Positive solutions of singular boundary value problem of negative exponent Emden--Fowler eq

合集下载

数学专业英语词汇(T)_数学物理英语词汇

数学专业英语词汇(T)_数学物理英语词汇

t distribution 学生t分布t number t数t statistic t统计量t test t检验t1topological space t1拓扑空间t2topological space t2拓扑空间t3topological space 分离空间t4topological space 正则拓扑空间t5 topological space 正规空间t6topological space 遗传正规空间table 表table of random numbers 随机数表table of sines 正弦表table of square roots 平方根表table of values 值表tabular 表的tabular value 表值tabulate 制表tabulation 造表tabulator 制表机tacnode 互切点tag 标签tame 驯顺嵌入tame distribution 缓增广义函数tamely imbedded 驯顺嵌入tangency 接触tangent 正切tangent bundle 切丛tangent cone 切线锥面tangent curve 正切曲线tangent function 正切tangent line 切线tangent of an angle 角的正切tangent plane 切平面tangent plane method 切面法tangent surface 切曲面tangent vector 切向量tangent vector field 切向量场tangent vector space 切向量空间tangential approximation 切线逼近tangential component 切线分量tangential curve 正切曲线tangential equation 切线方程tangential stress 切向应力tangents method 切线法tape 纸带tape inscription 纸带记录tariff 税tautology 重言taylor circle 泰勒圆taylor expansion 泰勒展开taylor formula 泰勒公式taylor series 泰勒级数technics 技术technique 技术telegraph equation 电报方程teleparallelism 绝对平行性temperature 温度tempered distribution 缓增广义函数tend 倾向tendency 瞧tension 张力tensor 张量tensor algebra 张量代数tensor analysis 张量分析tensor bundle 张量丛tensor calculus 张量演算法tensor density 张量密度tensor differential equation 张量微分方程tensor field 张量场tensor form 张量形式tensor form of the first kind 第一张量形式tensor function 张量函数tensor of torsion 挠率张量tensor product 张量乘积tensor product functor 张量乘积函子tensor representation 张量表示tensor space 张量空间tensor subspace 张量子空间tensor surface 张量曲面tensorial multiplication 张量乘法term 项term of higher degree 高次项term of higher order 高次项term of series 级数的项terminability 有限性terminable 有限的terminal decision 最后判决terminal edge 终结边terminal point 终点terminal unit 级端设备terminal vertex 悬挂点terminate 终止terminating chain 可终止的链terminating continued fraction 有尽连分数terminating decimal 有尽小数termination 终止terminology 专门名词termwise 逐项的termwise addition 逐项加法termwise differentiation 逐项微分termwise integration 逐项积分ternary 三元的ternary connective 三元联结ternary form 三元形式ternary notation 三进制记数法ternary number system 三进制数系ternary operation 三项运算ternary relation 三项关系ternary representation og numbers 三进制记数法tertiary obstruction 第三障碍tesseral harmonic 田形函数tesseral legendre function 田形函数test 检验test for additivity 加性检验test for uniform convergence 一致收敛检验test function 测试函数test of dispersion 色散检验test of goodness of fit 拟合优度检验test of hypothesis 假设检验test of independence 独立性检验test of linearity 线性检验test of normality 正规性检验test point 测试点test routine 检验程序test statistic 检验统计量tetracyclic coordinates 四圆坐标tetrad 四元组tetragon 四角形tetragonal 正方的tetrahedral 四面角tetrahedral angle 四面角tetrahedral co ordinates 四面坐标tetrahedral group 四面体群tetrahedral surface 四面曲面tetrahedroid 四面体tetrahedron 四面形tetrahedron equation 四面体方程theorem 定理theorem for damping 阻尼定理theorem of alternative 择一定理theorem of identity for power series 幂级数的一致定理theorem of implicit functions 隐函数定理theorem of mean value 平均值定理theorem of principal axes 轴定理theorem of residues 残数定理theorem of riemann roch type 黎曼洛赫型定理theorem on embedding 嵌入定理theorems for limits 极限定理theoretical curve 理论曲线theoretical model 理论模型theory of automata 自动机理论theory of cardinals 基数论theory of complex multiplication 复数乘法论theory of complexity of computations 计算的复杂性理论theory of correlation 相关论theory of differential equations 微分方程论theory of dimensions 维数论theory of elementary divisors 初等因子理论theory of elementary particles 基本粒子论theory of equations 方程论theory of errors 误差论theory of estimation 估计论theory of functions 函数论theory of games 对策论theory of hyperbolic functions 双曲函数论theory of judgment 判断论theory of numbers 数论theory of ordinals 序数论theory of perturbations 摄动理论theory of probability 概率论theory of proportions 比例论theory of relativity 相对论theory of reliability 可靠性理论theory of representations 表示论theory of sets 集论theory of sheaves 层理论theory of singularities 奇点理论theory of testing 检验论theory of time series 时间序列论theory of transversals 横断线论theory of types 类型论thermal 热的thermodynamic 热力学的thermodynamics 热力学theta function 函数theta series 级数thick 厚的thickness 厚度thin 薄的thin set 薄集third boundary condition 第三边界条件third boundary value problem 第三边界值问题third fundamental form 第三基本形式third isomorphism theorem 第三同构定理third proportional 比例第三项third root 立方根thom class 汤姆类thom complex 汤姆复形three body problem 三体问题three dimensional 三维的three dimensional space 三维空间three dimensional torus 三维环面three eighths rule 八分之三法three faced 三面的three figur 三位的three place 三位的three point problem 三点问题three series theorem 三级数定理three sheeted 三叶的three sided 三面的three sigma rule 三规则three termed 三项的three valued 三值的three valued logic 三值逻辑three valued logic calculus 三值逻辑学threshold logic 阈逻辑time interval 时程time lag 时滞time series analysis 时序分析timesharing 分时toeplitz matrix 托普利兹矩阵tolerance 容许tolerance distribution 容许分布tolerance estimation 容许估计tolerance factor 容许因子tolerance level 耐受水平tolerance limit 容许界限tolerance region 容许区域top digit 最高位数字topological 拓扑的topological abelian group 拓扑阿贝耳群topological algebra 拓扑代数topological cell 拓扑胞腔topological circle 拓扑圆topological completeness 拓扑完备性topological complex 拓扑复形topological convergence 拓扑收敛topological dimension 拓扑维topological direct sum 拓扑直和topological dynamics 拓扑动力学topological embedding 拓扑嵌入topological field 拓扑域topological group 拓扑群topological homeomorphism 拓扑同胚topological index 拓扑指数topological invariant 拓扑不变量topological limit 拓扑极限topological linear space 拓扑线性空间topological manifold 拓扑廖topological mapping 拓扑同胚topological pair 拓扑偶topological polyhedron 曲多面体topological product 拓扑积topological residue class ring 拓扑剩余类环topological ring 拓扑环topological simplex 拓扑单形topological skew field 拓扑非交换域topological space 拓扑空间topological sphere 拓扑球面topological structure 拓扑结构topological sum 拓扑和topological type 拓扑型topologically complete set 拓扑完备集topologically complete space 拓扑完备空间topologically equivalent space 拓扑等价空间topologically nilpotent element 拓扑幂零元topologically ringed space 拓扑环式空间topologically solvable group 拓扑可解群topologico differential invariant 拓扑微分不变式topologize 拓扑化topology 拓扑topology of bounded convergence 有界收敛拓扑topology of compact convergence 紧收敛拓扑topology of uniform convergence 一致收敛拓扑toroid 超环面toroidal coordinates 圆环坐标toroidal function 圆环函数torque 转矩torsion 挠率torsion coefficient 挠系数torsion form 挠率形式torsion free group 非挠群torsion group 挠群torsion module 挠模torsion of a curve 曲线的挠率torsion product 挠积torsion subgroup 挠子群torsion tensor 挠率张量torsion vector 挠向量torsionfree connection 非挠联络torsionfree module 无挠模torsionfree ring 无挠环torus 环面torus function 圆环函数torus group 环面群torusknot 环面纽结total 总和total correlation 全相关total curvature 全曲率total degree 全次数total differential 全微分total differential equation 全微分方程total error 全误差total graph 