【学案】2017高三物理二轮练习:专题五第12讲碰撞与动量守恒近代物理初步含解析
高三物理二轮专题训练(碰撞与动量守恒部分)

高三物理二轮专题训练(碰撞与动量守恒部分)限时:10分钟一.单项选择题(4分×4=16分) 1.下列说法中正确的是( ) A . B . C .物体的速度大小改变,其动量可能不 D .物体的速度方向改变,其动量一定改变2.如图所示,光滑的水平地面上放着一个光滑的凹槽,槽两端固定有两轻质弹簧,一弹性小球在两弹簧间往复运动,把槽、小球和弹簧视为一个系统,则在运动过程中 ( ) A.系统的动量守恒,机械能不守恒B.系统的动量守恒,机械能守恒C.系统的动量不守恒,机械能守恒D.系统的动量不守恒,机械能不守恒3.如图所示,物体A 静止在光滑的水平面上,A 的左边固定有轻质弹簧,与A 质量相等的物体B 以速度v 向A 运动并与弹簧发生碰撞.A 、B 始终沿同一直线运动,则A 、B 组成的系统动能损失最大的时刻是 ( )A.A 开始运动时B.A 的速度等于v 时C.B 的速度等于零时D.A 和B 的速度相等时4.如图所示,在光滑水平面上有直径相同的a 、b 两球,在同一直线上运动.选定向右为正方向,两球的动量分别为Pa =6 kg ·m/s 、P b =-4 kg ·m/s.当两球相碰之后,两球的动量可能是( ) A.Pa=-6 kg ·m/s 、P b =4 kg ·m/sB.Pa=-6 kg ·m/s 、P b =8 kg ·m/sC.Pa=-4 kg ·m/s 、P b =6 kg ·m/sD.Pa=2 kg ·m/s 、P b =0二.双项选择(6分×5=30分)5.在“验证动量守恒定律实验”中,下列关于小球落点的说法,正确的是 ( ) A.如果小球每次从同一点无初速度释放,重复几次的落点一定是重合的B.由于偶然因素的存在,重复操作时小球落点不重合是正常的,但落点应当比较密集C.测定P 的位置时,如果重复10次的落点分别是P1,P2,P3,……,P10,则OP 应取OP1、OP2、OP3、……、OP10的平均值,即:OP=1231010OP OP OP OP ++++D.用半径尽可能小的圆把P1、P2、P3,……,P10圈住,这个圆的圆心是入射小球落点的平均位置P6.相互作用的物体组成的系统在某一相互作用过程中,以下判断正确的是( ) A.系统的动量守恒是指只有初、末两状态的动量相等 B.系统的动量守恒是指任意两个状态的动量相等 C.系统的动量守恒是指系统中任一物体的动量不变 D.系统所受合外力为零时,系统动量一定守恒7.长木板A 放在光滑的水平面上,质量为m=2 kg 的另一物体B 以水平速度v 0=2 m/s 滑上原来静止的长木板A 的表面,由于A 、B 间存在摩擦,之后A 、B 速度随时间变化情况如图所示,则下列说法正确的是( )A.木板获得的动能为2 JB.系统损失的机械能为4 JC.木板A 的最小长度为1 mD.A 、B 间的动摩擦因数为0.18.如图甲所示,在光滑水平面上的两个小球发生正碰.小球的质量分别为m 1和m 2.图乙为它们碰撞前后的s-t 图象.已知m1=0.1 kg.由此可以 确定下列正确的是( )A.碰前m 2静止,m 1向右运动B.碰后m 2和m 1都向右运动C.由动量守恒可以算出m 2=0.3 kgD.碰撞过程中系统损失了0.4 J 的机械能9.如图所示,一根足够长的水平滑杆SS ′上套有一质量为m 的光滑金属圆环,在滑杆的正下方与其平行放置一足够长的光滑水平的绝缘轨道PP ′,PP ′穿过金属环的圆心.现使质量为M 的条形磁铁以水平速度v0沿绝缘轨道向右运动,则( ) A.磁铁穿过金属环后,两者将先、后停下来B.磁铁将不会穿越滑环运动C.磁铁与圆环的最终速度n M M +0vD.整个过程最多能产生热量2()Mm M m +v 02参考答案:。
