人教A版高中数学选修新教案条件概率
高中数学 2.2.1 条件概率学案 新人教A版选修2-3(2021年整理)

2016-2017学年高中数学2.2.1 条件概率学案新人教A版选修2-3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学2.2.1 条件概率学案新人教A版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学2.2.1 条件概率学案新人教A版选修2-3的全部内容。
2.2。
1 条件概率1.了解条件概率的概念.2.掌握求条件概率的两种方法.(难点)3.能利用条件概率公式解一些简单的实际问题.(重点)[基础·初探]教材整理条件概率阅读教材P51~P53,完成下列问题.1.条件概率的概念一般地,设A,B为两个事件,且P(A)>0,称P(B|A)=错误!为在事件A发生的条件下,事件B发生的条件概率.P(B|A)读作A发生的条件下B发生的概率.2.条件概率的性质(1)P(B|A)∈[0,1].(2)如果B与C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).1.设A,B为两个事件,且P(A)>0,若P(AB)=错误!,P(A)=错误!,则P(B|A)=________.【解析】由P(B|A)=P ABP A=错误!=错误!.【答案】错误!2.设某动物由出生算起活到20岁的概率为0.8,活到25岁的概率为0.4,现有一个20岁的这种动物,则它活到25岁的概率是________.【解析】根据条件概率公式知P=错误!=0。
5.【答案】0.5[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]利用定义求条件概率一个袋中有2个黑球和3个白球,如果不放回地抽取两个球,记事件“第一次抽到黑球"为A;事件“第二次抽到黑球"为B。
高二数学(选修-人教A版)-条件概率-教案

教案
古典概型的特点:
)试验中所有可能出现的基本事件只有有)每个基本事件出现的可能性相等。
题.事件A=“选择的家庭中有女孩”,则A = {bg, gb, gg};事件B=“选择的家庭中两个孩子都是女孩”,则B ={gg}.用图形表示如下图.
(1)根据古典概型知识可知,该家庭中两个小孩均为女孩的概率是
()1
().
()4
n B
P B
n
==
Ω
(2)“在选择的家庭有女孩的条件下,两个小孩都是女孩”的概率就是“在事件A 发生的条件下,事件B 发生”的概率,记为(|).
P B A此时 A 成为样本空间,事件 B 就是积事件AB.如右图,根据古典概型知识可知,
()1
(|).
()3
n AB
P B A
n A
==
问题4 结合以上两个问题,你能探索条件概率(|)
P B A与(),()
P A P AB之间的关系吗?
师生活动:借助韦恩图,
特别地,设B 1(P B =-(A A 互斥,由概率的加法公式及乘法21)(|)P A A
与B互斥,所以=+
()
P A P。
高中数学 第二章《条件概率》教案 新人教A版选修23

一、复习引入:探究: 三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小.若抽到中奖奖券用“Y ”表示,没有抽到用“ Y ”,表示,那么三名同学的抽奖结果共有三种可能:Y Y Y ,Y Y Y 和 Y Y Y .用 B 表示事件“最后一名同学抽到中奖奖券” , 则B 仅包含一个基本事件Y Y Y .由古典概型计算公式可知,最后一名同学抽到中奖奖券的概率为1()3P B =. 思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少?因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有Y Y Y 和Y Y Y .而“最后一名同学抽到中奖奖券”包含的基本事件仍是Y Y Y.由古典概型计算公式可知.最后一名同学抽到中奖奖券的概率为12,不妨记为P (B|A ) ,其中A 表示事件“第一名同学没有抽到中奖奖券”.已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢?在这个问题中,知道第一名同学没有抽到中奖奖券,等价于知道事件 A 一定会发生,导致可能出现的基本事件必然在事件 A 中,从而影响事件 B 发生的概率,使得 P ( B|A )≠P ( B ) .思考:对于上面的事件A 和事件B ,P ( B|A )与它们的概率有什么关系呢?用Ω表示三名同学可能抽取的结果全体,则它由三个基本事件组成,即Ω={Y Y Y , Y Y Y ,Y Y Y }.既然已知事件A 必然发生,那么只需在A={Y Y Y , Y Y Y}的范围内考虑问题,即只有两个基本事件Y Y Y 和Y Y Y .在事件 A 发生的情况下事件B 发生,等价于事件A 和事件B 同时发生,即 AB 发生.而事件 AB 中仅含一个基本事件Y Y Y ,因此(|)P B A =12=()()n AB n A .其中n ( A )和 n ( AB )分别表示事件 A 和事件 AB 所包含的基本事件个数.另一方面,根据古典概型的计算公式,()()(),()()()n AB n A P AB P A n n ==ΩΩ 其中 n (Ω)表示Ω中包含的基本事件个数.所以,(|)P B A =()()()()()()()()n AB n AB P AB n n A n P n Ω==ΩΩΩ. 因此,可以通过事件A 和事件AB 的概率来表示P (B| A ) .条件概率1.定义设A 和B 为两个事件,P(A )>0,那么,在“A 已发生”的条件下,B 发生的条件概率(conditional probability ). (|)P B A 读作A 发生的条件下 B 发生的概率.(|)P B A 定义为()(|)()P AB P B A P A =. 由这个定义可知,对任意两个事件A 、B ,若()0P B >,则有()(|)()P AB P B A P A =⋅.