复变函数复习 (2)

合集下载

西安交大西工大 考研备考期末复习 工程数学复变函数 复数与复变函数

西安交大西工大 考研备考期末复习 工程数学复变函数 复数与复变函数
z r cos i sin
z rei
三角表达式 指数表达式
说明: z r cos i sin
rei
复变函数
例1.将下列复数写为三角表达式与指数表达式
1)z 12 2i
2)z sin i cos
5
5
3)z 1 cos i sin
0
例2.求证 z1 z2 z1 z2
z2
x22 y22
复变函数
2.复数的运算法则
z1 z2 z2 z1, z1z2 z2 z1
(交换律)
z1 z1
(z2 z3) (z1 (z2 z3 ) (z1z2 )z3
z2
)
z3
(结合律)
z1(z2 z3 ) (z1z2 z1z3 ) (分配律)
复变函数
3.共轭复数
2k
n
其中 k 0,1, , n 1
例2.求 1) 1 i 6
2) 6 1
复变函数
本次课小结 本次课的内容要点
1.复数的概念 2.复数的代数运算 3.复数的几何表示 4.复数的乘幂与方根
作业:习题一 4(4)、8(1,3,6)、11 14(3、4)、16、21(4、6)
复变函数
说明:1) z 0 若z=0,则辐角不定
2) tan y ,即tan Argz y
x
x
3) 多值性 Argz 2k
4) 把满足 的辐角称为辐角主值
记为 arg z
arg z arctan y x
复变函数
arg z arctan y
x
arg z arctan y
x
arg z arctan y x
复变函数
复变函数的理论基础是在十九世纪奠定的,主 要是围绕柯西 、魏尔斯特拉斯和黎曼三人的工作进 行的。

复变函数总复习资料

复变函数总复习资料

性质: (1) Ln(z1 z2 ) Lnz1 Lnz2 ,
(2) Ln z1 z2
(3)Lnzn

Lnz1 nLnz
Lnz2 Ln n
, z

1
Lnz
n
(4) 在除去负实轴(包括原点)的复平面内, 主值支和其它各分支
处处连续, 处处可导, 且 (ln z) 1 , (Lnz) 1 .
z
z 15
3.乘幂与幂函数:ab、zb
乘幂 ab ebLna.
由于 Lna ln a i(arg a 2k ) 是多值的, 因而ab 也是多值的.
(1) b 为整数:
a e e e e b
bLna
b[ln a i(arga2k )]
b(ln a iarga)2kbi
ez的性质:
1. f (z) ez 0
2. ez ez 处处解析
3. 满足加法定理:ez1ez2 ez1z2
4. 周期性:周期为 2k i
14
2.对数函数:Ln z ln z iArg z ln z i arg z i2k
多值!
主值: ln z ln z i arg z arg z 分支: Ln z ln z 2k i k 1, 2
3、 复数运算
z1 x1 iy1 z2 x2 iy2
加法、减法: z1 z2 (x1 x2 ) i( y1 y2 )
乘法: 除法:
z1z2 (x1 i y1)(x2 i y2ห้องสมุดไป่ตู้)
(x1x2 y1y2 ) i(x1y2 x2 y1)
z
各分支在除去原点和负实轴的复平面内是解析的: (zb ) bzb1.