全国高考理综物理专题复习辅导精品学案《碰撞与动量守恒》(最新整理含答案)

全国高考理综物理专题复习辅导精品学案《碰撞与动量守恒》考点1 碰撞模型1.碰撞的特点(1)作用时间极短,内力远大于外力,总动量总是守恒的。
(2)碰撞过程中,总动能不增。
因为没有其他形式的能量转化为动能。
(3)碰撞过程中,当两物体碰后速度相等时,即发生完全非弹性碰撞时,系统动能损失最大。
(4)碰撞过程中,两物体产生的位移可忽略。
2.碰撞的种类及遵从的规律两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律。
在光滑的水平面上,质量为m 1的钢球沿一条直线以速度v 0与静止在水平面上的质量为m 2的钢球发生弹性碰撞,碰后的速度分别是v 1、v 2①②由①②可得:③④利用③式和④式,可讨论以下五种特殊情况:a .当12m m >时,10v >,20v >,两钢球沿原方向原方向运动;b .当12m m <时,10v <,20v >,质量较小的钢球被反弹,质量较大的钢球向前运动;c .当12m m =时,10v =,20v v =,两钢球交换速度。
d .当12m m <<时,10v v ≈,20v ≈,m 1很小时,几乎以原速率被反弹回来,而质量很大的m 2几乎不动。
例如橡皮球与墙壁的碰撞。
e .当12m m >>时,0v v ≈,202v v ≈,说明m 1很大时速度几乎不变,而质量很小的m 2获得的速度是原来运动物体速度的2倍,这是原来静止的钢球通过碰撞可以获得的最大速度,例如铅球碰乒乓球。
4.一般的碰撞类问题的分析 (1)判定系统动量是否守恒。
(2)判定物理情景是否可行,如追碰后,前球动量不能减小,后球动量在原方向上不能增加;追碰后,后球在原方向的速度不可能大于前球的速度。
(3)判定碰撞前后动能是否不增加。
例:两个质量相等的小球在光滑水平面上沿同一直线同方向运动,A 球的动量是7 kg·m/s ,B 球的动量是5 kg·m/s ,A 球追上B 球时发生碰撞,则碰撞后A 、B 两球的动量可能值是 A .p A =6 kg·m/s ,p B =6 kg·m/s B .p A =3 kg·m/s ,p B =9 kg·m/s C .p A =–2 kg·m/s ,p B =14 kg·m/s D .p A =–5 kg·m/s ,p B =15 kg·m/s 【参考答案】A【试题解析】以A 、B 两球组成的系统为对象。
高三高考物理复习专题练习:碰撞与动量守恒【有答案】

碰撞与动量守恒1.[多选]如图所示,在光滑的水平桌面上有体积相同的两个小球A、B,质量分别为m=0.1 kg 和M=0.3 kg,两球中间夹着一根处于静止状态的压缩的轻弹簧,同时放开A、B球和弹簧,已知A球脱离弹簧时的速度为6 m/s,接着A球进入与水平面相切,半径为0.5 m的竖直面内的光滑半圆形轨道运动,PQ为半圆形轨道的竖直直径,g=10 m/s2,下列说法正确的是()A.弹簧弹开过程,弹力对A的冲量大于对B的冲量B.A球脱离弹簧时B球获得的速度大小为2 m/sC.A球从P点运动到Q点过程中所受合外力的冲量大小为1 N·sD.若半圆轨道半径改为0.9 m,则A球不能到达Q点2.水平地面上有两个固定的、高度相同的粗糙斜面甲和乙,底边长分别为L1、L2,且L1<L2,如图所示.两个完全相同的小滑块A、B(可视为质点)与两个斜面间的动摩擦因数相同,将小滑块A、B分别从甲、乙两个斜面的顶端同时由静止开始释放,取地面所在的水平面为参考平面,则()A.从顶端到底端的运动过程中,滑块A克服摩擦力而产生的热量比滑块B的大B.滑块A到达底端时的动量跟滑块B到达底端时的动量相同C.