并称上式微概率的乘法公式.2.P (·|B )的性质:(1)非负性:对任意的A ∈f. 0(|)1P B A ≤≤;(2)规范性:P (Ω|B )=1;(3)可列可加性:如果是两个互斥事件,则(|)(|)(|)P B C A P B A P C A =+.更一般地,对任意的一列两两部相容的事件i A (I=1,2…),有P ⎥⎦⎤⎢⎣⎡∞= 1|i i B A =)|(1B A P i i ∑∞=.例1.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2 道题,求: (l )第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第 1 次抽到理科题的条件下,第2次抽到理科题的概率.解:设第1次抽到理科题为事件A ,第2次抽到理科题为事件B ,则第1次和第2次都抽到理科题为事件AB.(1)从5道题中不放回地依次抽取2道的事件数为n (Ω)=35A =20.根据分步乘法计数原理,n (A )=1134A A ⨯=12 .于是()123()()205n A P A n ===Ω. (2)因为 n (AB)=23A =6 ,所以()63()()2010n AB P AB n ===Ω. (3)解法 1 由( 1 ) ( 2 )可得,在第 1 次抽到理科题的条件下,第 2 次抽到理科题的概3()110(|)3()25P AB P B A P A ===. 解法2 因为 n (AB )=6 , n (A )=12 ,所以 ()61(|)()122P AB P B A P A ===. 例2.一张储蓄卡的密码共位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过 2 次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.解:设第i 次按对密码为事件i A (i=1,2) ,则112()A A A A =表示不超过2次就按对密码.(1)因为事件1A 与事件12A A 互斥,由概率的加法公式得 1121911()()()101095P A P A P A A ⨯=+=+=⨯. (2)用B 表示最后一位按偶数的事件,则112(|)(|)(|)P A B P A B P A A B =+14125545⨯=+=⨯.课堂练习.1、抛掷一颗质地均匀的骰子所得的样本空间为S={1,2,3,4,5,6},令事件A={2,3,5},B={1,2,4,5,6},求P (A ),P (B ),P (AB ),P (A ︱B )。
高中数学 第二章条件概率教案1 新人教A版选修2-3

2.2.1条件概率(第一课时)教学目标:了解条件概率及其应用 教学重点:了解条件概率及其应用 教学过程一、复习引入:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示2. 离散型随机变量: 随机变量只能取有限个数值或可列无穷多个数值则称为离散随机变量,在高中阶段我们只研究随机变量取有限个数值的情形.3. 分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…,ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表4. 分布列的两个性质:任何随机事件发生的概率都满足:1)(0≤≤A P ,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质:⑴P i ≥0,i =1,2,…;⑵P 1+P 2+ (1)对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和即⋅⋅⋅+=+==≥+)()()(1k k k x P x P x P ξξξ5.6.超几何分布:在产品质量的不放回抽检中,若N 件产品中有M 件次品,抽检n 件时所得次品数X=m则()m M m n N nMNC C P X m C --==.此时我们称随机变量X 服从超几何分布 二、讲解新课:任一个随机试验都是在某些基本条件下进行的,在这些基本条件下某个事件A 的发生具有某种概率. 但如果除了这些基本条件外还有附加条件,所得概率就可能不同.这些附加条件可以看成是另外某个事件B 发生.条件概率这一概念是概率论中的基本工具之一. 给定一个概率空间,并希望知道某一事件A 发生的可能性大小. 尽管我们不可能完全知道试验结果,但往往会掌握一些与事件A 相关的信息,这对我们的判断有一定的影响. 例如,投掷一均匀骰子,并且已知出现的是偶数点,那么对试验结果的判断与没有这一已知条件的情形有所不同. 一般地,在已知另一事件B 发生的前提下,事件A 发生的可能性大小不一定再是()P A .已知事件B 发生条件下事件A 发生的概率称为事件A 关于事件B 的条件概率,记作(|)P A B .在某种情况下,条件的附加意味着对样本空间进行压缩,相应的概率可在压缩的样本空间内直接计算.例1 盒中有球如表. 任取一球,记A ={取得蓝球},B ={取得玻璃球}, 显然这是古典概型. Ω包含的样本点总数为16,A 包含的样本点总数为11,故11()16P A =.如果已知取得为玻璃球,这就B 是发生条件下A 发生的条件概率,记作(|)P A B . 在B 发生的条件下可能取得的样本点总数应为“玻璃球的总数”,也即把样本空间压缩到玻璃球全体. 而在B 发生条件下A 包含的样本点数为蓝玻璃球数,故42(|)63P A B ==.一般说来,在古典概型下,都可以这样做.但若回到原来的样本空间,则当()0P B ≠,有(|) B A P A B B AB B 在发生的条件下包含的样本点数=在发生的条件下样本点数包含的样本点数=包含的样本点数AB P AB B P B 包含的样本点数/总数()==包含的样本点数/总数().这式子对几何概率也成立. 由此得出如下的一般定义.定义1 对任意事件A 和B ,若()0P B ≠,则“在事件B 发生的条件下A 的条件概率”,记作P(A | B),定义为(|)P AB P A B P B ()=().(1)例2 甲乙两市位于长江下游,根据一百多年的记录知道,一年中雨天的比例,甲为20%,乙为18%,两市同时下雨的天数占12%. 求:① 乙市下雨时甲市也下雨的概率;② 甲乙两市至少一市下雨的概率.解 分别用A ,B 记事件{甲下雨}和{乙下雨}. 按题意有,()20%P A =,()18%P B =,()12%P AB =.① 所求为()122(|)()183P AB P A B P B ===.② 所求为()()()()P A B P A P B P AB =+-20%18%12%26%=+-=.课堂小节:本节课学习了条件概率的定义 课堂练习: 课后作业:。