数学-《复变函数》复习资料

数学-《复变函数》复习资料

《复变函数》 复习资料1一、判断题1. 把角形域映射为角形域用指数函数映射( )2.3.4.5.6.7. 分式线性映射在复平面上具有共形性、保圆性、保对称性。

( )8.9.10.二、解答题1.设)1()(2z z e z f z +=,求()f z 在1||0<<z 的洛朗展式(只写出含1z到2z 各项). 2.利用留数定理计算复积分I =21az z e dz =⎰+1()()n n z dzz a z b =--⎰ (01,01a b <<<<且,a b n ≠为自然数).3.利用留数定理计算实积分θθθπd ⎰-20cos 452cos 4.三、解答与证明题1.如果在1z <内,函数()f z 解析,且1()1f z z≤-,求()(0)n f 的最优估计值. 2.(1)函数211x+当x 为实数时,都有确定的值且在全实轴上有任意阶导数,但它的泰勒展开式: -+-=+422111x x x却只当1<x 时成立,试说明其原因; (2)利用惟一性定理证明:210(1)sin ,(21)!n n n z z n ++∞=-=+∑ 1z <.3.设)(z ϕ在:1C z =内解析且连续到C ,在C 上 ()1z ϕ<试证 在C 内部2()3z z z ϕ=+只有一个根0z .4. 设D 为单连通区域,()f z 在D 内解析,C 在D 内一条周线,0D 为C 的内部.若对于任意的0z D ∈都有1()Re 12C f d i z ξξπξ⎧⎫=⎨⎬-⎩⎭⎰,则在D 内恒有()f z 1ic =+,其中c 为实常数.答案一、1-5 FFTTF 6-10 TFFTF二、解答题1、设)1()(2z z e z f z +=,求()f z 在1||0<<z 的洛朗展式(只写出含1z 到2z 各项) 解:)1()(2z z e z f z+=211z e z z =+ =21(1)2!3!z z z ++++(2421(1)n n z z z -+-+-+)=215126z z z +--+(1||0<<z ).2、利用留数定理计算复积分I =21az z e dz =⎰+1()()n n z dzz a z b =--⎰ (01,01a b <<<<且,a b n ≠为自然数)解:因为 ||1a <,||1b <且a b ≠ 所以1||1()()n n z dzI z a z a ==--⎰=2i π[Re ()z a s f z =+Re ()z bs f z =] =12121(1)...(22)112(1)()0(1)!()()n n n n n n i n b a a b π---⎡⎤---+=⎢⎥---⎣⎦设2I =21az z e dz =⎰,因为在单位圆周1z =内2az e 只有一个本质奇点0z =,在该点的去心领域内有洛朗展式:2az e =22412!a a z z+++所以2Re 0az z s e ==,故20I =,因此原积分值为零。

复变函数复习

复变函数复习
复变函数复习考试提纲
1 知识要点
1.1 复平面上的复变函数
• 必备知识:复数的定义,实部、虚部。共轭复数,复平面,复数对应的向量及其模,复数的 四则运算。 • 欧拉公式 eiθ = cos θ + i sin θ 由此可得 cos θ = 以及 ei2kπ ≡ 1, • 复数的三角(指数)表示以及复数的几何意义 z = x + iy = r (cos θ + i sin θ) = reiθ θ = Argz = arg z + 2kπ, k = 0, ±1, ±2, . . . y . y . r . θ . . O . x . x . z . k 为整数 eiθ + e−iθ , 2 eiθ − e−iθ 2i
z →z0
• 留数计算法则3
设 f (z ) = φ(z ) ψ (z )
其中φ(z )及ψ (z )都在z0 点解析,z0 为ψ (z )的一级零点,则 Res(f, z0 ) = φ(z0 ) ψ ′ (z0 )
5
• 留数计算法则4
若z0 是f (z )的m级极点,则 Res(f, z0 ) = 1 dm−1 m lim [(z − z0 ) f (z )] (m − 1)! z→z0 dz m−1
• 若R(cos θ, sin θ)是cos θ和sin θ的有理函数,在0 ≤ θ ≤ 2π 上连续,则定积分 ∫ 2π I= R(cos θ, sin θ)dθ
0
可在作积分变换z = eiθ 后,化为围道积分。 ∫ 2π ∮ I= R(cos θ, sin θ)dθ =
0 |z |=1
f (z )dz = 2πi
C C C C
0 ≤ θ ≤ 2π
计算办法:先求出积分曲线的参数方程,设为z = z (t),α ≤ t ≤ β ,则 ∫ ∫ β f [z (t)]z ′ (t)dt f (z )dz =

复变函数复习资料

复变函数复习资料

(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. ①两个复数相等,当且仅当它们的实部与虚部分别相等。

②一个复数等于零,当且仅当它的实部与虚部同时等于零。

③称复数x+iy 和x-iy 互为共轭复数。

2.复数的表示1)模:z=2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于[)π2,0中的幅角。

(()Arg z 有无穷个值,()arg z 是复数z 的辐角的主值()Arg z =()arg z +2k π3)()arg z 与arctan y x之间的关系如下: 当0,x > arg arctanyz x=;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩; 4)三角表示:)sin (cos z θθi r +=,其中)(r z g A =θ;注:中间一定是“+”号。