两个滑块从顶端运动到底端的过程中,重力对滑块A做功的平均功率比滑块B的大D.两个滑块加速下滑的过程中,到达同一高度时,机械能可能相同3.[多选]向空中发射一物体,不计空气阻力,当此物体的速度恰好沿水平方向时,物体炸裂成a、b两部分,若质量较大的a的速度方向仍沿原来的方向,则()A.b的速度方向一定与原速度方向相反B.从炸裂到落地的这段时间里,a飞行的水平距离一定比b的大C.a、b一定同时到达水平地面D.在炸裂过程中,a、b受到的爆炸力的大小一定相等4.如图所示,一个质量为m的物块A与另一个质量为2m的物块B发生正碰,碰后物块B刚好能落入正前方的沙坑中.假如碰撞过程中无机械能损失,已知物块B与地面间的动摩擦因数为0.1,与沙坑的距离为0.5 m,g取10 m/s2,物块可视为质点.则A碰撞前瞬间的速度为()A.0.5 m/sB.1.0 m/sC.1.5 m/sD.2.0 m/s5.[多选]质量相等的甲、乙两球在光滑水平面上沿同一直线运动.甲以7 kg·m/s的动量追上前方以5 kg·m/s的动量同向运动的乙球并发生正碰,则碰后甲、乙两球动量不可能是() A.6.5 kg·m/s,5.5 kg·m/s B.6 kg·m/s,6 kg·m/sC.4 kg·m/s,8 kg·m/sD.5.5 kg·m/s,6.5 kg·m/s6.如图所示,匀强磁场的方向垂直纸面向里,一带电微粒从磁场边界d点垂直于磁场方向射入,沿曲线dPa打到屏MN上的a点,通过Pa段用时为t.若该微粒经过P点时,与一个静止的不带电微粒碰撞并结合为一个新微粒,最终打到屏MN上.两个微粒所受重力均忽略.新微粒运动的()A.轨迹为Pb,至屏幕的时间将小于tB.轨迹为Pc,至屏幕的时间将大于tC.轨迹为Pb,至屏幕的时间将等于tD.轨迹为Pa,至屏幕的时间将大于t7.如图甲所示,一质量为2 kg的物体受水平拉力F作用,在粗糙水平面上做加速直线运动,其a-t图象如图乙所示,t=0时其速度大小为2 m/s,滑动摩擦力大小恒为2 N,则()图甲图乙A.在t=6 s的时刻,物体的速度为18 m/sB.在0~6 s时间内,合力对物体做的功为400 JC.在0~6 s时间内,拉力对物体的冲量为36 N·sD.在t=6 s的时刻,拉力F的功率为200 W8.有人设想在遥远的宇宙探测时,给探测器安上面积极大、反射率极高(可认为100%)的薄膜,并让它正对太阳,用光压为动力推动探测器加速.已知探测器在某轨道上运行时,每秒每平方米薄膜获得的太阳光能E=1.5×104 J,薄膜面积S=6.0×102 m2,若探测器总质量M=60 kg,光速c=3.0×108m/s,那么下列最接近探测器得到的加速度大小的是(根据量子理论,光子不但有能量,而且有动量.光子能量计算式为E=hν,光子动量的计算式为p=,其中h是普朗克常量,λ是光子的波长) ()A.1.0×10-3 m/s2B.1.0×10-2 m/s2C.1.0×10-1 m/s2D.1 m/s29.[12分]为了验证碰撞中的动量守恒和检验两个小球的碰撞是否为弹性碰撞,某同学选取了两个体积相同、质量不相等的小球,按下述步骤做了如下实验:①用天平测出两个小球的质量(分别为m1和m2,且m1>m2);②按照如图所示安装好实验装置,将斜槽AB固定在桌边,使槽的末端处的切线水平,将一斜面BC连接在斜槽末端;③先不放小球m2,让小球m1从斜槽顶端A处由静止开始滚下,记下小球在斜面上的落点位置;④将小球m2放在斜槽末端边缘处,让小球m1从斜槽顶端A处由静止开始滚下,使它们发生碰撞后,记下小球m1和m2在斜面上的落点位置;⑤用毫米刻度尺量出各个落点位置到斜槽末端B点的距离,图中D、E、F点是该同学记下的小球在斜面上的几个落点位置,到B点的距离分别为L D、L E、L F.根据该同学的实验,回答下列问题.