四川省宜宾市第三中学2017-2018学年高一上学期月考数学试题Word版含答案.pdf
2017-2018学年四川省成都七中高一(上)10月月考数学试卷

2017-2018学年四川省成都七中高一(上)10月月考数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)方程x2﹣px+6=0的解集为M,方程x2+6x﹣q=0的解集为N,且M∩N={2},那么p+q=()A.21 B.8 C.6 D.72.(5分)函数y=定义域是()A.[﹣2,﹣1)B.[﹣2,﹣1]∪[2,3]C.[﹣2,﹣1)∪[2,3)D.[﹣2,﹣1]3.(5分)若集合A={x||2x﹣1|<3},B={x|<0},则A∩B是()A.{x|﹣1<x<﹣或2<x<3}B.{x|2<x<3}C.{x|﹣<x<2}D.{x|﹣1<x<﹣}4.(5分)如果函数f(x)=x2+2(a﹣1)x+2在区间[4,+∞)上是递增的,那么实数a的取值范围是()A.a≤3 B.a≥﹣3 C.a≤5 D.a≥55.(5分)若函数f(x)满足f(x)﹣2f(2﹣x)=﹣x2+8x﹣8,则f(1)的值为()A.0 B.1 C.2 D.36.(5分)下列各组函数中,是同一函数的是()①y=2x+1与y=;②f(x)=与g(x)=x0;③y=与y=x﹣1;④y=3x2+2x+1与u=3v2+1+2v,⑤y=与y=.A.①②③B.①②④C.②④D.①④⑤7.(5分)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为()A.(﹣1,0)∪(1,+∞) B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣1,0)∪(0,1)8.(5分)函数f(x)=|2x﹣3|+|x﹣1|的值域为()A.[,+∞)B.(,+∞)C.[1,+∞)D.(1,+∞)9.(5分)已知a≠b(a、b∈R)是关于x的方程x2﹣(k﹣1)x+k2=0两个根,则以下结论正确的是()A.k的取值范围为(﹣1,3)B.若a,b∈(﹣∞,0),则k的取值范围为(﹣∞,1)C.ab+2(a+b)的取值范围是D.若a<﹣1<b,则k的取值范围为(﹣1,0)10.(5分)若[x]表示不超过x的最大整数,则关于x的不等式|2x+1|﹣[x]﹣2≤0解集为()A.{x|﹣1≤x≤1}B.{x|﹣1≤x<0或0<x≤}∪{1}C.{x|﹣1≤x≤}∪{1}D.{x|﹣≤x≤1}11.(5分)定义min{x,y}表示两个数x,y中的较小者,max{x,y}表示两个数x,y中的较大者,设集合M={1,2,3,4,5,6,7,8},S1,S2,…S k都是M 的含有两个元素的子集,且满足:对任意的S i={a i,b i}、S j={a j,b j}(i≠j,i,j ∈{1,2,3,…k}都有min{,}•max{•}=1,则k的最大值是()A.2 B.3 C.4 D.512.(5分)函数f(x)=的定义域为D,对于D内的任意x都有f(﹣1)≤f(x)≤f(1)成立,则b•c+f(3)的值为()A.6 B.0C.5 D.以上答案均不正确二、填空题:本大题共4小题,每小题5分,共20分).13.(5分)已知集合A={1,2},集合B满足A∪B={1,2},则集合B有个.14.(5分)写出一个定义域为{x|0<x<3},值域为{y|0≤y<4}的函数解析式.15.(5分)已知函数f(x)=,与函数g(x)=a图象恰有一个交点,则a的范围为.16.(5分)集合A={x|b<x<3b﹣1}中的元素恰有2个整数,则b的范围为.三、解答题:本大题共6小题,共48分.解答写出文字说明、证明过程或演算过程.17.(10分)已知函数f(x)=.(1)写出函数f(x)的单调减区间.