(r=|z|)5)指数表示:θi re =z ,其中)(r z g A =θ。

(二) 复数的运算 1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±··2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。

复变函数期末考试复习题及答案详解

复变函数期末考试复习题及答案详解

《复变函数》考试试题(一)三 . 计算题( 40 分):dz1、|z z 0 | 1 ( z z )n__________. ( n 为自然数)f ( z)12.sin 2 z cos 2z _________.3. 函数sin z的周期为 ___________.f (z)14. z 2 1 ,则f ( z)的孤立奇点有 __________.设 5. 幂级数nz n的收敛半径为 __________.n 06. 若函数 f(z) 在整个平面上处处解析,则称它是__________.lim z nlimz 1z 2 ... z n7. 若 n,则 nn ______________.Res(ez8.n,0)z________,其中 n 为自然数 .9.sin z的孤立奇点为 ________ .z10. 若zlimf (z) ___是f (z) 的极点,则z z.1. 设( z 1)( z 2) ,求 f ( z) 在 D { z : 0 | z | 1}内的罗朗展式 .1dz.2.|z| 1cos zf ( z) 3 2 71,其中 C { z :| z |3} ,试求 f '(1 i ).3.d设Czwz 14. 求复数 z 1 的实部与虚部 .四 . 证明题 .(20 分 )1. 函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数, 那么它在 D 内为常数 .2. 试证 :f (z)z(1 z) 在割去线段 0 Re z 1 的 z 平面内能分出两个单值解析分支 , 并求出支割线 0 Re z 1 上岸取正值的那支在 z 1 的值 .《复变函数》考试试题(二)二. 填空题 . (20 分)1.设z i ,则| z |__,arg z__, z__2.设 f ( z)(x2 2 xy) i (1 sin( x2y2 ), z x iy C,则lim f (z)________.z1idz_________. (n为自然数)3.|z z0 |1 ( z z )n4.幂级数nz n的收敛半径为 __________ .n05.若 z0是 f(z) 的 m 阶零点且 m>0,则 z0是f ' ( z)的 _____零点 .6.函数 e z的周期为 __________.7.方程 2z5z33z 8 0 在单位圆内的零点个数为________.18.设 f ( z)1z2,则 f ( z) 的孤立奇点有_________.9.函数 f (z)| z |的不解析点之集为________.10.Res( z41,1)____ . z三.计算题 . (40 分)1.求函数sin(2z3)的幂级数展开式 .2. 在复平面上取上半虚轴作割线 . 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点z i 处的值.计算积分: Ii1)单位圆(| z |1)3.| z | dz,积分路径为(i的右半圆 .sin zdzz22( z)4.求2.四. 证明题 . (20 分)1.设函数 f(z) 在区域 D 内解析,试证:f(z)在 D 内为常数的充要条件是 f ( z)在D内解析.2.试用儒歇定理证明代数基本定理 .《复变函数》考试试题(三)二. 填空题 .(20 分)11.设 f ( z),则f(z)的定义域为___________.z212.函数 e z的周期为_________.3.若 z nn 2 i (1 1 )n,则 lim z n __________.1 nn n4. sin 2 z cos 2z___________.dz5.|z z 0 | 1 ( z z )n_________. ( n 为自然数)6.幂级数nx n的收敛半径为 __________.n 07.设f (z)1,则 f ( z ) 的孤立奇点有 __________.z218. 设ez1,则 z___ .9.若z 0 是 f (z) 的极点,则 limf ( z) ___ .z z 010.Res( e z,0)____.z n三. 计算题 . (40分)11.将函数 f ( z)z 2e z在圆环域 0z内展为 Laurent 级数 .n!n2. 试求幂级数nnz的收敛半径 .n3. 算下列积分:e zdz,其中C 是| z| 1.Cz 2 (z29)4. 求z 9 2z 6z28z 2 0 在 | z |<1内根的个数 .四 . 证明题 . (20 分)1.函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2.设f (z) 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及 M ,使得当| z|R 时| f (z) |M | z |n ,证明f (z) 是一个至多 n 次的多项式或一常数。