7.1条件概率与全概率公式第一课时教学设计高二下学期数学人教A版选择性

教学设计(一)复习回顾1、概率的定义对随机事件发生可能性大小的度量(数值)称为事件的概率,事件A 的概率用()P A 表示。
事件概率的范围是[0,1],必然事件的概率为1,不可能事件的概率为0。
理解:概率的定义实际上建立起了一个随机事件,和一个[0,1]内的实数之间的对应关系。
2、事件的关系与概率的运算(1)若事件A 和事件B 互斥,则有:()()()P A B P A P B ⋃=+;特殊地,有:()1()P A P A =-;(2)若事件A 和事件B 不互斥,则有:()()()()P A B P A P B P AB ⋃=+-;(3)若事件A 和事件B 相互独立,则有()()()P AB P A P B =;思考:若事件A 和事件B 不相互独立,如何计算()P AB ?【设计意图】概率是一种测度,可以用于度量随机事件发生的可能性大小,它的定义采用公理化的定义,条件概率也满足该定义。
本课程通过回顾概率的概念和基本性质,为学习条件概率奠定基础,同时为类比得到条件概率的性质做铺垫,进而帮助学生更好地理解条件概率与概率的关系,即:条件概率即为概率概念的推广,其适用性更广;同时,在学生已有的认知基础上,对事件关系和对应的概率计算方法进行层层推进的分析,自然引出问题,即:若事件A 和事件B 不相互独立,如何计算()P AB ?引起学生的认知冲突,激发学习兴趣,凸显学习概率的乘法公式的意义。
3、问题情境问题:某地区气象台统计,该地区下雨的概率是415,刮风的概率是215,既刮风又下雨的概率为110,则在刮风天里,下雨的概率还是415吗?思考:一个事件的发生,对另一个事件发生的概率有何影响?【设计意图】条件概率研究的是一个事件的发生对另一个事件发生的概率有何影响,通过实际问题情境,激发学生探究兴趣,引入本节课重点研究的课题:条件概率。
(二)问题探究情境:某个班级有45名学生,其中男生、女生的人数及团员的人数如下表所示,在班里随机选择一人做代表。
高中数学 条件概率说课稿 新人教A版选修2 教案

《条件概率》说课稿一、教材分析概率是高中数学的新增内容,它自成体系,是数学中一个较独立的学科分支,与以往所学的数学知识有很大的区别,但与人们的日常生活密切相关,而且对思维能力有较高要求,在高考中占有重要地位.本节内容在本章节的地位:《条件概率》(第一课时)是高中数学选修2-3第二章第二节的内容,它在教材中起着承前启后的作用,一方面,可以巩固古典概型概率的计算方法,另一方面,为研究相互独立事件打下良好的基础.教学重点、难点和关键:教学重点是条件概率的定义、计算公式的推导及条件概率的计算;难点是条件概率的判断与计算;教学关键是数学建模.二、教学目标根据上述教材分析,考虑到学生已有的认知结构心理特征,我制定如下教学目标:知识与能力目标——掌握条件概率的定义及计算方法过程与方法目标——归纳、类比的方法和建模思想情感态度与价值观目标——培养学生思维的灵活性及知识的迁移能力根据这两年高考改卷的反馈信息,考生在概率题的书面表达上丢分的情况是很普遍的,因此本节课还想达到:表达能力目标——培养学生书面表达的严谨和简洁个性品质目标——培养学生克服“心欲通而不能,口欲讲而不会”的困难,提高探索问题的积极性和学习数学的兴趣三、教法在教学中,不仅要使学生“知其然”,而且要使学生“知其所以然”.为了体现以生为本,遵循学生的认知规律,坚持以教师为主导,学生为主体的教学思想,体现循序渐进的教学原则,我采用引导发现法、分析讨论法的教学方法,通过提问、启发、设问、归纳、讲练结合、适时点拨的方法,让学生的思维活动在老师的引导下层层展开,让学生大胆参与课堂教学,使他们“听”有所“思”,“练”有所“获”,使传授知识与培养能力融为一体.四、学法以建构主义为指导,采用以启发式教学为主,同时结合师生共同讨论、归纳的教学方法,根据学生的认知水平,为课堂设计了:①创设情景——引入概念②类比推导——得出公式③讨论研究——归纳方法④即时训练——巩固方法⑤总结反思——提高认识⑥作业布置——评价反馈六个层次的学法,它们环环相扣,层层深入,从而顺利完成教学目标.五、教学过程⒈创设情景——引入概念首先引入两个实际问题,激发学生的兴趣.【实例1】3X奖券中只有1X能中奖,现分别由3名同学无放回地抽取,最后一名同学抽到中奖奖券的概率是多少?若第一个同学没有抽到中奖奖券,则最后一名同学抽到中奖奖券的概率是多少?【实例2】有5道快速抢答题,其中3道理科题,2道文科题,从中无放回地抽取两次,每次抽取1道题,两次都抽到理科题的概率是多少?若第一次抽到理科题,则第二次抽到理科题的概率是多少?每个实例有两个问题组成,后一个问题多一个限制条件,教师引导学生对比两个实例中前后问题的区别和联系,概括出条件概率的定义.由于判断事件的类型对选择概率公式起着决定性影响,因此在引入定义后让学生再做一组判断题练习以巩固对定义的理解.【练习】判断下列是否属于条件概率⒈在管理系中选1个人排头举旗,恰好选中一个的是三年级男生的概率⒉有10把钥匙,其中只有1把能将门打开,随机抽出1把试开,若试过的不再用,则第2次能将门打开的概率⒊某小组12人分得1X 球票,依次抽签,已知前4个人未摸到,则第5个人模到球票的概率⒋两台车床加工同样的零件,第一台的次品率未0.03,第二台的次品率为0.02,两台车床加工的零件放在一起,随机取出一个零件是发现是次品,则它是第二台机床加工的概率是多少?