全图total image 全象total inspection 全检查total instability 全不稳定性total inverse image 全逆象total matrix algebra 全阵环total matrix ring 全阵环total order 全序total predicate 全谓词total probability 总概率total probability formula 总概率公式total regression 总回归total relation 通用关系total space 全空间total stability 全稳定性total step iteration 整步迭代法total step method 整步迭代法total stiefel whitney class 全斯蒂费尔惠特尼类total subset 全子集total sum 总和total variation 全变差totally bounded set 准紧集totally bounded space 准紧空间totally differentiable 完全可微分的totally differentiable function 完全可微函数totally disconnected 完全不连通的totally disconnected graph 完全不连通图totally disconnected groupoid 完全不连通广群totally disconnected set 完全不连通集totally disconnected space 完全不连通空间totally geodesic 全测地的totally nonnegative matrix 全非负矩阵totally ordered group 全有序群totally ordered set 线性有序集totally positive 全正的totally positive matrix 全正矩阵totally quasi ordered set 完全拟有序集totally real field 全实域totally reflexive relation 完全自反关系totally regular matrix method 完全正则矩阵法totally singular subspace 全奇异子空间totally symmetric loop 完全对称圈totally symmetric quasigroup 完全对称拟群touch 相切tournament 竞赛图trace 迹trace form 迹型trace function 迹函数trace of dyadic 并向量的迹trace of matrix 矩阵的迹trace of tensor 张量的迹tracing point 追迹点track 轨迹tractrix 曳物线trajectory 轨道transcendence 超越性transcendence basis 超越基transcendence degree 超越次数transcendency 超越性transcendental element 超越元素transcendental equation 超越方程transcendental function 超越函数transcendental integral function 超越整函数transcendental number 超越数transcendental singularity 超越奇点transcendental surface 超越曲面transfer 转移transfer function 转移函数transfinite 超限的transfinite diameter 超限直径transfinite induction 超限归纳法transfinite number 超限序数transfinite ordinal 超限序数transform 变换transformation 变换transformation equation 变换方程transformation factor 变换因子transformation formulas of the coordinates 坐标的变换公式transformation function 变换函数transformation group 变换群transformation of air mass 气团变性transformation of coordinates 坐标的变换transformation of parameter 参数变换transformation of state 状态变换transformation of the variable 变量的更换transformation rules 变换规则transformation theory 变换论transformation to principal axes 轴变换transgression 超渡transient response 瞬态响应transient stability 瞬态稳定性transient state 瞬态transient time 过渡时间transition function 转移函数transition graph 转换图transition matrix 转移矩阵transition probability 转移函数transitive closure 传递闭包transitive graph 传递图transitive group of motions 可迁运动群transitive law 可迁律transitive permutation group 可迁置换群transitive relation 传递关系transitive set 可递集transitivity 可递性transitivity laws 可迁律translatable design 可旋转试验设计translate 转移translation 平移translation curve 平移曲线translation group 平移群translation invariant 平移不变的translation invariant metric 平移不变度量translation number 殆周期translation of axes 坐标轴的平移translation operator 平移算子translation surface 平移曲面translation symmetry 平移对称translation theorem 平移定理transmission channel 传输通道transmission ratio 传输比transport problem 运输问题transportation algorithm 运输算法transportation matrix 运输矩阵transportation network 运输网络transportation problem 运输问题transpose 转置transposed inverse matrix 转置逆矩阵transposed kernel 转置核transposed map 转置映射transposed matrix 转置阵transposition 对换transversal 横截矩阵胚transversal curve 横截曲线transversal field 模截场transversal lines 截线transversality 横截性transversality condition 横截条件transverse axis 横截轴transverse surface 横截曲面trapezium 不规则四边形trapezoid 不规则四边形trapezoid formula 梯形公式trapezoid method 梯形公式traveling salesman problem 转播塞尔斯曼问题tree 树trefoil 三叶形trefoil knot 三叶形纽结trend 瞧trend line 瞧直线triad 三元组trial 试验triangle 三角形triangle axiom 三角形公理triangle condition 三角形公理triangle inequality 三角形公理triangulable 可三角剖分的triangular decomposition 三角分解triangular form 三角型triangular matrix 三角形矩阵triangular number 三角数triangular prism 三棱柱triangular pyramid 四面形triangular surface 三角曲面triangulate 分成三角形triangulation 三角剖分triaxial 三轴的triaxial ellipsoid 三维椭面trichotomy 三分法trident of newton 牛顿三叉线tridiagonal matrix 三对角线矩阵tridimensional 三维的trigammafunction 三函数trigonometric 三角的trigonometric approximation polynomial 三角近似多项式trigonometric equation 三角方程trigonometric function 三角函数trigonometric moment problem 三角矩问题trigonometric polynomial 三角多项式trigonometric series 三角级数trigonometrical interpolation 三角内插法trigonometry 三角学trihedral 三面形的trihedral angle 三面角trihedron 三面体trilateral 三边的trilinear 三线的trilinear coordinates 三线坐标trilinear form 三线性形式trinomial 三项式;三项式的trinomial equation 三项方程triplanar point 三切面重点 ?triple 三元组triple curve 三重曲线triple integral 三重积分triple point 三重点triple product 纯量三重积triple product of vectors 向量三重积triple root 三重根triple series 三重级数triple tangent 三重切线triply orthogonal system 三重正交系triply tangent 三重切线的trirectangular spherical triangle 三直角球面三角形trisecant 三度割线trisect 把...三等分trisection 三等分trisection of an angle 角的三等分trisectrix 三等分角线trivalent map 三价地图trivector 三向量trivial 平凡的trivial character 单位特贞trivial cohomology functor 平凡上同弹子trivial extension 平凡扩张trivial fibre bundle 平凡纤维丛trivial graph 平凡图trivial homogeneous ideal 平凡齐次理想trivial knot 平凡纽结trivial solution 平凡解trivial subset 平凡子集trivial topology 密着拓扑trivial valuation 平凡赋值triviality 平凡性trivialization 平凡化trochoid 摆线trochoidal 余摆线的trochoidal curve 摆线true error 真误差true formula 真公式true proposition 真命题true sign 直符号true value 真值truncated cone 截锥truncated cylinder 截柱truncated distribution 截尾分布truncated pyramid 截棱锥truncated sample 截样本truncated sequence 截序列truncation 舍位truncation error 舍位误差truncation point 舍位点truth 真值truth function 真值函项truth matrix 真值表truth set 真值集合truth symbol 真符号truth table 真值表truthvalue 真值tube 管tubular knot 管状纽结tubular neighborhood 管状邻域tubular surface 管状曲面turbulence 湍流turbulent 湍聊turing computability 图灵机可计算性turing computable 图灵机可计算的turing machine 图录机turn 转向turning point 转向点twice 再次twice differentiable function 二次可微函数twin primes 素数对twisted curve 空间曲线twisted torus 挠环面two address 二地址的two address code 二地址代码two address instruction 二地址指令two body problem 二体问题two decision problem 二判定问题two digit 二位的two dimensional 二维的two dimensional laplace transformation 二重拉普拉斯变换two dimensional normal distribution 二元正态分布two dimensional quadric 二维二次曲面two dimensional vector space 二维向量空间two fold transitive group 双重可迁群two person game 两人对策two person zero sum game 二人零和对策two phase sampling 二相抽样法two place 二位的two point distribution 二点分布two point form 两点式two sample method 二样本法two sample problem 二样本问题two sample test 双样本检验two sheet 双叶的two sided condition 双边条件two sided decomposition 双边分解two sided divisor 双边因子two sided ideal 双边理想two sided inverse 双边逆元two sided module 双边模two sided neighborhood 双侧邻域two sided surface 双侧曲面two sided test 双侧检定two stage sampling 两阶段抽样法two termed expression 二项式two valued logic 二值逻辑two valued measure 二值测度two variable matrix 双变量矩阵two way array 二向分类two way classification 二向分类twopoint boundary value problem 两点边值问题type 型type problem 类型问题typenumber 型数typical mean 典型平均。