复变函数复习重点

复变函数复习重点

第一章复数与复变函数
1. 复数的四则运算,欧拉公式,复数的n次方根
2. 复平面上的曲线方程,参数方程和直角坐标方程以及与复数之间的互化。

3. 映射的概念
4. 复变函数的连续与极限
第二章解析函数
1. 掌握复变函数的导数与微分,解析函数的概念
2. 掌握函数解析的判断(大题)
3. 初等函数,掌握指数函数、对数函数、幂函数、三角函数;了解双曲函数(定义)、反三角函数与反双曲函数的定义。

(大题)
第三章复变函数的积分
1. 了解复变函数积分的概念和性质
2. 掌握柯西积分定理及其应用:柯西积分定理,原函数,复合闭路定理(大题)
3. 掌握柯西积分公式,解析函数的高阶导数(大题)
4. 掌握解析函数与调和函数的关系。

(大题)
第四章复级数
1. 掌握复数项级数的审敛法
2. 掌握幂级数的敛散性判断及收敛半径
3. 掌握泰勒级数与洛朗级数的展开(大题)
第五章留数及其应用
1. 函数的零点与极点及其判断
2. 留数及留数定理(大题)
3. 留数在定积分计算中的应用,掌握教材中的1, 2, 3三种类型。

(大题)
第六章拉普拉斯变换
1. 拉普拉斯变换的概念
2. 拉普拉斯变换的性质
3. 卷积,拉普拉斯逆变换
4. 拉普拉斯变换的应用(大题,求解微分方程)
第七章矢量分析
1. 矢量的微分与积分
2. 矢量的标量积、矢量积以及混和积
第八章场论
1. 方向导数与梯度(大题)
2. 通量与散度(散度定理)(大题)
3. 环量与旋度(斯托克斯定理)(大题)
4. 有势场与调和场。