⒌箱子里装有10件产品,其中只有一件是次品,在9件合格品中,有6件是一等品,3件二等品,现从中任取3件,若取得的都是合格,则仅有1件是一等品的概率通过以上练习使学生能准确区分条件概率与一般概率.⒉类比推导——得出公式用图形辅助理解,引导学生得出“事件A 发生的条件下事件B 发生的概率等价于局限在事件A发生的X 围内考虑事件A 和事件B 同时发生的概率”,从而将条件概率转化为古典概型的概率,用古典概型的概率公式推导出条件概率的计算公式. )()()()()(A P AB P A n AB n A B P == ⒊讨论研究——归纳方法进一步引导学生讨论条件概率的定义及计算公式:⑴条件概率相当于随机试验及随机试验的样本空间发生了变化,事件A发生的条件下事件B发生的概率可以看成在样本空间为事件A中事件B发生的概率,从而得出求条件概率的另一种方法——缩减样本空间法⑵将条件概率的计算公式进行变形,可得概率的乘法公式PAPABBP((A))()⑶条件概率的性质⒋即时训练——巩固方法为了使学生达到对知识的深化理解,巩固条件概率的计算方法,针对学生素质的差异,我设计了有梯度的练习与例题,并把课本例题融入其中.【快速练习题】某种动物活到20岁的概率为0.8,活到25岁的概率为0.4,如果现在有一个20岁的这种动物,问它能活到25岁的概率是多少?这是一道有典型条件概率特征的题目,题中的信息量少,难度低,可以由学生尝试独立完成,并口答解题过程.【学生分析题】一X储蓄卡的密码共有6位数,每位数字都可从0~9中任选,某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:⑴按第一次不对的情况下,第二次按对的概率;⑵任意按最后一位数字,按两次恰好按对的概率;⑶若他记得密码的最后一位是偶数,不超过2次就按对的概率这是由课本例题改编而成,其中融入了条件概率、概率的乘法公式、以及互斥事件的概率加法公式的运用,是一道难度不大的综合题,可以由学生分析、讨论、研究,教师引导、修正.可以从以下几个问题对学生加以引导:⑴这是一个一般概率还是条件概率?应选择哪个概率公式?⑵“按两次恰好按对”指的是什么事件?为何要按两次?隐含什么含义?第一次按与第二次按有什么关系?应选择哪个概率公式?⑶“最后一位是偶数”的情形有几种?“不超过2次就按对”包括哪些事件?这些事件相互之间是什么关系?应选择用哪个概率公式?最后师生共同完成规X 性的、完整的书面表达.解:设事件(12)i A i =,表示第i 次按对密码 ⑴211()9P A A = ⑵事件12A A 表示恰好按两次按对密码,则12121911()()()10910P A A P A P A A ==⨯= ⑶设事件B 表示最后一位按偶数,事件112A A A A =+表示不超过2次按对密码,因为事件1A 与事件12A A 为互斥事件,由概率的加法公式得:1121412()()()5545P A B P A B P A A B ⨯===+=⨯ 【引申提高题】⒈已知5%的男人和2.5%的女人是色盲,现随机地挑选一人⑴此人是色盲患者的概率是多少?⑵若此人是色盲患者,则此人是男人的概率是多少? ⒉34,乙选手解出这道题的概率是45,且至少有一人能解出该题,求甲选手和乙选手各得38分的概率.这里有两道题,其中第1题考察学生运用分析问题和运用公式的能力,需要用到古典概型的概率公式、概率的加法和乘法公式、条件概率的计算公式,可以由教师提问,学生思考,小组探究;第2题是一道备用题,选自05年某某二模第18题第一问,可视课堂的具体情况处理.通过这种梯度式训练,既使学生巩固基础知识,形成数学建模思想,提高书面表达能力,又对学有余力的学生有所提高,从而达到巩固基础和“拔尖”的目的,这符合教学论中的循序渐进和量力性原则.⒌总结反思——提高认识由学生总结本节课所学习的主要内容:①条件概率的概念;②条件概率的计算方法⎩⎨⎧缩减样本空间法公式法; ③概率的乘法公式⒍布置作业——评价反馈通过本节课的教学内容,布置相应的作业,作业分为必做题和选做题.【作业】⒈抛掷两枚骰子,已知两枚骰子向上的点数之和为7,求其中一枚骰子向上的点数为1的概率.⒉盒子里有7个白球,3个红球,白球中有4个木球,3个塑料球;红球中有2个木球,1个塑料球.现从袋子中摸出1个球,假设每个球被摸到的可能性相等,若已知摸到的是一个木球,问它是白球的概率是多少?⒊(选做题)对以往数据分析结果表明,当机器调整良好时,产品的合格率为95%,而当机器发生某种故障时,其合格率为55%,每天早上机器开动时,机器调整良好的概率为98%,试求:(Ⅰ)某日早上第一个产品合格的概率是多少?(Ⅱ)当某日早上第一个产品合格时,机器调整良好的概率是多少?通过作业反馈本节课知识掌握的效果,以便下节课查漏补缺,这样符合分层教学的原则和反馈原则.。
高中数学教案条件概率

高中数学教案条件概率一、教学目标:1. 理解条件概率的定义和性质。
2. 学会计算条件概率。
3. 能够应用条件概率解决实际问题。
二、教学内容:1. 条件概率的定义:在事件A已经发生的条件下,事件B发生的概率称为条件概率,记作P(B|A)。
2. 条件概率的性质:(1) P(B|A) = P(A∩B) / P(A)(2) 0 ≤P(B|A) ≤1(3) P(B|A) ≠P(B)三、教学重点与难点:1. 教学重点:条件概率的定义和性质,条件概率的计算方法。
2. 教学难点:条件概率的计算方法,如何正确运用条件概率解决实际问题。
四、教学方法:1. 采用讲授法,讲解条件概率的定义、性质和计算方法。
2. 运用案例分析法,让学生通过实际例子学会计算条件概率。
3. 运用练习法,让学生在课堂上和课后巩固所学知识。
五、教学过程:1. 导入:通过一个简单的概率问题引入条件概率的概念。
2. 讲解:讲解条件概率的定义、性质和计算方法。
3. 案例分析:分析几个实际例子,让学生学会计算条件概率。
4. 练习:布置一些练习题,让学生在课堂上和课后巩固所学知识。
六、教学评估:1. 课堂提问:通过提问了解学生对条件概率的理解程度。
2. 练习题:布置课堂练习题,检查学生掌握条件概率计算方法的情况。
3. 课后作业:布置相关课后作业,评估学生对课堂所学知识的巩固程度。