新视野商务英语综合教程3_U2教师用书

新视野商务英语综合教程3_U2教师用书

Unit 2NegotiationsLead-inTask 1Suggested AnswersTask 2Key1. 订货2. 发盘3. 还盘4. 询价5. 购货合同6. 销售确认书Reading AStarting PointTask 1Translation主要的个人及团队谈判风格在过去几十年里,商品交易会一直被公认为是最有效的营销手段之一。

但近几年情况发生了变化:出于安全和成本的考虑,不少商家都在缩减参展次数,转而将目光投向互联网。

谈判员及其谈判团队必须选择一种能最大限度服务于其谈判目标的谈判风格,在确保对手不会放弃此次谈判的前提下,从对手那儿获取最大的让步。

然而,同一种谈判风格并不适用于所有场合,而每一次谈判也并不是所有风格都适用。

谈判员必须要懂得变通,能够根据情况的变化调整谈判风格。

对自身进行真实而全面的评估,有利于谈判人员选择最适用的谈判风格。

主要的个人谈判风格包括:进攻型、顺从型、被动型、胁迫型、技巧型、财务型、顽固型、实务型及傲慢型。

以被动型为例。

在谈判桌上,被动型的谈判人员并非如他们表面所展示的那样。

这种风格往往被发展中的、合同律法尚未完善的经济体所运用。

被动型谈判员往往会使对方误以为双方已达成共识,故而使对方将一切底牌亮到谈判桌上。

而被动的一方并不亮牌,只是频频点头,使对方认为双方已达成共识。

但点头仅仅表示他们听明白了。

一旦一切底牌亮出,先前被动的一方便开始挑选对自己有利的条款,而就那些他们未能接受的条款开始展开主动积极、甚至是攻势凶猛的谈判。

顽固型是谈判员偏好的另一种风格。

某些谈判员会利用固执掩盖他们真正的动机,分散对手的注意力。

另一种方式是在某些原本被视为无谈判余地的点上进行让步。

这种做法有利于谈判员以回报为理由,从对手那边获取更多重大的让步。

主要的团队谈判风格包括:舆论统一型、牛仔型、逐个击破型和软硬兼施型。

尽管“牛仔”一词带有强烈的个人主义色彩,貌似不大适用于商务领域,在国际商务谈判中,牛仔型的谈判风格就意味着由“路线总指挥”(通常都是由首席谈判员来担任)整合反对意见,并使对方按首席谈判员指定的方向前进。

一类非线性微分方程耦合系统无穷边值问题解的存在性

一类非线性微分方程耦合系统无穷边值问题解的存在性

一类非线性微分方程耦合系统无穷边值问题解的存在性张海燕;李耀红【摘要】在Banach空间中,利用Mönch不动点定理,结合一个新的比较结果,研究一类一阶非线性微分方程耦合系统无穷边值问题,其非线性项和边值条件均具有耦合性。