复变函数总复习资料

复变函数总复习资料

总结词
导数与微分在解决实际问题中具有广泛的应 用。
详细描述
导数与微分的应用包括求函数的极值、判断 函数的单调性、求函数的拐点、近似计算等 。这些应用在物理学、工程学、经济学等领 域都有广泛的应用,如波动方程、热传导方 程、弹性力学等领域的研究都需要用到复变
函数的导数与微分。
04
复变函数的积分
积分的定义与性质
解析性是实变函数的导数的定义基础,因此解析性在实变函数中有 着广泛的应用。
在复变函数中的应用
解析性是复变函数的导数的定义基础,因此解析性在复变函数中有 着广泛的应用。
在物理中的应用
解析性在物理中也有着广泛的应用,例如在电磁学、光学等领域中, 解析性可以帮助我们更好地理解物理现象。
THANKS
感谢观看
总结词
复数与复变函数在物理、工程等领域有广泛应用。
详细描述
复数与复变函数在物理、工程等领域有广泛的应用。例如,在电路分析中,电压和电流可以用复数表示,方便计 算;在信号处理中,复数可以用于表示和处理信号;在量子力学中,波函数通常用复数表示。此外,许多数学问 题也可以通过复数和复变函数得
总结词
复变函数是定义在复数域上的函数,具有连续性、可微性等 性质。
详细描述
复变函数是定义在复数域上的函数,其定义与实数域上的函 数类似,但具有更丰富的性质。复变函数可以具有连续性、 可微性、解析性等性质,这些性质在研究复变函数的积分、 微分、级数等数学问题中具有重要作用。
复数与复变函数的应用
幂级数的概念与性质
定义
幂级数是无穷多个形如$a_n x^n$的项按照一定的顺 序排列的数列,其中$a_n$是常数,$x$是变量。
性质
收敛半径,幂级数的展开式,幂级数的加减乘除等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复变函数复习第一章 复数与复变函数1.复数的表示(1)复数的代数表示:复数z = x + i y ,其中x,y 为实数.(2)复数的几何表示:复数z = x + i y 可以用xy 平面上的点P(x,y)来表示,因而也能用原点指向P 点的平面向量OP 来表示.(3)复数的三角表示:复数()θθsin cos i r z += 复数的模 22y x r z +==复数的辐角Argz=θ, ()xyArgz tg = , 复数的辐角的主值argzArgz=argz+2k π(k 为整数). 规定-π<argz ≤π 当0=z 时,|z|=0,辐角没有意义.当∞=z 时,|z|=+∞,没有实部,虚部和辐角.argz(0≠z )与反正切x y Arctg 的主值x y arctg ⎪⎭⎫ ⎝⎛<<-22ππx y arctg 的关系:第一、四象限 xyarctg z =arg x ﹥0第二象限 π+=x yarctg z arg x ﹤0,y ﹥0第三象限 π-=xyarctg z arg x ﹤0,y ﹤0正虚轴 2arg π=z x=0,y ﹥0 负虚轴 2arg π-=z x=0,y ﹤0负实轴 π=z arg x ﹤0,y=0(4)复数的指数表示:θi re z z =≠,0时 2.复数的运算设z 1= x 1+iy 1=()111sin cos θθi r +, z 2 =x 2+iy 2()222sin cos θθi r +=(1)相等 z 1= z 2 ⇔ x 1=x 2 y 1=y 2 (2)加(减)法 z 1±z 2=(x 1±x 2)+i(y 1±y 2) (3)乘法 z 1z 2=(x 1x 2-y 1y 2)+i(x 2y 1+x 1y 2)()()[]212121)(21sin cos 21θθθθθθ+++==+i r r e r r i(4)除法 222121z z zz z z ⋅⋅==22222121y x y y x x +++i22222112y x y x y x +-()2121θθ-=i e r r )]sin()[cos(212121θθθθ-+-=i r r (z 2≠0) (5)乘幂 )sin (cos θθθn i n r e r z n in n n +==特别 |z|=1时, (cos θ+isin θ)n =cosn θ+isinn θ (棣莫弗公式)(6)方根 ,2sin 2cos1⎪⎭⎫⎝⎛+++=nk i n k r z n n πθπθ ()1,,2,1,0-=n k (7)共轭 z = x-iy=re -i θ , 21z z ±=1z 2z ±,121z z z =2z ,2121z z z z =⎪⎪⎭⎫ ⎝⎛ ;z z = ; 22y x z z += ; x z z 2=+, iy z z 2=- .注意:(1)在复数的运算中,除加减法用代数表示较方便外,其它运算宜采用三角表示,特别是用指数表示最方便.