七、教学反思:1. 针对学生的掌握情况,调整教学方法和节奏。
2. 针对学生的疑惑,进行答疑和辅导。
八、课后作业:1. 复习条件概率的定义、性质和计算方法。
2. 完成课后练习题,巩固所学知识。
3. 思考如何将条件概率应用到实际问题中。
九、拓展与延伸:1. 研究条件概率在实际问题中的应用,如统计学、概率论等领域。
2. 了解贝叶斯定理与条件概率的关系,进一步拓展知识面。
十、教学计划:1. 下一节课内容:独立事件的概率。
2. 教学目标:理解独立事件的定义,学会计算独立事件的概率。
3. 教学方法:讲授法、案例分析法、练习法。
高中数学人教A版高二选修2-3教学案:2.2.1_条件概率_Word版含解析

二项分布及其应用2.2.1条件概率预习课本P51~53,思考并完成以下问题1.条件概率的定义是什么?它的计算公式有哪些?2.条件概率的特点是什么?它具有哪些性质?[新知初探] 1.条件概率(1)概念设A,B为两个事件,且P(A)>0,称P(B|A)=P(AB)P(A)为在事件A发生的条件下,事件B发生的条件概率.P(B|A)读作A发生的条件下B发生的概率.(2)计算公式①缩小样本空间法:P(B|A)=n(AB) n(A);②公式法:P(B|A)=P(AB) P(A).[点睛](1)P(B|A)与P(A|B)意义不同,由条件概率的定义可知P(B|A)表示在事件A发生的条件下事件B发生的条件概率;而P(A|B)表示在事件B发生的条件下事件A发生的条件概率.(2)P(B|A)与P(B):在事件A发生的前提下,事件B发生的概率不一定是P(B),即P(B|A)与P(B)不一定相等.2.条件概率的性质(1)有界性:0≤P(B|A)≤1.(2)可加性:如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).[点睛]对条件概率性质的两点说明(1)前提条件:P(A)>0.(2)P(B∪C|A)=P(B|A)+P(C|A),必须B与C互斥,并且都是在同一个条件A下.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若事件A,B互斥,则P(B|A)=1.()(2)事件A 发生的条件下, 事件B 发生,相当于A, B 同时发生.( ) 答案:(1)× (2)√ 2.已知P (AB )=310,P (A )=35,则P (B |A )为( ) A .950B .12C .910D .14答案:B3.下列式子成立的是( ) A .P (A |B )=P (B |A ) B .0<P (B |A )<1 C .P (AB )=P (B |A )·P (A ) D .P (A ∩B |A )=P (B )答案:C4.把一枚硬币任意掷两次,事件A ={第一次出现正面},事件B ={第二次出现正面},则P (B |A )=________.答案:12[典例] 之和大于8”,求:(1)事件A 发生的条件下,事件B 发生的概率.(2)事件B 发生的条件下,事件A 发生的概率. [解] [法一 定义法]抛掷红、蓝两颗骰子,事件总数为6×6=36,事件A 的基本事件数为6×2=12,所以P (A )=1236=13.由于3+6=6+3=4+5=5+4>8,4+6=6+4=5+5>8,5+6=6+5>8,6+6>8,所以事件B 的基本事件数为4+3+2+1=10,所以P (B )=1036=518.在事件A 发生的条件下,事件B 发生,即事件AB 的基本事件数为6.故P (AB )=636=16.由条件概率公式,得 (1)P (B |A )=P (AB )P (A )=1613=12,(2)P (A |B )=P (AB )P (B )=16518=35.[法二 缩减基本事件总数法] n (A )=6×2=12.由3+6=6+3=4+5=5+4>8,4+6=6+4=5+5>8,5+6=6+5>8,6+6>8知,n(B)=10,其中n(AB)=6.所以(1)P(B|A)=n(AB)n(A)=612=12,(2)P(A|B)=n(AB)n(B)=610=35.计算条件概率的两种方法提醒:(1)对定义法,要注意P(AB)的求法.(2)对第二种方法,要注意n(AB)与n(A)的求法.[活学活用]1.已知某产品的次品率为4%,其合格品中75%为一级品,则任选一件为一级品的概率为() A.75%B.96%C.72% D.78.125%解析:选C记“任选一件产品是合格品”为事件A,则P(A)=1-P(A)=1-4%=96%.记“任选一件产品是一级品”为事件B.由于一级品必是合格品,所以事件A包含事件B,故P(AB)=P(B).由合格品中75%为一级品知P(B|A)=75%; 故P(B)=P(AB)=P(A)·P(B|A)=96%×75%=72%.2.一个盒子中有6只好晶体管,4只坏晶体管,任取两次,每次取一只,每一次取后不放回.若已知第一只是好的,求第二只也是好的概率.解:令A={第1只是好的},B={第2只是好的},法一:n(A)=C16C19,n(AB)=C16C15,故P(B|A)=n(AB)n(A)=C16C15C16C19=59.法二:因事件A已发生(已知),故我们只研究事件B发生便可,在A发生的条件下,盒中仅剩9只晶体管,其中5只好的,所以P(B|A)=C15C19=59.条件概率的应用[典例]在一个袋子中装有10个球,设有1个红球,2个黄球,3个黑球,4个白球,从中依次摸2个球,求在第一个球是红球的条件下,第二个球是黄球或黑球的概率.[解]法一:设“摸出第一个球为红球”为事件A,“摸出第二个球为黄球”为事件B,“摸出第二个球为黑球”为事件C,则P(A)=110,P(AB)=1×210×9=145,P(AC)=1×310×9=130.∴P (B |A )=P (AB )P (A )=145110=1045=29,P (C |A )=P (AC )P (A )=130110=13.∴P (B ∪C |A )=P (B |A )+P (C |A )=29+13=59.∴所求的条件概率为59.法二:∵n (A )=1×C 19=9,n (B ∪C |A )=C 12+C 13=5,∴P (B ∪C |A )=59.