(1)小球m1和m2发生碰撞后,m1的落点是图中的点,m2的落点是图中的点.(2)用测得的物理量来表示,只要满足关系式,则说明碰撞中动量守恒.(3)用测得的物理量来表示,只要再满足关系式,则说明两小球的碰撞是弹性碰撞. 10.[10分]汽车碰撞试验是综合评价汽车安全性能的有效方法之一.设汽车在碰撞过程中受到的平均撞击力达到某个临界值F0时,安全气囊爆开.某次试验中,质量m1=1 600 kg的试验车以速度v1=36 km/h正面撞击固定试验台,经时间t1=0.10 s碰撞结束,车速减为零,此次碰撞安全气囊恰好爆开.忽略撞击过程中地面阻力的影响.(1)求此过程中试验车受到试验台的冲量I0的大小及F0的大小;(2)若试验车以速度v1撞击正前方另一质量m2=1 600 kg、速度v2=18 km/h同向行驶的汽车,经时间t2=0.16 s两车以相同的速度一起滑行.试通过计算分析这种情况下试验车的安全气囊是否会爆开.11.[14分]如图所示,水平传送带两端分别与光滑水平轨道MN和光滑圆弧轨道PQ平滑连接.P 是圆弧轨道的最低点,P、Q两点的高度差H=5 cm.传送带长L=13.75 m,以v=0.45 m/s的速度顺时针匀速转动.物块A以初速度v0=4.35 m/s沿MN向右运动,与静止在水平轨道右端的物块B碰撞后粘为一体(称为C),A、B、C均可视为质点,B的质量是A的两倍,C与传送带间的动摩擦因数μ=0.02.已知C从P进入圆弧轨道再滑回P的时间始终为Δt=4.5 s,重力加速度g=10 m/s2.(1)求A、B碰后粘为一体的C的速度v1;(2)从A、B碰后开始计时,求C经过P点的可能时刻t;(3)若传送带速度大小v可调,要使C能到达但又不滑出PQ轨道,求v的取值范围.12.[10分]如图所示,光滑固定的水平直杆(足够长)上套着轻弹簧和质量m1=4 kg的小球A,用长度L=0.2 m的不可伸长的轻绳将A与质量m2=5 kg的小球B连接起来,已知弹簧左端固定,右端不与A相连.现在让A压缩弹簧使之储存4 J的弹性势能,此时A、B均静止.再由静止释放A,发现当A脱离弹簧后,B运动至最高点时绳与杆的夹角为53°.取重力加速度g=10 m/s2,cos 53°=0.6,sin 53°=0.8,求:(1)弹簧给A的冲量大小;(2)A脱离弹簧后的最大速度.13.[18分]如图所示,一个半径为R=1.00 m的粗糙圆弧轨道,固定在竖直平面内,其下端切线是水平的,轨道下端距地面高度为h=1.25 m,在轨道末端放有质量为m B=0.05 kg的小球B(视为质点),B左侧轨道下装有微型传感器,另一质量为m A=0.10 kg 的小球A(也视为质点)由轨道上端点从静止开始释放,运动到轨道最低处时,传感器显示读数为2.6 N,A与B发生正碰,碰后。
专题检测卷(17) 专题九碰撞与动量守恒 近代物理初步

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
专题检测卷(十七)碰撞与动量守恒近代物理初步(45分钟100分)1.(16分)(1)如图所示,小车M由光滑的弧形段AB和粗糙的水平段BC组成,静止在光滑水平面上。
当小车固定时,从A点由静止滑下的物块m到C点恰好停止。
如果小车不固定,物块m仍从A点静止滑下( )A.还是滑到C点停住B.滑到BC间某处停住C.会冲出C点落到车外D.上述三种情况都有可能=0.4 kg,开始时都静止于光滑水平面上,(2)两木板M小物块m=0.1 kg以初速度v=10 m/s滑上M1的表面,最后停在M2上时速度为v2=1.8 m/s,求:①最后M1的速度v1;②在整个过程中克服摩擦力所做的功。