(2)关于复数的模与辐角有以下计算公式:2121z z z z ⋅= ,()2121Argz Argz z z Arg +=2121z z z z = , Arg ⎪⎪⎭⎫ ⎝⎛21z z =21Argz Argz - (z 2≠0)3.复变函数的概念复变函数的定义,极限,连续以及导数等概念在形式上几乎与实变函数完全相同.但需注意的是,复变函数的定义域是复平面上的点集,因此在讨论有关概念时,应注意复变量z 变化方式的任意性,即z →z 0可以以任意方式(直线,曲线…),而一元实变函数中实变量x →x 0只能沿x 轴.4.简单曲线是研究复变量的变化范围时经常用到的重要概念之一,特别是简单闭曲线经常作为区域的边界出现.在复变函数的积分运算中,常常需要把曲线表示为复参量的形式,通常用得最多的是一元实参量t 的复值函数 z=z(t)=x(t)+iy(t) (α≤t ≤β) 其中 x=x(t), y=y(t) (α≤t ≤β) 是该曲线在直角坐标系中的参数方程.第二章 解析函数1. 复变函数的导数(1)定义 函数w = f (z)在其定义域D 内一点z 0处(可导)的导数()()()()()000000000limlim lim z z z f z f z z f z z f z wdzdwz f z z z z z z --=∆-∆+=∆∆=='→→∆→∆= 若函数w = f (z)在区域D 内处处可导,称 f (z)在D 内可导. (2) f(z)在z 0可导 连续(3)求导法则 若f(z),g(z)在点z 可导,则()1-='b bbzz(b 为复数);()()[]()()z g z f z g z f '±'='±; ()()[]()()()()z g z f z g z f z g z f '+'=';()()()()()()()[]z g z f z g z f z g z g z f '-'='⎥⎦⎤⎢⎣⎡21,()0≠z g .()[]{}()()z g w f zg f ''=',其中 ()z g w = . ()()w z f ϕ'='1,其中()z f w =与()w z ϕ=是两个互为反函数的单值函数,且 ()0≠'w ϕ. 2.解析函数(1)定义 如果函数f(z)在z 0及z 0的邻域内处处可导,那末称f(z)在z 0解析.如果f(z)在z 0不解析,则称z 0为f(z)的奇点. 如果f(z)在区域D 内每一点解析,那末称f(z)在D 内解析,或称f(z)是D 内的一个解析函数. (2)性质 两个解析函数的和,差,积,商(分母不为零)及复合函数仍然解析有理分式函数)()(z Q z P 在复平面内除了使分母为零的点外处处解析 (3)柯西-黎曼方程 (C-R 方程)函数()()()y x iv y x u z f ,,+=在定义域D 内(解析)一点iy x z +=可导⇔ u(x,y)与v(x,y)在(D 内)点(x,y)可微,并且满足C-R 方程yv x u ∂∂=∂∂,x v y u ∂∂-=∂∂. 推论 若f (z)在z 处可导, 则 ()yui y v x v i x u z f ∂∂-∂∂=∂∂+∂∂=' . 3.初等函数 定义 定义区域 单值多值性 解析区域 (1) 对数函数Lnz=lnz+2 k πi 整个复平面 多值 整个复平面iArgz z Lnz +=ln (z ≠0) (除原点和负实轴)(k=0,±1,±2,…) 主值分支z i z z arg ln ln +=(2)乘幂 a b = e bL n a =e blna+2bk πi 多值(k=0,±1,±2,…) 主值分支e b l n ab 为正整数n 单值 整个复平面nb 1=n 个分支 (除原点和负实轴) 定义 定义区域 解析区域 单值多值性 基本周期 奇偶性(3)指数函数 e z(4)双曲函数2zz e e chz -+= 2πi 偶2zz e e shz --=整个复平面 单值 奇(5)三角函数2cos iziz e e z -+=2π 偶ie e z iziz 2sin --= 奇第三章 复变函数的积分1.积分的计算 ()()[]()t d t z t z f z d z f C '=⎰⎰βα光滑曲线C 参数方程: ()()()βα≥≤+==t t iy t x t z z ,, 正向t 增加()⎰+-Cn z z dz10⎩⎨⎧≠==0002n n i πC 是包围z 0的任何一条正向简单闭曲线2.积分的性质 f(z),g(z)沿曲线C连续(1) ()()dz z f dz z f C C ⎰⎰-=- ; (2) ()()dz z f k dz z kf C C ⎰⎰=;(k 为常数) (3) ()[()]()()dz z g dz z f dz z g z f C C C ⎰⎰⎰±=±(4)设曲线C 的长度为L,函数f(z)在C 上满足()M z f ≤,那末()()ML ds z f dz z f C C ≤≤⎰⎰.3.