获得该问题解的存在性定理,并给出一个应用实例。

%By applyingthe Mönch fixed theorem and using a new comparison result,we study existence of so⁃lutions of infinte boundary value problems for a class of nonlinear coupled differential equations systems in Banach spaces,where the system is coupled not only in the differential system but also through the boundary conditions. A new existence theorem is established.As an application,we give an example to demonstrate our result.【期刊名称】《淮北师范大学学报(自然科学版)》【年(卷),期】2015(000)002【总页数】5页(P1-5)【关键词】Banach空间;边值问题;不动点定理;比较结果【作者】张海燕;李耀红【作者单位】宿州学院数学与统计学院,安徽宿州 234000;宿州学院数学与统计学院,安徽宿州 234000【正文语种】中文【中图分类】O177.91令(E,‖·‖)是Banach空间,考虑E中一阶非线性微分方程耦合系统无穷边值问题:这里J=[0 ,+∞),f,g ∈C[J × E ×E,E],α,β > 1.近年来,微分方程耦合系统受到广泛关注,获得许多有价值的结果.如在无穷区间上,文[1-4]获得了微分方程耦合系统解的存在性或多解性;在分数阶情形下,文[5-8]也获得许多微分方程耦合系统的可解性结论.但上述文献中微分方程系统的耦合性主要是指非线性项中变量的耦合,对边值条件的耦合性研究相对较少.注意到耦合边值条件在反扩散问题、热学问题、流体力学等应用科学领域有着广泛的应用.本文将利用Mönch不动点定理,结合一个新的比较结果,研究非线性微分方程耦合系统无穷边值问题(1),其非线性项和边值条件均具有耦合性.1 预备知识和引理记C[J,E]={u:J→E|u(t)连续},C1[J,E]={u:J→E|u(t)连续且一阶可微}.令BC[J,E]={u∈C[J,E]| X=BC[J,E]×BC[J,E], 则易知 BC[J,E]和 X 分别在范数和‖(u,v)‖X=‖ u‖B+‖ v‖B 下为一Banach空间.定义算子T:X→X 如下其中若(u,v)∈X且满足(1),则称(u,v)为边值问题(1)的解.对Banach空间中的有界集C,用α(C)衷示Ku⁃ratowski非紧性测度[9].另记Br={(u,v)∈ X |‖ (u,v‖X≤ r}(r > 0).为方便下文,给出几个需要用到的引理.引理1 若f,g ∈C[J×E×E,E],则(u,v)∈BC[J,E]⋂C1[J,E]×BC[J,E]⋂C1[J,E]是耦合系统(1)的解有且仅当(u,v)是T(u,v)=(u,v)在X中的不动点.证明若(u,v)是耦合系统(1)的解,则直接对耦合系统(1)前两式两边直接从0到t积分,可知令t➝∞,则有将边值条件u(∞)=αv(0),v(∞)=βu(0)代入式(6),直接解方程组计算可知将式(7)(8)代入式(5),易知 u(t)=T1(u,v),v(t)=T2(u,v),即 (u,v)是T(u,v)=(u,v)的不动点.反之,若(u,v)是T(u,v)=(u,v)的不动点,则对等式两边求导,容易验证(u,v)满足系统(1).命题得证.引理2[2]若m(t),γ(t)∈C[J,J],m(t)是有界函数,,且有其中M1≥0,M2,M3 >0,则引理 3[9]若 H 是 C[J0,E](J0=[0,b]⊂J)中的可数可测集,对任给x∈H,存在ρ(t)∈L[J0,J],使得‖ x(t)‖≤ρ(t),t ∈J0,则有α(H(t))∈L[J0,J],且引理4[10]若 B={un}⊂C[J,E](n=1,2,…),存在ρ(t)∈L[J,J],使得‖u ‖n(t)≤ρ(t)(t ∈J,n=1,2,…),则有α(B(t))在J上可积,并且引理5[10]设下文(A1)成立,H是E中的有界集,则,其中αE(TiH)表示TiH(i=1,2)在E中的非紧性测度.注1 由(2)式及引理5易知,αE(TH)≤αE(T1H)+αE(T2H).引理6[11](Mönch定理)设E是Banach空间,Ω ⊂E 是有界开集,θ∈Ω,A:E →E 是一个连续算子,且满足下列条件:(1)x ≠ λAx,∀λ ∈[0,1],x ∈ ∂Ω ;(2)由 H ⊂可数及 H ⊂({θ}⋃A(H))可推出H为相对紧集.则A在Q中至少有一个不动点.引理7[12]设D和F是E中的有界集,则α(D×F)=max{α(D),α(F)},其中α和α 分别为E×E和E中的Kuratowski非紧性测度.2 主要定理为方便,先给出下列假设:(A1)f,g ∈C[J×E×E,E],且存在ai(t),bi(t)∈L[J,J](i=1,2,3),使得其中(A2)对∀t ∈J和H1,H2 ⊂Br,存在ci(t),di(t)∈ L[J,J](i=1,2),使得这里定理1 若条件(A1)-(A2)成立,则耦合系统(1)在BC[J,E]⋂C1[J,E]×BC[J,E]⋂C1[J,E]中至少有一个解.证明由引理l知,只需证明算子T在X中至少有一个不动点.首先证明是X中的有界集.事实上,对任给的(u,v)∈Ω0,则相应地存在0≤λ0≤1,使得当t ∈J=[0,+∞)时,由式(3)(4)(9)及假设(A1)得令则m(t)∈C[J,E]且有界,于是结合式(10)(11)得故由引理2知因此,故Ω0 是 X 中的有界集.令 R >M,取则Ω 是X中的有界开集,且(θ,θ)∈Ω .由R的取法可知,对任何(u,v)∈∂Ω,(u,v)≠λT(u,v),∀λ ∈[0,1].即引理6的条件(1)满足.下面验证引理6 的条件(2)满足.设 H ⊂为可数集且由非紧性测度的性质,结合引理3-4,引理7及假设(A2),可知这里ρ(s)=c1(s)+c2(s),w(s)=d1(s)+d2(s).由H的定义及引理5有于是由引理l知,α(H(t))=0,t ∈J.即H 是Ω 中的相对紧集,于是引理6的条件(2)满足.又注意 f,g 的连续性,显然T是连续算子.故由引理6知,算子T 在Ω 内至少有一个不动点.从而耦合系统无穷边值问题(1)至少有一个解.证毕.例1 考虑一阶非线性微分方程耦合系统无穷边值问题:则耦合系统无穷边值问题(12)至少有一个解.证明令E={x=(x1,x2,…,xn,…)|xn ∈J,xn →0},对x ∈E,令显然耦合系统(12)可转化为X中的系统其中而显然f,g ∈C[J×E×E,E].则可令显然,故条件(A1)满足.利用锥理论中常规方法容易知,存在,使得对任何t ∈J,有界集 H1,H2⊂E,α(f(t),H1,H2))<c1(t)α(H1)+c2(t)α(H2),α(g(t,H1,H2))<d1(t)α(H1)+d2(t)α(H2),故条件(A2)满足.由定理1即知结论成立.参考文献:[1]CHEN Xu,ZHANG Xingqiu.Existence of positive solutions for singular impulsive differential equations with integral boundary conditions on an infinite interval in Banach spaces[J].Electron J Qual Theory Differ Eq,2011(29):1-18.[2]张海燕,张祖峰.Banach 空间中一阶非线性微分方程组无穷边值问题解的存在性[J].华中师范大学学报(自然科学版),2011,45(4):529-533. [3]汤小松,王志伟,罗节英.Banach空间中一阶脉冲微分方程组的无穷边值问题解的存在性唯一性[J].四川师范大学学报(自然科学版),2012,35(6):802-808.[4]李耀红,张祖峰.无穷区间上一阶非线性脉冲微分方程组边值问题的多个正解[J].华中师范大学学报(自然科学版),2014,48(2):171-175.[5]LI Yaohong,WEI Zhongli.Positive solutions for a coupled systems of mixed higher-order nonlinear singular fraction⁃al differential equations [J].Fixed Point Theory,2014,15(1):167-178.[6]申腾飞,宋文耀.一类分数阶微分方程系统边值问题正解的存在性[J].常熟理工学院学报,2012,26(4):28-34.[7]程玲玲,刘文斌.带有p-Laplace 算子分数阶微分方程耦合系统边值问题解的存在性[J].湖北大学学报(自然科学版),2013(1):48-51.[8]曹竞文,胡卫敏.两点分数阶微分方程耦合系统边值问题的解[J].江汉大学学报(自然科学版),2014,42(3):23-26.[9]GUO Dajun,LAKSHMIKANTHAM V,LIU Xinzhi.Nonlinear integral equations in abstract spaces[M].Dordrecht:Kluwer Academic Publisher,1996.[10]刘振斌,刘立山.Banach 空间中一阶非线性微分方程组无穷边值问题解的存在性[J].数学学报,2007,50(1):97-104.[11]DEIMLING Klaus.Nonlinear functional analysis[M].Berlin:Spring-Verlag,1985.[12]GUO Dajun,LAKSHMIKANTHAM V.Coupled fixed points of nonlinear operators with applications[J].Nonlinear Analy⁃sis:TMA,1987,11(5):623-632.。