2.(17分)(2012·天津高考)(1)下列说法正确的是( )A.采用物理或化学方法可以有效地改变放射性元素的半衰期B.由玻尔理论知道氢原子从激发态跃迁到基态时会放出光子C.从高空对地面进行遥感摄影是利用紫外线良好的穿透能力D.原子核所含核子单独存在时的总质量小于该原子核的质量(2)如图所示,水平地面上固定有高为h的平台,台面上有固定的光滑坡道,坡道顶端距台面高也为h,坡道底端与台面相切。
小球A从坡道顶端由静止开始滑下,到达水平光滑的台面后与静止在台面上的小球B发生碰撞,并粘连在一起,共同沿台面滑行并从台面边缘飞出,落地点与飞出点的水平距离恰好为台高的一半。
两球均可视为质点,忽略空气阻力,重力加速度为g。
求:①小球A刚滑至水平台面的速度v A;②A、B两球的质量之比m A∶m B。
3.(17分)(2013·宿迁一模)(1)下列说法中正确的是( )A.光电效应现象说明光具有粒子性B.普朗克在研究黑体辐射问题时提出了能量子假说C.玻尔建立了量子理论,成功解释了各种原子发光现象D.运动的宏观物体也具有波动性,其速度越大物质波的波长越大(2)如图所示,一水平面上P点左侧光滑,右侧粗糙,质量为m的劈A在水平面上静止,上表面光滑,A轨道右端与水平面平滑连接,质量为M的物块B恰好放在水平面上P点,物块B与水平面的动摩擦因数为μ=0.2。
2017届高考物理一轮复习专题十五动量守恒与近代物理初步考点一碰撞与动量守恒教学案(含解析)

专题十五动量守恒与近代物理初步(选修3-5)考纲展示命题探究考点一碰撞与动量守恒基础点知识点1 动量、冲量、动量定理、动量守恒定律1.动量(1)定义:运动物体的质量与速度的乘积。
(2)表达式:p=mv。
(3)单位:kg·m/s。
(4)标矢性:动量是矢量,其方向与速度的方向相同。
(5)动量、动能、动量变化量的比较。
(1)定义:力和力的作用时间的乘积叫做力的冲量。
(2)表达式:I=Ft。
单位:N·s。
(3)标矢性:冲量是矢量,它的方向由力的方向决定。
3.动量定理(1)内容:如果一个系统不受外力,或者所受合外力为0,这个系统的总动量保持不变。
(2)表达式①m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和。
②Δp1=-Δp2,相互作用的两个物体动量的增量等大反向。
③Δp=0,系统总动量的增量为零。
(3)适用条件①系统不受外力或所受外力的合力为零,不是系统内每个物体所受的合外力都为零,更不能认为系统处于平衡状态。
②近似适用条件:系统内各物体间相互作用的内力远大于它所受到的外力。
③如果系统在某一方向上所受外力的合力为零,则系统在该方向上动量守恒。
知识点2 碰撞、反冲和爆炸问题1.碰撞:物体间的相互作用持续时间很短,而物体间相互作用力很大的现象。
2.特点:在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒。
3.分类(1)在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。
这类问题相互作用的过程中系统的动能增大,且常伴有其他形式能向动能的转化。
(2)反冲运动的过程中,如果合外力为零或外力的作用远小于物体间的相互作用力,可利用动量守恒定律来处理。
5.爆炸问题:爆炸与碰撞类似,物体间的相互作用力很大,且远大于系统所受的外力,所以系统动量守恒,爆炸过程中位移很小,可忽略不计,作用后从相互作用前的位置以新的动量开始运动。
高中物理二轮专题复习课件专题二碰撞与动量守恒

实验步骤与注意事项
02
01
03
实验步骤 1. 调整气垫导轨水平,并接通光电计时器的电源。 2. 用天平测量两个小球的质量,并记录数据。
实验步骤与注意事项
3. 将两个小球分别放在气垫导 轨的两端,并调整它们的位置 ,使它们能够发生对心碰撞。