∴所求的条件概率为59.利用条件概率性质的解题策略(1)分析条件,选择公式:首先看事件B ,C 是否互斥,若互斥,则选择公式P (B ∪C |A )=P (B |A )+P (C |A ). (2)分解计算,代入求值:为了求比较复杂事件的概率,一般先把它分解成两个(或若干个)互不相容的较简单的事件之和,求出这些简单事件的概率,再利用加法公式即得所求的复杂事件的概率.[活学活用]在某次考试中,要从20道题中随机地抽出6道题,若考生至少能答对其中4道题即可通过,至少能答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:记事件A 为“该考生6道题全答对”,事件B 为“该考生答对了其中5道题,另一道答错”,事件C 为“该考生答对了其中4道题,另2道题答错”,事件D 为“该考生在这次考试中通过”,事件E 为“该考生在这次考试中获得优秀”,则A ,B ,C 两两互斥,且D =A ∪B ∪C ,E =A ∪B ,可知P (D )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=C 610C 620+C 510C 110C 620+C 410C 210C 620=12 180C 620,P (AD )=P (A ),P (BD )=P (B ), P (E |D )=P (A |D )+P (B |D )=P (A )P (D )+P (B )P (D )=210C 62012 180C 620+2 520C 62012 180C 620=1358. 故所求的概率为1358.层级一 学业水平达标1.已知P (B |A )=13,P (A )=25,则P (AB )等于( )A .56B .910C .215D .115解析:选C P (AB )=P (B |A )·P (A )=13×25=215.2.4张奖券中只有1张能中奖,现分别由4名同学无放回地抽取.若已知第一名同学没有抽到中奖券,则最后一名同学抽到中奖券的概率是( )A .14B .13C .12D .1解析:选B 因为第一名同学没有抽到中奖券,所以问题变为3张奖券,1张能中奖,最后一名同学抽到中奖券的概率显然是13.3.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A 为“三个人去的景点不相同”,B 为“甲独自去一个景点”,则概率P (A |B )等于( )A .49B .29C .12D .13解析:选C 由题意可知,n (B )=C 1322=12,n (AB )=A 33=6.∴P (A |B )=n (AB )n (B )=612=12. 4.甲、乙两市都位于长江下游,根据一百多年来的气象记录,知道一年中下雨天的比例甲市占20%,乙市占18%,两地同时下雨占12%,记P (A )=0.2,P (B )=0.18,P (AB )=0.12,则P (A |B )和P (B |A )分别等于( )A .13,25B . 23,25C .23,35D . 12,35解析:选C P (A |B )=P (AB )P (B )=0.120.18=23,P (B |A )=P (AB )P (A )=0.120.2=35.5.用“0”“1”“2”组成的三位数码组中,若用A 表示“第二位数字为0”的事件,用B 表示“第一位数字为0”的事件,则P (A |B )=( )A .12B .13C .14D .18解析:选B 法一:∵P (B )=3×33×3×3=13,P (AB )=33×3×3=19,∴P (A |B )=P (AB )P (B )=13,故选B .法二:在B 发生的条件下,问题转化为:用“0”“1”“2”组成三位数码,其中第二位数字为0,则P (A |B )为在上述条件下,第一位数字为0的概率,∴P (A |B )=33×3=13.6.投掷两颗均匀的骰子,已知点数不同,设两颗骰子点数之和为ξ,则ξ≤6的概率为________.解析:设A =“投掷两颗骰子,其点数不同”,B =“ξ≤6”,则P (A )=3036=56,P (AB )=13,∴P (B |A )=P (AB )P (A )=25. 答案:257.一个家庭中有两个小孩.假定生男、生女是等可能的,已知这个家庭有一个是女孩,则这时另一个小孩是男孩的概率是________.解析:设A =“其中一个是女孩”,B =“其中一个是男孩”,则P (A )=34,P (AB )=12,∴P (B |A )=P (AB )P (A )=23. 答案:238.盒中装有6件产品,其中4件一等品,2件二等品,从中不放回地取产品,每次1件,取两次,已知第二次取得一等品,则第一次取得的是二等品的概率是________.解析:令第二次取得一等品为事件A ,第一次取得二等品为事件B ,则P (AB )=C 12·C 14C 16·C 15=415,P (A )=C 14·C 13+C 12·C 14C 16·C 15=23. 所以P (B |A )=P (AB )P (A )=415×32=25.答案:259.五个乒乓球,其中3个新的,2个旧的,每次取一个,不放回的取两次,求: (1)第一次取到新球的概率; (2)第二次取到新球的概率;(3)在第一次取到新球的条件下,第二次取到新球的概率. 解:设第一次取到新球为事件A ,第二次取到新球为事件B . (1)P (A )=3×45×4=35. (2)P (B )=3×2+2×35×4=1220=35. (3)法一:P (AB )=3×25×4=310, P (B |A )=P (AB )P (A )=31035=12.法二:n (A )=3×4=12,n (AB )=3×2=6, P (B |A )=n (AB )n (A )=612=12.10.某校高三(1)班有学生40人,其中共青团员15人.全班平均分成4个小组,其中第一组有共青团员4人.从该班任选一人作学生代表.(1)求选到的是第一组的学生的概率;(2)已知选到的是共青团员,求他是第一组学生的概率. 解:设事件A 表示“选到第一组学生”, 事件B 表示“选到共青团员”. (1)由题意,P (A )=1040=14.