THE EXISTENCE OF POSITIVE SOLUTIONS TO BOUNDARY VALUE PROBLEM OF SECOND ORDER DIFFERENTIAL EQUAT

THE EXISTENCE OF POSITIVE SOLUTIONS TO BOUNDARY VALUE PROBLEM OF SECOND ORDER DIFFERENTIAL EQUAT

10
No.1
J. Dai, et c., P OSITIVE SO LUTIONS TO BVP
11
2
Main Results
Th e fi xe d p oint in de x h as the followin g p rop erties.
Lemm a 1 Let K be a closed con vex set in a Banach space E , D be a boun ded open set such t hat D k := D ∩ K �= ∅ an d T : D k → K be a completely con tin uou s map . S uppose that x �= T x for all x ∈ ∂ D k . Then we obtai n the follow ing conclu sion s: (D1 )( Existen ce) if i ( T, D k , K ) �= 0 , th en T has a fixed poin t in D k ; (D2 )( Normalizat ion) if u 0 ∈ D k , t hen i( b u , D k , K ) = 1 , where b u( x ) = u 0 , for x ∈ D k ; (D3 )( Homot opy ) let h : [0 , 1] × D k → K be a complet ely cont inu ous map such that x �= h (t, x ) for x ∈ ∂ D k an d t ∈ [0 , 1] , then i( h (0 , · ) , D k , K ) = i (h (1 , · ) , D k , K ) . For fu rthe r in form ation on the classical fi xe d p oint in de x for comp letely c ontinuou s map s, see [7]. Now we state an d p rove a ne w fixe d p oint the orem in C 1 [0, 1] sp ace usin g th e p rope rtie s of th e fi xe d p oint in de x. Theorem 1 Let E = C 1 [0 , 1] be en dow ed w ith t he no rm � x� = max{� x � 0 , � x� � 0 } , wh ere � x � 0 = max | x ( t) | , an d P = { x ∈ E | x (t ) ≥ 0 , t ∈ [0 , 1] } be a co ne in E . S uppose

POSITIVE SOLUTIONS TO PERIODIC BOUNDARY VALUE PROBLEM OF SINGULAR SEMI-POSITONE NONLINEAR THIRD-

POSITIVE SOLUTIONS TO PERIODIC BOUNDARY VALUE PROBLEM OF SINGULAR SEMI-POSITONE NONLINEAR THIRD-
Ke me i Zhang, Wei Wang
( D ept . of M ath ., Qufu N o rma l U nive rsity , Qufu 2 73 1 65 , Sh a nd on g, E -ma il: zhkm9 0 @12 6 .co m (K. Z hang ) )
1
Introduction
In th is pap e r, we stu dy the existen ce of non lin ear th ird -ord er d iffe rential e quation s ( u �i� � + ρ 3 u i = f i (t, u 1 , · · · , un ) + e i ( t) , 0 ≤ t ≤ 2 π, (1 . 1) u i (0) = u i (2 π ) , u �i (0) = u �i (2 π ) , u �i� (0) = u�i � (2 π ) , i = 1 , 2 , · · · , n, √ wh ere ρ ∈ (0 , 1 / 3), f i : [0 , 2 π ] × R n \{ 0 } → [0 , + ∞ ), e i : [0 , 2 π ] → R , i = 1 , 2 , · · · , n, are con tin uou s; fi ( t, u) may b e sin gular at u = 0. In re ce nt years, the p e rio dic b ou nd ary prob lems have b ee n wide ly stu died b y many auth ors, on e can re fer to [1-6] an d the re feren ce s the rein. In [6], usin g n online ar alte rnative of Le ray -Sc hau de r ty p e an d Krasn oselskii fi xed p oint the orem, the existen ce of p ositive solu tion s to th e following n online ar th ird-ord er p eriod ic b oun dary prob le m ( u � � � + ρ 3 u = f ( t, u ) , 0 ≤ t ≤ 2 π, u ( i ) (0) = u( i ) (2 π ) , √ i = 0, 1, 2,

具非局部边界条件的奇异分数阶微分方程正解的存在性和唯一性

具非局部边界条件的奇异分数阶微分方程正解的存在性和唯一性
本文在证明分数阶微分方程正解的唯一性时,利用了 Banach 压缩映射原理。
引理 2.4 (Banach 压缩映射原理)假设 D 是 Banach 空间 E 的非空闭子集, T : D → D 是压缩算子,即 对任意的 x, y ∈ D ,有
Tx − Ty ≤ α x − y ,α ∈ (0,1) .
(iii) T 是压缩映射,
则存在 z ∈ E ,使得=z Sz + Tz 。
引理 2.3 (Arzela-Ascoli 定理)假设函数族 F = { f (t )} 在区间 [α, β ] 上是一致有界和等度连续的,则存 在子函数序列{ fn (t )} ⊂ F 在区间 [α, β ] 上是一致收敛的。
(qx)(t ) ≤ L2 ,t ∈[0,1], x1, x2 ∈ E.
( H3 ) 存在正函数 L3 (t ), L4 (t ) ,使得: tσ f (t, x1,ϕ x1 ) − tσ f (t, x2 ,ϕ x2 ) ≤ L3 (t ) x1 − x2 + L4 (t ) ϕ x1 − ϕ x2 ,t ∈[0,1], x1, x2 ∈ E.
f
: (0,1]×[0, +∞)×[0, +∞)