(不用写过程)(2)证明:函数f(x)在(0,+∞)上是减函数.18.(12分)设全集U=R,集合A={x|x2+ax﹣12=0},B={x|x2+bx+b2﹣28=0},若A∩∁U B={2},求a、b的值.19.(12分)某工厂生产某种产品的固定成本(固定投入)为5万,已知生产100件这样的产品需要再增加可变成本(另增加投入)2.5万元,根据市场调研分析,销售的收入为g(x)=50x﹣5x2(万元),(0≤x≤5),其中x是产品售出的数量(单位:百件).假设此种产品的需要求量最多为500件,设该工厂年利润为y 万元.(1)将年利润表示为年产量的函数;(2)求年利润的最大值.20.(12分)已知函数f(x)=(a,b为常数),方程f(x)=x﹣12有两个根x1=3,x2=4.(1)求函数f(x)的解析式;(2)设k>1,解关于x的不等式:f(x)<.21.(12分)函数f(x)对任意的a,b∈R都有f(a+b)=f(a)+f(b)﹣1,并且当x>0时,f(x)>1.(1)判断函数f(x)是否为奇函数;(2)证明:f(x)在R上增函数;(3)若f(4)=5,解不等式f(3m2﹣m﹣2)<3.22.(12分)已知函数f(x)=x3+ax2+bx+c.(1)若a2+c2=0,判断函数f(x)的奇偶性,并说明理由;、(2)若0<f(﹣1)=f(﹣2)=f(﹣3)<3,求a+b+c的范围;(3)若g(x)=f(x)﹣x3,且g(﹣1)=0,是否存在a,b,c,使得x≤g(x)≤对于x∈R恒成立,若有,求f(x)的解析式?若无,说明理由.2017-2018学年四川省成都七中高一(上)10月月考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)方程x2﹣px+6=0的解集为M,方程x2+6x﹣q=0的解集为N,且M∩N={2},那么p+q=()A.21 B.8 C.6 D.7【分析】由M与N的交集中的元素为2,得到已知两方程的解为2,确定出p 与q的值,即可求出p+q的值.【解答】解:∵方程x2﹣px+6=0的解集为M,方程x2+6x﹣q=0的解集为N,且M∩N={2},∴2为两方程的解,把x=2代入方程x2﹣px+6=0得:4﹣2p+6=0,即p=5,把x=2代入方程x2+6x﹣q=0得:4+12﹣q=0,即q=16,则p+q=5+16=21.故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)函数y=定义域是()A.[﹣2,﹣1)B.[﹣2,﹣1]∪[2,3]C.[﹣2,﹣1)∪[2,3)D.[﹣2,﹣1]【分析】根据二次根式的性质求出函数的定义域即可.【解答】解:由题意得:,解得:﹣2≤x<﹣1,故函数的定义域是[﹣2,﹣1),故选:A.【点评】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.3.(5分)若集合A={x||2x﹣1|<3},B={x|<0},则A∩B是()A.{x|﹣1<x<﹣或2<x<3}B.{x|2<x<3}C.{x|﹣<x<2}D.{x|﹣1<x<﹣}【分析】集合A中的绝对值不等式可利用讨论2x﹣1的正负得到一个不等式组,求出不等式组的解集即可得到集合A;集合B中的其他不等式可转化为2x+1与x ﹣3同号即同时为正或同时为负得到两个不等式组,分别求出解集即可得到集合B,求出两集合的交集即可.【解答】解:∵|2x﹣1|<3,∴﹣3<2x﹣1<3,即,∴﹣1<x<2,又∵<0,∴(2x+1)(x﹣3)>0,即或,∴x>3或x<﹣,∴A∩B={x|﹣1<x<﹣}.故选:D.【点评】此题是以绝对值不等式和其他不等式的解法为平台,考查了求交集的运算,是一道中档题.4.