(2)法一:要求的是在事件B 发生的条件下,事件A 发生的条件概率P (A |B ).不难理解,在事件B 发生的条件下(即以所选到的学生是共青团员为前提),有15种不同的选择,其中属于第一组的有4种选择.因此,P (A |B )=415. 法二:P (B )=1540=38,P (AB )=440=110,∴P (A |B )=P (AB )P (B )=415. 层级二 应试能力达标1.一个盒子里有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是( )A .56B .34C .23D .13解析:选C 在已知取出的小球不是红球的条件下,问题相当于从5黄10绿共15个小球中任取一个,求它是绿球的概率,∴P =1015=23. 2.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( )A .18B .14C .25D .12解析:选B ∵P (A )=C 22+C 23C 25=410,P (AB )=C 22C 25=110, ∴P (B |A )=P (AB )P (A )=14. 3.根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为830.则在吹东风的条件下下雨的概率为( ) A .911 B .811C .25D .89解析:选D 设事件A 表示“该地区四月份下雨”,B 表示“四月份吹东风”,则P (A )=1130,P (B )=930,P (AB )=830,从而在吹东风的条件下下雨的概率为P (A |B )=P (AB )P (B )=830930=89.4.从混有5张假钞的20张百元钞票中任意抽出2张,将其中1张放到验钞机上检验发现是假钞,则第2张也是假钞的概率为( )A .119B .1738C .419D .217解析:选D 设事件A 表示“抽到2张都是假钞”,事件B 为“2张中至少有一张假钞”,所以为P (A |B ). 而P (AB )=C 25C 220=119,P (B )=C 25+C 15C 115C 220=1738.∴P (A |B )=P (AB )P (B )=217. 5.100件产品中有5件次品,不放回地抽取两次,每次抽1件,已知第一次抽出的是次品,则第2次抽出正品的概率为________.解析:设“第一次抽到次品”为事件A ,“第二次抽到正品”为事件B ,则P (A )=5100=120,P (AB )=C 15C 195A 2100=19396, 所以P (B |A )=P (AB )P (A )=9599.答案:95996.从1~100这100个整数中,任取一数,已知取出的一数是不大于50的数,则它是2或3的倍数的概率为________.解析:法一:根据题意可知取出的一个数是不大于50的数,则这样的数共有50个,其中是2或3的倍数的数共有33个,故所求概率为3350.法二:设A =“取出的球不大于50”,B =“取出的数是2或3的倍数”,则P (A )=50100=12,P (AB )=33100, ∴P (B |A )=P (AB )P (A )=3350. 答案:33507.现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求:(1)第1次抽到舞蹈节目的概率;(2)第1次和第2次都抽到舞蹈节目的概率;(3)在第1次抽到舞蹈的条件下,第2次抽到舞蹈节目的概率.解:设“第1次抽到舞蹈节目”为事件A ,“第2次抽到舞蹈节目”为事件B ,则“第1次和第2次都抽到舞蹈节目”为事件AB .(1)从6个节目中不放回地依次抽取2次的事件数为n (Ω)=A 26=30,根据分步计数原理n (A )=A 14A 15=20,于是P (A )=n (A )n (Ω)=2030=23.(2)因为n (AB )=A 24=12,于是 P (AB )=n (AB )n (Ω)=1230=25. (3)法一:由(1)(2)可得,在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率为P (B |A )=P (AB )P (A )=2523=35. 法二:因为n (AB )=12,n (A )=20, 所以P (B |A )=n (AB )n (A )=1220=35.8.有外形相同的球分装在三个盒子中,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A 的球,则在第二个盒子中任取一个球;若第一次取得标有字母B 的球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则称试验成功,求试验成功的概率.解:设A ={从第一个盒子中取得标有字母A 的球}, B ={从第一个盒子中取得标有字母B 的球}, R ={第二次取出的球是红球}, 则容易求得P (A )=710,P (B )=310, P (R |A )=12,P (R |B )=45.事件“试验成功”表示为RA ∪RB ,又事件RA 与事件RB 互斥, 故由概率的加法公式,得 P (RA ∪RB )=P (RA )+P (RB ) =P (R |A )P (A )+P (R |B )P (B ) =12×710+45×310=0.59.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.1条件概率
教学目标:
知识与技能:通过对具体情景的分析,了解条件概率的定义。
过程与方法:掌握一些简单的条件概率的计算。
情感、态度与价值观:通过对实例的分析,会进行简单的应用。
教学重点:条件概率定义的理解
教学难点:概率计算公式的应用
授课类型:新授课
课时安排:1课时
教具:多媒体、实物投影仪
教学设想:引导学生形成“自主学习”与“合作学习”等良好的学习方式。
教学过程:
一、复习引入:
探究: 三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小.