4. 开启光电计时器,使两个小 球同时从导轨两端开始运动, 并记录它们通过两个光电门的 时间。
碰撞过程中的能量转化
在弹性碰撞中,系统的机械能守恒,没有能量转化 。
在非弹性碰撞中,系统的机械能减少,减少的机械 能转化为内能。
内能的表现形式为物体的温度升高,或者产生声音 、光等形式的能量。
03
一维碰撞问题求解
一维弹性碰撞问题求解
80%
弹性碰撞定义
在碰撞过程中,如果系统内物体 间相互作用力为保守力,且碰撞 过程中系统动能守恒,则称此类 碰撞为弹性碰撞。
求解方法
根据动量守恒和能量损失 情况,可以求出碰撞后物 体的速度大小和方向。
二维碰撞中的临界问题
临界条件
注意事项
在二维碰撞中,当两个物体刚好能够 发生碰撞或者刚好不能发生碰撞时, 称为临界条件。
在处理临界问题时,需要注意物理量 的取值范围和限制条件,避免出现不 符合实际情况的解。
求解方法
根据临界条件和动量守恒、动能守恒 等物理规律,可以求出临界条件下的 物理量,如速度、角度等。
05
动量守恒定律在综合问题中的应用
动量守恒定律与牛顿运动定律的综合应用
碰撞问题
分析碰撞过程中物体间的相互作 用力,应用动量守恒定律和牛顿 运动定律求解碰撞后物体的速度
和方向。
爆炸问题
分析爆炸过程中物体间的相互作 用力,应用动量守恒定律和牛顿 运动定律求解爆炸后物体的速度
高考物理二轮专题复习第部分专题知识攻略碰撞与动量守恒近代物理初步课件新人教

【审题】 抓住信息,准确推断
【解题】 规范步骤,水到渠成 (1)木块相对平板小车静止时,二者有共同速度 v 共.(1 分) 在题设过程中由动量守恒定律得 2mv0=(2m+m)v 共,(1 分) 解得 v 共=32v0.(1 分) 在题设过程中对木块,由动量定理得 μmgt=mv 共-0(1 分) 解得 t=32μvg0.(2 分)
D.若用波长为λc的光照射某金属时恰好能发生光电效应,则用 波长为λa的光照射该金属时也一定能发生光电效应
E.用12.09 eV的光子照射大量处于基态的氢原子时,可以发出三 种频率的光
解析:根据 E=hν,可得 νb=νa+νc、νb>νc>νa,B 正确;由 ν=cλ知 A 错误;氢原子从高能级向低能级跃迁,将以辐射光子的形式向外放出 能量,电子的动能增加,电势能减小,氢原子的总能量减小,C 正确; 由于 νc>νa,用波长为 λa的光照射该金属时一定不能发生光电效应,D 错 误;大量处于基态的氢原子吸收 12.09 eV 的光子后跃迁到 n=3 的能级, 大量处于 n=3 能级的这种原子向低能级跃迁时可以发出三种频率的光, E 正确.
专题八 碰撞与动量守恒 近代物理初步
热点1 动量守恒定律的应用
动量守恒是指系统在某一过程中总动量大小及方向均一直不变, 而不仅仅是初、末两个时刻总动量相同.动量守恒有以下几种情况: (1)系统不受外力或者所受外力之和为零;(2)系统受到的外力远小于内 力,系统动量近似守恒;(3)系统在某一个方向上所受的外力之和为零, 则该方向上动量守恒;(4)全过程的某一阶段系统受的合力为零,则该 阶段系统动量守恒.
高三物理二轮复习 第1部分 专题15 碰撞与动量守恒 近代物理初步课件

发散 1 动量守恒定律的简单应用 1.如图 15-2 所示,甲、乙两船的总质量(包括船、人和货物)分别为 10m、 12m,两船沿同一直线向同一方向运动,速度分别为 2v0、v0.为避免两船相撞, 乙船上的人将一质量为 m 的货物沿水平方向抛向甲船,甲船上的人将货物接住, 不计水的阻力.求:
图 15-2
线条数 N=
C
2 n
.
3.光电效应. (1)光电效应规律.(2)光电效应方程:hν=Ek+W0 .
4.核反应、核能的计算.
(1)两个守恒:质量数守恒、电荷数守恒. (2)质能方程:E= mc2 .