(5分)如果函数f(x)=x2+2(a﹣1)x+2在区间[4,+∞)上是递增的,那么实数a的取值范围是()A.a≤3 B.a≥﹣3 C.a≤5 D.a≥5【分析】由抛物线函数f(x)=x2+2(a﹣1)x+2开口向上,对称轴方程是x=1﹣a,在区间[4,+∞)上递增,知1﹣a≤4,由此能求出实数a的取值范围.【解答】解:∵抛物线函数f(x)=x2+2(a﹣1)x+2开口向上,对称轴方程是x=1﹣a,在区间[4,+∞)上递增,∴1﹣a≤4,解得a≥﹣3.故选:B.【点评】本题考查二次函数的性质和应用,是基础题.解题时要认真审题,仔细解答.5.(5分)若函数f(x)满足f(x)﹣2f(2﹣x)=﹣x2+8x﹣8,则f(1)的值为()A.0 B.1 C.2 D.3【分析】在f(x)﹣2f(2﹣x)=﹣x2+8x﹣8中,令x=1,能求出f(1)的值.【解答】解:∵函数f(x)满足f(x)﹣2f(2﹣x)=﹣x2+8x﹣8,∴f(1)﹣2f(1)=﹣1+8﹣8,∴f(1)=1.故选:B.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.6.(5分)下列各组函数中,是同一函数的是()①y=2x+1与y=;②f(x)=与g(x)=x0;③y=与y=x﹣1;④y=3x2+2x+1与u=3v2+1+2v,⑤y=与y=.A.①②③B.①②④C.②④D.①④⑤【分析】只有定义域和对应法则完全相同的函数,才为同一函数,对选项一一判断,即可得到符合题意的函数.【解答】解:①y=2x+1与y==|2x+1|,定义域均为R,对应法则不一故不为同一函数;②f(x)==1(x≠0)与g(x)=x0=1(x≠0),故为同一函数;③y==x﹣1(x≠0)与y=x﹣1(x∈R),故不为同一函数;④y=3x2+2x+1与u=3v2+1+2v,定义域和对应法则完全一样,故为同一函数;⑤y=(x≠﹣1)与y==(x≠1且x≠﹣1),定义域不同,故不为同一函数.故选:C.【点评】本题考查同一函数的判断,注意只有定义域和对应法则完全相同的函数,才为同一函数,考查运算能力,属于基础题.7.(5分)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为()A.(﹣1,0)∪(1,+∞) B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣1,0)∪(0,1)【分析】根据函数为奇函数求出f(1)=0,再将不等式x f(x)<0分成两类加以分析,再分别利用函数的单调性进行求解,可以得出相应的解集.【解答】解:∵f(x)为奇函数,且在(0,+∞)上是增函数,f(1)=0,∴f(1)=﹣f(﹣1)=0,在(﹣∞,0)内也是增函数∴=<0,即或根据在(﹣∞,0)和(0,+∞)内是都是增函数解得:x∈(﹣1,0)∪(0,1)故选:D.【点评】本题主要考查了函数的奇偶性的性质,以及函数单调性的应用等有关知识,属于基础题.结合函数的草图,会对此题有更深刻的理解.8.(5分)函数f(x)=|2x﹣3|+|x﹣1|的值域为()A.[,+∞)B.(,+∞)C.[1,+∞)D.(1,+∞)【分析】去绝对值写出分段函数解析式,画出图形,数形结合得答案.【解答】解:f(x)=|2x﹣3|+|x﹣1|=,函数图象如图:由图可知,函数f(x)=|2x﹣3|+|x﹣1|的值域为[,+∞).故选:A.【点评】本题考查函数值域的求法,考查数形结合的解题思想方法,是中档题.9.(5分)已知a≠b(a、b∈R)是关于x的方程x2﹣(k﹣1)x+k2=0两个根,则以下结论正确的是()A.k的取值范围为(﹣1,3)B.若a,b∈(﹣∞,0),则k的取值范围为(﹣∞,1)C.ab+2(a+b)的取值范围是D.若a<﹣1<b,则k的取值范围为(﹣1,0)【分析】若方程有两个根,则△>0,解不等式可得k的取值范围;若a,b∈(﹣∞,0),则方程有两个负根,△>0且k﹣1<0;根据韦达定理可将ab+2(a+b)化为一个关于k的表达式,根据二次函数的图象和性质,可得其取值范围,若a <﹣1<b,则当x=﹣1时,x2﹣(k﹣1)x+k2<0,由此可得k的取值范围.