若抽到中奖奖券用“Y ”表示,没有抽到用“Y”,表示,那么三名同学的抽奖结果共有三种可能:Y Y Y,Y Y Y和Y Y Y.用B 表示事件“最后一名同学抽到中奖奖券”, 则B
仅包含一个基本事件Y Y Y.由古典概型计算公式可知,最后一名同学抽到中奖奖券的概率为1
()
3
P B=.
思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少?
因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有Y Y Y和Y Y Y.而“最后一名同学抽到中奖奖券”包含的基本事件仍是Y Y Y.由古典概型计算公式可知.最后一
名同学抽到中奖奖券的概率为1
2
,不妨记为P(B|A ) ,其中A表示事件“第一名同学没有抽
到中奖奖券”.
已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢?
在这个问题中,知道第一名同学没有抽到中奖奖券,等价于知道事件A 一定会发生,导致可能出现的基本事件必然在事件A 中,从而影响事件B 发生的概率,使得P ( B|A )≠P ( B ) .
思考:对于上面的事件A和事件B,P ( B|A)与它们的概率有什么关系呢?
用Ω表示三名同学可能抽取的结果全体,则它由三个基本事件组成,即Ω={Y Y Y, Y Y Y,Y Y Y}.既然已知事件A必然发生,那么只需在A={Y Y Y, Y Y Y}的范围内考虑问题,
即只有两个基本事件Y Y Y 和Y Y Y .在事件 A 发生的情况下事件B 发生,等价于事件 A 和事件 B 同时发生,即 AB 发生.而事件 AB 中仅含一个基本事件Y Y Y ,因此
(|)P B A =12=()()n AB n A .
其中n ( A )和 n ( AB )分别表示事件 A 和事件 AB 所包含的基本事件个数.另一方面,根据古典概型的计算公式,
()()(),()()()
n AB n A P AB P A n n ==ΩΩ 其中 n (Ω)表示Ω中包含的基本事件个数.所以,
(|)P B A =()
()()()()()()
()
n AB n AB P AB n n A n P n Ω==ΩΩΩ. 因此,可以通过事件A 和事件AB 的概率来表示P (B| A ) .
条件概率
1.定义
设A 和B 为两个事件,P(A )>0,那么,在“A 已发生”的条件下,B 发生的条件概率(conditional probability ). (|)P B A 读作A 发生的条件下 B 发生的概率.
(|)P B A 定义为
()(|)()
P AB P B A P A =. 由这个定义可知,对任意两个事件A 、B ,若()0P B >,则有
()(|)()P AB P B A P A =⋅.
并称上式微概率的乘法公式.
2.P (·|B )的性质:
(1)非负性:对任意的A ∈f. 0(|)1P B A ≤≤;
(2)规范性:P (Ω|B )=1;
(3)可列可加性:如果是两个互斥事件,则
(|)(|)(|)P B C A P B A P C A =+U .
更一般地,对任意的一列两两部相容的事件i A (I=1,2…),有
P ⎥⎦⎤⎢⎣⎡∞=Y 1|i i B A =)|(1
B A P i i ∑∞
=.
例1.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2 道题,求: (l )第1次抽到理科题的概率;
(2)第1次和第2次都抽到理科题的概率;
(3)在第 1 次抽到理科题的条件下,第2次抽到理科题的概率.
解:设第1次抽到理科题为事件A ,第2次抽到理科题为事件B ,则第1次和第2次都抽到理科题为事件AB.
(1)从5道题中不放回地依次抽取2道的事件数为
n (Ω)=35A =20.
根据分步乘法计数原理,n (A )=1134
A A ⨯=12 .于是 ()123()()205
n A P A n ===Ω. (2)因为 n (AB)=23A =6 ,所以
()63()()2010
n AB P AB n ===Ω. (3)解法 1 由( 1 ) ( 2 )可得,在第 1 次抽到理科题的条件下,第 2 次抽到理科题的概
3
()110(|)3()2
5
P AB P B A P A ===. 解法2 因为n (AB )=6 , n (A )=12 ,所以
()61(|)()122
P AB P B A P A ===. 例2.一张储蓄卡的密码共位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:
(1)任意按最后一位数字,不超过 2 次就按对的概率;
(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.
解:设第i 次按对密码为事件i A (i=1,2) ,则112()A A A A =U 表示不超过2次就按对密码.
(1)因为事件1A 与事件12A A 互斥,由概率的加法公式得
1121911()()()101095
P A P A P A A ⨯=+=+=⨯. (2)用B 表示最后一位按偶数的事件,则
112(|)(|)(|)P A B P A B P A A B =+
14125545
⨯=
+=⨯. 课堂练习.
1、抛掷一颗质地均匀的骰子所得的样本空间为S={1,2,3,4,5,6},令事件A={2,3,5},B={1,2,4,5,6},求P (A ),P (B ),P (AB ),P (A ︱B )。
2、一个正方形被平均分成9个部分,向大正方形区域随机地投掷一个点(每次都能投中),设投中最左侧3个小正方形区域的事件记为A ,投中最上面3个小正方形或正中间的1个小正方形区域的事件记为B ,求P (AB ),P (A ︱B )。
3、在一个盒子中有大小一样的20个球,其中10和红球,10个白球。
求第1个人摸出1个红球,紧接着第2个人摸出1个白球的概率。
巩固练习: 课本55页练习1、2
课外作业:第60页 习题 2. 2 1 ,2 ,3
教学反思:
1. 通过对具体情景的分析,了解条件概率的定义。
2. 掌握一些简单的条件概率的计算。
3. 通过对实例的分析,会进行简单的应用。