[0, +∞)
连续,
(ϕ x)(t)
=
∫tγ 0
(t, s)
x (s)ds

γ
: [0,1] ×[0,1] → [0,+∞)

λ
>
0

lim f (t, x (t ),(ϕ x)(t )) = +∞ (即f在 t = 0 点奇异),q是 [0,+∞) 上的非负有界连续函数。
= x (t )

POSITIVE SOLUTION TO SINGULAR SEMIPOSITONEn,p BOUNDARY VALUE PROBLEM

POSITIVE SOLUTION TO SINGULAR SEMIPOSITONEn,p BOUNDARY VALUE PROBLEM

∗ T his pap er wa s su ppo rt ed by t he im po rt a nt science a nd techno lo g y pro ject of Sh ando ng Pro vince (2 00 5 GG2 10 0 60 01 ) and the d oc to ra l fo unda t io n o f S hando ng Jia nzhu U niversity ( 4 24 11 1 ). † M a nuscrip t received No vem ber 1 3, 20 0 6
An n. of D iff. Eqs . 24:2(2008) , 233-238
POSITIVE SOLUTION TO SINGULAR SEMIPOSITONE ( n, p) BOUNDARY VALUE PROBLEM ∗ †
Zhang M ingchuan 1,2 , Yin Yanmin1
233
23N. OF DIFF. EQ S.
Vol.24
(H2 ) Let lim
u→ ∞
= ∞ b e u niform on a com pact sub in terval [α , β ] of (0,1).
Ma also estab lish ed th e following e xisten ce resu lt f or (1.2): Theorem A Ass ume that (H1 ) an d (H2 ) hold. T hen problem (1 . 2) has at least on e posi tive solu tion given t hat λ > 0 is small en ough. In th is p ap er, we gen eralize su ch p rob lem to a sin gular case, u nd er assump tion that q in (1.1) is allowe d to h ave a fin ite nu mb er of singu larities. Essen tially, ou r p ap er gen eralize s the relative th eorem of [12] an d [9]. The follow in g we ll-k nown fi xed p oint the orem is use d to prove our m ain re sult. Lemm a 1. 1[ 13] Let E be a Ban ach space, P ⊂ E be a con e. Assu me th at Ω 1 an d Ω 2 are boun ded open subsets of E wi th 0 ∈ Ω 1 , Ω 1 ⊂ Ω 2 . Fu rther, let T : P ∩ (Ω 2 \ Ω 1 ) → P be a co mpletely con tin uous operator su ch that either (i) � T u � ≤ � u � , u ∈ P ∩ ∂ Ω 1 , and � T u � ≥ � u � , u ∈ P ∩ ∂ Ω 2 ; or (ii) � T u� ≥ � u� , u ∈ P ∩ ∂ Ω 1 , and � T u � ≤ � u � , u ∈ P ∩ ∂ Ω 2 . Then T h as a fi xed po int in P ∩ (Ω 2 \ Ω 1 ) .