柯西-古萨基本定理 如果函数f(z)在单连域B 内处处解析,那末函数f(z)沿B 内任何一条封闭曲线C 的积分为零: ()0=⎰dz z f C.推广:(1)闭路变形原理 在区域内的—个解析函数f(z)沿闭曲线的积分,不因闭曲线在区域内作连续变形而改变其值,只要在变形过程中曲线不经过f(z)的奇点.(2)复合闭路定理 设C 为多连域D 内的一条简单闭曲线,C 1,C 2,…,C n 是在C 内部的简单闭曲线,它们互不包含也互不相交,并且以C ,C 1,C 2,…,C n 为边界的区域全含于D.如果f(z)在D 内解析,那末1) ()()dz z f dz z f nk C CK ∑⎰⎰==1 ,其中C 及C k 均取正向.2) 0)(=⎰Γdz z f ,这里г为由C 及C k ―(k=1,2,…,n )所组成的复合闭路,其方向是:C 逆时针,C k ―顺时针.推论:(1) ()()dz z f dz z f ZZ C ⎰⎰=10,C是连结z 0与z 1的任一曲线.(2)函数()()ςςd f z F ZZ ⎰=0必为B 内的—个解析函数,并且()()z f z F ='.5.原函数 如果在区域B 内φ/(z)=f(z),那末φ(z)称为f(z)在区域B 内的原函数 不定积分 ()()c z dz z f +=⎰ϕ ,其中c为任意复常数.()()()0110z z dz z f Z Z ϕϕ-=⎰,其中z 0 ,z 1是B 内任意两点6.柯西积分公式 如果f(z)在区域D 内处处解析,C 为D 内的任何一条正向简单闭曲线,它的内部完全含于D,z 0为C 内的任一点,那末()()dz z z z f i z f C ⎰-=0021π 解析函数f(z)的导数仍为解析函数,上式两边形式上对z 0求n 阶导数得到高阶导数公式 ()()()()dz z z z f i n z fC n n ⎰+-=1002!π . 7.调和函数 如果二元实变函数φ(x,y)在区域D 内具有二阶连续偏导数并且满足拉普拉斯方程 02222=∂∂+∂∂yxϕϕ,那末称φ(x,y)为区域D 内的调和函数任何在区域D 内解析的函数f(z)=u(x,y)+iv(x,y)的实部和虚部都是D 内的调和函数,并且其虚部v(x,y)为实部u(x,y)的共轭调和函数. 8.已知实部或虚部求解析函数(1)偏积分法 如已知u(x,y),可利用柯西一黎曼方程 xu y v ∂∂=∂∂,将x 当成常数,对y 积分得 ()()x g dy xuy x v +∂∂=⎰,,再利用 x v y u ∂∂-=∂∂ 确定g(x). 也可以利用 yux v ∂∂-=∂∂ ,将y 当成常数,对x 积分得()()y h dx yu y x v +∂∂-=⎰, ,再利用 y vx u ∂∂=∂∂ 确定h(y). (2)不定积分法 由于 ()xvi x u z f ∂∂+∂∂=', 利用柯西一黎曼方程得到 ()()z U yui x u z f =∂∂-∂∂=' ,则 ()()c dz z U z f +=⎰ . 或 ()()z V xvi y v z f =∂∂+∂∂=' ,则 ()()c dz z V z f +=⎰ . 第四章 级数1.幂级数 形为()()()() +-++-+-+=-∑∞=n n n n n a z c a z c a z c c a z c 22100或 +++++=∑∞=n n n n n z c z c z c c z c 22100的级数称为幂级数.(1)阿贝尔定理 如果级数∑∞=0n n n z c 在()00≠=z z 收敛,那末对满足0z z <的z,级数必绝对收敛. 如果在0z z =级数发散,那末对满足0z z >的z,级数必发散.(2)对于幂级数()nn n a z c -∑∞=0或 ∑∞=0n n n z c ,存在以a 或0为中心,R 为半径的圆周C R .在C R 的内部,级数绝对收敛;在C R 的外部,级数发散.圆周C R 称为幂级数的收敛圆,收敛圆的半径R 称为收敛半径. 特别1)R=0,级数在复平面内除原点外处处发散2)R=∞,级数在复平面内处处收敛(3)对于幂级数∑∞=0n nn z c ,如果λ=+∞→nn n c c 1lim或λ=∞→n n n c lim 那末收敛半径λ1=R .(包括R=0或R=∞)(4)在收敛圆内幂级数()n n n a z c -∑∞=0的和函数f(z)是解析函数.在收敛圆R a z <-内,式()()nn n a z c z f -=∑∞=0,可进行有理(加,减.乘法)运算,代换(复合)运算和微积分运算.2.泰勒级数 函数f(z)可在以展开中心z 0为圆心,z 0到f(z)的最近的一个奇点α的距离为半径R=|α-z 0|的解析圆域|z-z 0|<R 内展开为泰勒级数.()()()()n n n z z n z f z f 000!-=∑∞= 泰勒展开式具有唯一性,因此可以借助于一些已知函数的展开式,利用幂级数的有理(加,减.