动量守恒定律
(2015·全国卷Ⅰ)如图 15-1,在足够长的光滑水平面上,物体 A、B、 C 位于同一直线上,A 位于 B、C 之间.A 的质量为 m,B、C 的质量都为 M, 三者均处于静止状态.现使 A 以某一速度向右运动,求 m 和 M 之间应满足什么 条件,才能使 A 只与 B、C 各发生一次碰撞.设物体间的碰撞都是弹性的.
m1∶m2=1∶8.
⑤
(2)由能量守恒得,两滑块因碰撞而损失的机械能为
ΔE=12m1v21+12m2v22-12(m1+m2)v2 ⑥ 由图象可知,两滑块最后停止运动.由动能定理得,两滑块克服摩擦力所
(2)当抛出货物的速度最小时,人做的功最少.由功能关系得
W=12·11m·v22+12·m·v2min-12·12m·v20
代入数据得 W=11510mv20. 【答案】 (1)4v0 1116v0
(2)Байду номын сангаас1510mv20
发散 2 弹性碰撞 2.(2015·福建高考)如图 15-3,两滑块 A、B 在光滑水平面上沿同一直线相 向运动,滑块 A 的质量为 m,速度大小为 2v0,方向向右,滑块 B 的质量为 2m, 速度大小为 v0,方向向左,两滑块发生弹性碰撞后的运动状态是( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题五选修3-5部分
第12讲碰撞与动量守恒近代物理初步
A卷
1.(多选)(2016·梅州模拟)下列叙述正确的是()
A.β衰变所释放的电子是原子核外的电子电离形成的
B.普朗克为了解释黑体辐射现象,第一次提出了能量量子化理论C.爱因斯坦为了解释光电效应的规律,提出了光子说
D.玻尔将量子观念引入原子领域,其理论能够解释氢原子光谱的特征
E.增大环境的压强或升高温度,都可使放射性物质的半衰期减小解析:β衰变的实质是原子核的一个中子变为质子的同时释放一个电子,A错误;普朗克为了解释黑体辐射现象,第一次提出了能量量子化理论,B正确;爱因斯坦为了解释光电效应的规律,受普朗克量子理论的启发,提出了光子说,C正确;玻尔最先把量子观念引入原子领域,提出了原子结构假说,并提出定态和跃迁等概念,很好地解释了氢原子光谱的特征,D正确;半衰期由元素本身决定,与元素所处物理、化学环境无关,E错误.
答案:BCD
2.(多选)下列说法正确的是()
A.放射性元素发生β衰变时所释放的电子是原子核内的中子转化为质子时产生的
B.β衰变现象说明电子是原子核的组成部分
C.不仅光具有波粒二象性,实物粒子也具有波粒二象性
D.一群氢原子从n=3的激发态跃迁到基态时,能辐射2种不同频率的光子
E.根据玻尔理论可知,氢原子辐射出一个光子后,氢原子的电势能减小,核外电子的运动速度增大
解析:β衰变时,原子核中的一个中子转化为一个质子和一个电子,释放出来的电子就是β粒子,即β粒子是原子核衰变时由中子转化而来,不能说明原子核中含有电子,选项A正确,B错误;光子、实物粒子都具有波粒二象性,选项C正确;一群氢原子从n=3的激发态跃迁到基态时,能辐射C23=3种不同频率的光子,选项D错误;根据玻尔理论,氢原子辐射出一个光子后,从高能级向低能级跃迁,氢原子的能量减小,轨道半径减小,电子速率增大,动能增大,由于氢原子能量减小,则氢原子电势能减小,故E正确.
答案:ACE
3.(多选)(2016·济南模拟)下列有关物质组成与物理现象的叙述正确的有()
A.组成原子核的核子是质子和中子,核子间相互作用的核力只存在于相邻的核子之间
B.元素的种类由原子核内核子数决定,几种同位素是同一种元素的不同原子核
C.原子和原子核都能发生能级跃迁,γ射线就是原子核能级跃迁产生的
D.入射光照射到金属表面发生光电效应后,增大入射光的强度,光电子的最大初动能增大
E.在光的颜色不变的情况下,入射光越强,其照射金属发生光电效应时产生的饱和电流越大
解析:组成原子核的核子是质子和中子,核力只存在于相邻的核子。