一类Hadamard分数阶微分方程边值问题解的存在唯一性

一类Hadamard分数阶微分方程边值问题解的存在唯一性

一类Hadamard分数阶微分方程边值问题解的存在唯一性张海燕;李耀红【摘要】利用Leray-Schauder选择原理及Banach压缩映射原理,本文在一定的非线性增长和压缩条件下研究了一类具有Hadamard积分边值条件的Hadamard 分数阶微分方程边值问题,获得了问题解的存在唯一性的充分条件,并给出了两个例子.【期刊名称】《四川大学学报(自然科学版)》【年(卷),期】2018(055)004【总页数】5页(P683-687)【关键词】Hadamard分数阶导数;分数阶微分方程;边值条件;存在唯一性【作者】张海燕;李耀红【作者单位】宿州学院数学与统计学院,宿州234000;宿州学院数学与统计学院,宿州234000【正文语种】中文【中图分类】O177.911 引言近年来,分数阶微分理论在黏弹性材料力学、工程问题建模、系统控制、分形几何和分形动力学等应用领域建模中得到广泛应用.由于分数阶模型描述的过程信息比整数阶微分方程更精确,分数阶微积分理论近来受到了广泛关注[1-3].虽然出现了许多分数阶微分方程边值问题解的存在性的结果[4-10],但是绝大部分研究工作都是基于Riemann-Liouville或Caputo分数阶微分方程边值问题,对Hadamard分数阶微分方程边值问题的研究则相对较少.其原因也许是Hadamard分数阶定义及计算较复杂,且与其他类型的分数阶微分之间的关联还未完全明确,因而很多现有的非线性分析计算方法不能通过简单平移进行使用.总之,对Hadamard分数阶微分方程进行深入研究很有必要.最近,文献[11]在无穷区间研究了一类Hadamard分数阶微分方程的正解,文献[12]对一类耦合的Hadamard分数阶微分方程组解的存在性进行了研究.受上述文献及其参考文献启发,本文考虑如下Hadamard分数阶微分方程边值问题(1)解的存在唯一性充分条件,这里为为Hadamard分数阶导数,为γ阶Hadamard分数阶积分,f:[1,e]×R2→R是一个连续函数.和文献[11,12]比较,方程(1)中的非线性项中含有Hadamard分数阶导数,同时具有更一般的非线性增长条件,因而在应用上更方便.2 预备知识定义2.1[1] 函数g:[1,+∞)→R的α阶Hadamard分数阶积分定义为定义2.2[1] 函数g:[1,+∞)→R的α阶Hadamard分数阶导数定义为其中n=[α]+1.引理2.3[1] 若α>0,u∈C[1,e]∩L[1,e],则有c2(lnt)α-2-…-cn(lnt)α-n,其中ci∈R,i=1,2,…,n,n如定义2.2所述.引理2.4 如果y(t)∈C([1,e],R)且1<α≤2,则分数阶微分方程(2)有唯一解(3)其中证明由引理2.3可知,Hadamard分数阶微分方程(2)的一般解为(4)利用边值条件u(1)=0,则有c2=0.又由条件知[y(t)+c1(lnt)α-1](η)=则c1=K[y(η)-y(e)].将c1,c2代入(4)式即得(3)式.引理得证.引理2.5(Leray-Schauder选择原理[13]) 设E是实Banach空间,D是E中有界凸集,T:D→D是一个全连续算子,则T在D中必具有不动点.引理2.6(Banach压缩映射原理[13]) 设D是Banach空间E的闭子集,F:D→D 是一个严格的压缩映射,即对任意x,y∈D,|Fx-Fy|≤k|x-y|成立,其中0<k<1,则F在E中有唯一不动点.3 主要结果记X={u|u∈C([1,e],R)且u∈C([1,e],R)},则X在范数下是一个Banach空间.结合引理2.4,定义算子T:X→X如下:Tu(t)=显然,Hadamard分数阶微分方程边值问题(1)有解当且仅当算子T在X中有不动点.为方便,记定理3.1 若f:[1,e]×R2→R是一个连续函数,且存在实常数μi>0(i=0,1,2)使得|f(t,x,y)|<μ0+μ1|x|σ1+μ2|y|σ2,1<t<e,0<σi<1,i=1,2(5)成立,则Hadamard分数阶微分方程边值问题(1)在X中至少存在一个解.证明首先构造一个有界凸闭集.令Ωl={u(t)|u(t)∈X,‖u‖X≤l,t∈[1,e]},这里的显然Ωl是Banach空间X中的有界凸闭集.接着,由Hadamard分数阶导数定义及(5)式,对任意u∈Ωl有|Tu(t)|≤μ1lσ1+μ2lσ2)≤μ1lσ1+μ2lσ2)=M(μ0+μ1lσ1+μ2lσ2) (6)同时,由定义2.2有μ1lσ1+μ2lσ2)=(7)因此‖Tu‖ X=故算子T:Ωl→Ωl.最后,我们分三步证明T是Ωl上的一个全连续算子.第一步,由于算子T:Ωl→Ωl且f是一个连续函数,因此算子T在Ωl上连续. 第二步,∀u∈Ωl,|f(t,u(t),u(t))|≤L=(μ0+μ1lσ1+μ2lσ2).于是,类似于(6)式和(7)式有即TΩl⊂Ωl.故算子T在Ωl上是一致有界的.第三步,∀u∈Ωl,|f(t,u(t),u(t))|≤L=(μ0+μ1lσ1+μ2lσ2).故由第二步知T:Ωl→Ωl.接着,令t1,t2∈[1,e](t1<t2).于是|(Tu)(t2)-(Tu)(t1)|≤KL|(lnt2)α-1-(lnt1)α-1|×另一方面,类似地有|Tu(t2)-Tu(t1)|≤因此,当t2→t1时,有|(Tu)(t2)-(Tu)(t1)|→0,|Tu(t2)-Tu(t1)|→0,即‖(Tu)(t2)-(Tu)(t1)‖X→0,从而T在Ωl上是等度连续的.结合以上三步的结果,由Arzela-Ascoli's定理知算子T在Ωl上是全连续的.综上所述,由引理2.5可知,算子T在Ωl中至少存在一个不动点,即Hadamard分数阶微分方程边值问题(1)在X中至少存在一个解.证毕.注1 当σi=1或σi>1(i=1,2)时,用类似方法在一定条件下也可得到定理3.1的结论.定理3.2 若f:[1,e]×R2→R是一个连续函数且满足下面Lipschitz条件:|f(t,x2,y2)-f(t,x1,y1)|<λ(|x2-x1|+|y2-y1|),1<t<e,λ>0,xi,yi∈R,i=1,2(8)且Nλ<1,则Hadamard分数阶微分方程边值问题(1)在X中存在唯一解.证明令其中取Ωr={u(t)|u(t)∈X,‖u‖X≤r,t∈[1,e]}.则TΩr⊂Ωr.事实上,由u∈Ωr可知|f(t,u(t),u(t))|≤|f(t,u(t),u(t))-f(t,0,0)|+|f(t,0,0)|≤λ(|u(t)|+|u(t)|)|+r′≤λ‖u(t)‖X+r′≤λr+r′.于是由(6)式和(7)式有‖Tu‖≤M(λr+r′),因而N(λr+r′)≤r,即TΩr⊂Ωr.接着我们证明算子T是压缩映射.对ui∈Ωr,i=1,2,t∈[1,e],有|Tu2(t)-Tu1(t)|≤|f(s,u2(s),u2(s))-Mλ(|u2(s)-u1(s)|+|u2(s)-u1(s)|)≤Mλ‖u2-u1‖X,及|Tu2(t)-Tu1(t)|≤因此,‖Tu2-Tu1‖X≤Nλ‖u2-u1‖X.注意到Nλ<1,则T是一个压缩映射.因而由引理2.6知算子T在Ωr中有唯一不动点,即Hadamard分数阶微分方程边值问题(1)在X中存在唯一解.证毕.例3.3 考虑Hadamard分数阶微分方程积分边值问题(9)这里于是取显然,定理3.1条件满足.因此由定理3.1知Hadamard分数阶微分方程边值问题(9)在X中至少存在一个解.例3.4 考虑Hadamard分数阶微分方程积分边值问题(10)这里则于是|f(t,x2,y2)-f(t,x1,y1)|<取λ=1/30,则Nλ<1.显然,定理3.2条件满足.因此由定理3.2知Hadamard分数阶微分方程边值问题(10)在X中存在唯一解.参考文献:【相关文献】[1] Kilbas A A,Srivastava H M,Trujillo J J.Theory and applications of fractional differential equations[M].Amsterdam: Else vier, 2006.[2] Zhou Y,Wang J R,Zhang L.Basic theory of fractional differential equations[M].Singapore: World Scientific Pre ss, 2016.[3] 陈文,孙洪广,李西成,等.力学与工程问题的分数阶导数建模[M].北京: 科学出版社, 2012.[4] Cui Y J.Uniqueness of solution for boundary value problems for fractional differential equations[J].Appl Math Lett, 2016, 51: 48.[5] Zhang X Q.Positive solutions for a class of singular fractional differential equation wi th infinite-point boundary value conditions[J].Appl Math Lett,2015, 39: 22.[6] Zhang H Y,Li Y H,Lu W.Existence and uniqueness of solutions for a coupled system of nonlinear fractional d ifferential equations with fractional integral boundary conditions [J].J Nonlinear Sci Appl,2016, 9: 2434.[7] Wang G T.Explicit iteration and unbounded solutions for fractional integral boundary value problem on an infinite interval [J].Appl Math Lett, 2015, 47: 1.[8] Hamani S,Henderson J.Boundary value problems for fractional differential inclusions with nonlocal c onditions [J].Mediterr J Math, 2016, 13: 967.[9] 张海燕,李耀红.一类高分数阶微分方程积分边值问题的正解[J].四川大学学报:自然科学版,2016,53: 512.[10] 张立新,杨玉洁,贾敬文.一类Caputo分数阶微分方程积分边值问题的正解[J].四川大学学报:自然科学版, 2017, 54: 1169.[11] Qiao Y,Zhou Z F.Positive solutions for a class of Hadamard fractional differential equations on the Infinite interval [J].Math Appl, 2017, 30: 589.[12] Ahmad B,Ntouyas S.A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations [J].Fract Calc Appl Anal, 2014, 17: 348.[13] Deimling,K.Nonlinear functional analysis[M].Berlin: Springer, 1985.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Positive solutions of singular boundary value problem
197
Then there exists t0 ∈ [0, 1] with u′ (t0 ) = 0, u′′ (t ) < 0 yield u′ (t ) ≤ 0, t ∈ [t0 , 1); u′ (t ) ≥ 0, t ∈ (0, t0 ]. Let C0 be a constant which satisfies C0 u(t ) < 1/4, t ∈ [0, 1], and 1/C0 ≥ 4. Then p(t )u−λ (t ) ≥ p(t )(4C0 )λ , q(t )u−m (t ) ≥ q(t )(4C0 )m . By means of (12) and (13), we have u′ (t ) = ≥
1 0 1 0 1 0
[t −λ p(t ) + t −m(t )q(t )] dt < ∞, β = 0, δ = 0.
(9)
[(1 − t )−λ p(t ) + (1 − t )−mq(t )] dt < ∞, β = 0, δ = 0.
(10)
[t −λ (1−t )−λ p(t ) + t −m(1−t )−m q(t )] dt < ∞, β = δ = 0.
(III) If β = 0, δ = 0, the problems (3) and (4) have a positive solution if and only if 0<
1 0
(1 − t )[ p(t ) + q(t )] dt < ∞.
(7)
(IV) If β = δ = 0, the problems (3) and (4) have a positive solution if and only if 0<
We now state the main results of this paper as follows: 195
196
Yuxia Wang and Xiyu Liu
Theorem 2.1. Suppose that (H) is satisfied. Then (I) If β δ = 0, the problems (3) and (4) have a positive solution if and only if 0<
t t0
≥ (4C0 )min{λ ,m} So, 0< =
1 0
[ p(s) + q(s)] ds, t ∈ [t0 , 1].
[ p(s) + q(s)] ds [ p(s) + q(s)] ds +
1 t0
t0 0
[ p(s) + q(s)] ds
≤ (4C0 )− min{λ ,m} [u′ (0) − u′(1)] < ∞. Therefore, (5) holds. Case II: β = 0, δ > 0. Let u ∈ C[0, 1] ∩ C1 (0, 1] ∩ C2 (0, 1) be a positive solution of (3) and (4). From (4) we obtain u(0) = 0, u(1) ≥ 0, u′ (1) = −γδ −1 u(1) ≤ 0. Then by the concavity of u there exists t0 ∈ (0, 1] with u′ (t0 ) = 0. Let C1 be a constant satisfying C1 u(t ) ≤ 1/4, 1/C1 ≥ 4. By means of (12) and (13), we obtain, 0≤
γ u(1) + δ u′(1) = 0,
where α , β , γ , δ ≥ 0, λ ∈ R and ρ := γβ + αγ + αδ > 0; p ∈ C((0, 1), [0, ∞)) and may be singular at t = 0, t = 1. When λ < 0, see [3,4,7,8] for the result concerning the above problem. When λ > 0, [6] shows the existence and uniqueness to (1) and (2) in the case of β = δ = 0 by means of the shooting method. For the following problem u′′ + p(t )u−λ (t ) + q(t )u−m(t ) = 0, 0 < t < 1, (3) (4)
1 0
t [ p(t ) + q(t )] dt < ∞.
Case III: β > 0, δ = 0. The proof for Case III is almost the same as that for Case II. Case IV: β = δ = 0. Let u ∈ C[0, 1] be a positive solution of (3) and (4). Integrating (3) twice gives u′ u′ 1 − u′ (t ) = 2 1 2 t−
t0 0
s[ p(s) + q(s)] ds =
t0 0
t0 0