乘法)运算,代换(复合)运算和微积分运算来得出一个函数的泰勒展开式. 常用的已知函数的展开式为+++++=-n z z z z2111, 1<z . ++++++=!!3!2132n z z z z e nz 3.洛朗级数 函数f(z)可在以展开中心z 0为圆心的解析的圆环域 R 1<|z-z 0|<R 2内展开为洛朗级数 ()()n n n z z c z f 0-=∑∞-∞=,其中 ()()() ,2,1,0.2110±±=-=⎰+n d z f i c C n n ςςςπ 这里C 为在圆环域内绕z 0的任何一条正向简单闭曲线.洛朗展开式具有唯一性,因此也可以借助于已知函数的展开式,利用幂级数的有理(加,减.乘法)运算,代换(复合)运算和微积分运算来得出一个函数的洛朗展开式.第五章 留数1.孤立奇点的概念和分类(1)定义 如果函数f(z)虽在z 0不解析,但在z 0的某一个去心邻域δ<-<00z z 内处处解析,则将z 0称为f(z)的孤立奇点.(2)孤立奇点的分类和判定z 0为f(z)的 ()z f z z 0lim → f(z)在z 0的去心邻域内的洛朗级数 可去奇点 存在且有限 没有负幂项 极点 ∞有限多个负幂项本性奇点不存在且不为∞ 无穷多个负幂项z 0是f(z)的m 级极点()()()z g z z z f m01-=⇔ ,其中g(z)是在δ<-0z z 内解析的函数,且 ()00≠z g .(3)函数的零点及其与极点的关系不恒等于零的解析函数f(z)如果能表示成 ()()()z z z z f m ϕ0-= 其中()z ϕ在z 0解析并且()00≠z ϕ,m 为某一正整数,那末z 0称为f(z)的m 级零点.如果f(z)在z 0解析,那末z 0为f(z)的m 级零点 ⇔ ()()()()()0,1,,2,1,0,000≠-==z f m n z f m nz 0是f(z)的m 级极点⇔z 0是()z f 1的m 级零点. 如果()()()z h z g z f =,而z 0是g(z)的m 级零点,h(z)的n 级零点,那末z 0为()z f 1的(n-m)级零点,为f(z)的(n-m)级极点. (4)函数在无穷远点的性态如果函数f(z)在无穷远点∞=z 的去心邻域+∞<<z R 内解析,那末称点∞为f(z)的孤立奇点.f(z)在+∞<<z R 内的洛朗展开式 ()n n n nn n z c c zc z f ∑∑∞=-∞=-++=101其中 ()() ,2,1,0,211±±==⎰+n d f ic C n n ςςςπ,C 为+∞<<z R 内绕原点的任一正向简单闭曲线.洛朗级数 z=∞是f(z)的 ()z f z ∞→lim没有正幂项 → 可去奇点 ← 存在且有限 有限正幂项(最高m 次) → 极点(m 级) ← ∞ 无限正幂项 → 本性奇点 ← 不存在且不为∞ 2.留数与留数的计算(1)留数定义 如果z 0为f(z)的一个孤立奇点,C 是z 0的去心邻域R z z <-<00 内包围z 0的任意一条正向简单闭曲线,函数f(z)在此邻域内展开成洛朗级数 ()()n n n z z c z f 0-=∑∞-∞=, 则f(z)在z 0处的留数 ()[]()dz z f ic z z f s C⎰==-π21,Re 10 (2)留数定理 设函数f(z)在区域D 内除有限个孤立奇点nz z z ,,,21 外处处解析.C 是D 内包围诸奇点的一条正向简单闭曲线,那末()()[]∑⎰==nk k Cz z f s i dz z f 1,Re 2π(3)留数的计算1)可用洛朗级数计算 ()[]10,Re -=c z z f s当z 0为可去奇点时, ()[]0,Re 0=z z f s ;当z 0为本性奇点时,只能用此法, 2)当z 0为一级极点时, ()[])]()[(lim ,Re 000z f z z z z f s z z -=→若()()()z Q z P z f =,P(z)及Q(z)在z 0都解析,如果()(),0,000=≠z Q z P()00≠'z Q ,那末z 0为f(z)的一级极点,而 ()[]()()000,Re z Q z P z z f s '= . 3)如果z 0为f(z)的m 级极点,那末()[]()()(){}z f z z dz d m z z f s m m m z z 01100lim !11,Re --=--→ 4.无穷远点处的留数函数f(z)在圆环域+∞<<z R 内解析,C 为这圆环域内绕原点的任何一条正向简单闭曲线, f(z)在∞点的留数 ()[]()dz z f i z f s C ⎰-=∞π21,Re . 如果函数f(z)在扩充复平面内只有有限个孤立奇点,那末f(z)在所有各奇点(包括∞点)的留数的总和必等于零.()[]⎥⎦⎤⎢⎣⎡⋅⎪⎭⎫ ⎝⎛-=∞0,11Re ,Re 2z z f s z f s。

相关文档
最新文档