后,再水平向左运动3个单位长度.在平面直角坐标系中,现有一动点P第1次从原点O出发按甲方式运动到点P1,第2次从点P1出发按乙方式运动到点P2,第3次从点P2出发再按甲方式运动到点P3,第4次从点P3出发再按乙方式运动到点P4……依此运动规律,则经过第11次运动后,动点P所在位置P11的坐标是_______.
三、解答题(共64分)
19.(本题6分)求下列各式的值.
(2)()23-
20.(本题5分)如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A,B两点作AC⊥l,BD⊥l,垂足分别为点C,D.求证:AC=OD.
21.(本题5分)已知在四边形ABCD中,∠A为直角,AB=16,BC=25,CD=15,AD=12,求四边形ABCD的面积.
22.(本题6分)分别根据下列条件,确定函数关系式.
(1)y与x成正比,且当x=-9时,y=16;
(2)y=kx+b的图像经过点(3,2)和点(-2,1).
23.(本题8分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A,B在小正方形的顶点上.
(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);
(2)在图2中画出AABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可).
24.(本题6分)如图,在Rt△ABC中,∠BAC=90°,点D在边BC上,且△ABD 是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)
25.(本题8分)某医药公司把一批药品运往外地,现有两种运输方式可供选择,
方式一:使用快递公司的邮车运输,装卸收费400元,另外每千米再加收4元;
方式二:使用快递公司的火车运输,装卸收费820元,另外每千米再加收2元.(1)请分别写出邮车、火车运输的总费用y1,y2(元)与运输路程x(千米)之间的函数关系;
(2)你认为选用哪种运输方式较好,为什么?
26.(本题9分)某超市销售一种新鲜酸奶,此酸奶以每瓶3元购进,5元售出,这种酸奶的保质期不超过一天,对当天未售出的酸奶必须全部做销毁处理.
(1)该超市某天购进20瓶酸奶进行销售,若设售出酸奶的瓶数为x(瓶),销售酸奶的利润为y(元),写出这一天销售酸奶的利润y(元)与售出的瓶数x(瓶)之间的函数关系式.为确保超市在销售这20瓶酸奶时不亏本,当天至少应售出多少瓶?
(2)小明在社会调查活动中了解到近10天该超市每天购进酸奶20瓶的销售情况,统计如下:
根据上表,求该超市这10天每天销售酸奶的利润的平均数.
(3)小明根据(2)中的销售情况统计,计算得出在近10天当中,其实每天购进19瓶总获利要比每天购进20瓶总获利还多.你认为小明的说法有道理吗?试通过计算说明.
27.(本题15分)(1)如图1,已知在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,E,证明:DE=BD+CE.
(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=a,其中口为任意锐角或钝角.请问结论DE=BD+CE是否成立?若成立,请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图3,D,E是D,A,E三点所在直线m上的两动点(D,A,E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD,CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.
参考答案
一、选择题
1.C
2.D
3.C
4.C
5.A
6.C
7.A
8.A
二、填空题
9.210.65°11.等腰直角三角形12.6,4或5,5 13.k<2 14.(0,2)或(0,
-4)15.
4
2
x
y
=-


=-

16.
24
5
17.2018.(-3,-4)
三、解答题
19.(1)71
4
(2)
9
11
10
20.略21.246
22.(1)y=16
9
x (2)y=
17
55
y x
=+
23.(1)正确画图(参考图1-图4,画出一个即可)(2)正确画图(参考图5-图8,画出一个即可)
24.6+25.(1)y 1=4x +400, y 2=2x +820 (2)运输路程小于210km 时,选择邮车运输较好;当运输路程等于210km 时,选择两种方式一样;当运输路程大于210km 时,选择火车运输较好
26.(1)12瓶 (2)35.5(元) (3)小明说的有道理.
27.(1)略 (2)成立.(3)等边三角形。

相关文档
最新文档