t0
τ
[ p(s) + q(s)] ds
≤ (4C1 )−λ

t0 0
t0
τ
p(s)u−λ (s) ds
t0
+ (4C1)−m

τ
q(s)u−m (s) ds
198
Yuxia Wang and Xiyu Liu ≤ (4C1 )− min{λ ,m} = (4C1 )− min{λ ,m}
1 0
t (1 − t )[ p(t ) + q(t )] dt < ∞.
(8)
Theorem 2.2. Suppose that (H) is satisfied. Then problems (3) and (4) have a C1 [0, 1] positive solution if and only if the following inequalities hold. (H1) 0< (H2) 0< (H3) 0<
1. Introduction
Consider the singular boundary value problems for the Emden–Fowler equation u′′ + p(t )u−λ (t ) = 0, 0 < t < 1, (1) (2)
α u(0) − β u′(0) = 0,
(11)
3. Proofs of the main results
First we prove Theorem 2.1. We will prove all the necessary conditions first then all the sufficient conditions. 1. Necessity Case I: β δ = 0. Let u(t ) ∈ C1 [0, 1] ∩ C2 (0, 1) is a positive solution of (3) and (4). From (4) and the nontrivial concave function u(t ), we know that u(t ) must satisfy the following case: u(0) ≥ 0, u(1) ≥ 0, u′ (0) ≥ 0, u′ (1) ≤ 0.
t0 t t0 t
(12) (13)
[ p(s)u−λ (s) + q(s)u−m (s)] ds [(4C0 )λ p(s) + (4C0 )m q(s)] ds
t0 t
≥ (4C0 )min{λ ,m} −u′ (t ) =
t t0
[ p(s) + q(s)] ds, t ∈ [0, t0 )
[ p(s)u−λ (s) + q(s)u−m (s)] ds
2. Main results
We state the following hypothesis, which is used throughout this paper. (H) p(t ), q(t ) ∈ C(0, 1), p(t ) ≥ 0, p(t ) ≡ 0, q(t ) ≥ 0, q(t ) ≡ 0, t ∈ (0, 1), λ , m > 0.
1 0
[ p(t ) + q(t )] dt < ∞.
(5)
(II) If β = 0, δ = 0, the problems (3) and (4) have a positive solution if and only if 0<
1 0
t [ p(t ) + q(t )] dt < ∞.
(6)
arXiv:math/0310294v1 [mathIA WANG and XIYU LIU
Department of Statistics, Shandong Economic University, Jinan, Shandong 250 014, People’s Republic of China E-mail: yuxiawty@ MS received 29 October 2001; revised 2 January 2003 Abstract. This paper investigates the existence of positive solutions of a singular boundary value problem with negative exponent similar to standard Emden–Fowler equation. A necessary and sufficient condition for the existence of C[0, 1] positive solutions as well as C1 [0, 1] positive solutions is given by means of the method of lower and upper solutions with the Schauder fixed point theorem. Keywords. solution. Singular boundary value problem; lower and upper solutions; positive
相关文档
最新文档