【解答】解:∵a≠b(a、b∈R)是关于x的方程x2﹣(k﹣1)x+k2=0两个根,∴(k﹣1)2﹣4k2=﹣3k2﹣2k+1>0,即3k2+2k﹣1<0,解得﹣1<k<,故A错误;若a,b∈(﹣∞,0),则k﹣1<0且﹣1<k<,故k的取值范围为(﹣1,1),故B错误;ab+2(a+b)=k2+2(k﹣1)=k2+2k﹣2=(k+1)2﹣3,(﹣1<k<),即ab+2(a+b)∈(﹣3,﹣),故C错误若a<﹣1<b,当x=﹣1时,x2﹣(k﹣1)x+k2<0,即k+k2<0,解得k∈(﹣1,0),故D正确故选:D.【点评】本题考查的知识点是根与系数的关系,其中熟练掌握一元二次方程根的个数与△的关系是解答本题的关键.10.(5分)若[x]表示不超过x的最大整数,则关于x的不等式|2x+1|﹣[x]﹣2≤0解集为()A.{x|﹣1≤x≤1}B.{x|﹣1≤x<0或0<x≤}∪{1}C.{x|﹣1≤x≤}∪{1}D.{x|﹣≤x≤1}【分析】由题意可得x≥[x],讨论2x+1≥0,2x+1<0,去绝对值,结合[x]表示不超过x的最大整数,即可得到所求解集.【解答】解:由题意可得x≥[x],若2x+1≥0,即x≥﹣,可得2x+1﹣[x]﹣2≤0,即有2x﹣1≤[x]≤x,即为﹣≤x≤1,当x=1时,原不等式即为1﹣1≤0显然成立;当0<x<1时,[x]=0,可得2x+1﹣2≤0,解得0<x≤;当x=0时,不等式即为﹣1≤0成立;当﹣≤x<0时,2x﹣1+1≤0,解得﹣≤x<0;当2x+1<0,即x<﹣,可得﹣2x﹣1﹣[x]﹣2≤0,即有﹣2x﹣3≤[x]≤x,可得﹣1≤x<﹣,当x=﹣1时,不等式即为﹣1+1﹣2≤0成立;当﹣1<x<﹣时,不等式即为﹣2x﹣3﹣(﹣1)≤0,解得﹣1<x<﹣.综上可得,不等式的解集为[﹣1,﹣)∪[﹣,]∪{1}=[﹣1,]∪{1}.故选:C.【点评】本题考查含绝对值不等式和[x]的不等式的解法,注意运用绝对值的意义和[x]的定义,考查分类讨论思想方法,以及运算能力,属于难题.11.(5分)定义min{x,y}表示两个数x,y中的较小者,max{x,y}表示两个数x,y中的较大者,设集合M={1,2,3,4,5,6,7,8},S1,S2,…S k都是M 的含有两个元素的子集,且满足:对任意的S i={a i,b i}、S j={a j,b j}(i≠j,i,j ∈{1,2,3,…k}都有min{,}•max{•}=1,则k的最大值是()A.2 B.3 C.4 D.5【分析】min{,}与max{•}互为倒数,满足条件K取最大值的有{1,2},{2,4},{3,6},{4,8},由此能求出k的最大值.【解答】解:集合M={1,2,3,4,5,6,7,8},S1,S2,…S k都是M的含有两个元素的子集,且满足:对任意的S i={a i,b i}、S j={a j,b j}(i≠j,i,j∈{1,2,3,…k}都有min{,}•max{•}=1,∴根据题意,M的所有含有2个元素的子集有C82=28个,∵min{,}•max{•}=1,∴min{,}与max{•}互为倒数,∴满足条件K取最大值的有{1,2},{2,4},{3,6},{4,8},则k的最大值是4.故选:C.【点评】本题考查实数值的最大值的求法,是基础题,解题时要认真审题,注意列举法的合理运用.12.(5分)函数f(x)=的定义域为D,对于D内的任意x都有f(﹣1)≤f(x)≤f(1)成立,则b•c+f(3)的值为()A.6 B.0C.5 D.以上答案均不正确【分析】由题意可得x2﹣bx﹣c≤0,由对于D内的任意x都有f(﹣1)≤f(x)≤f(1)成立,可得f(1)为最大值,且1为二次函数y=x2﹣bx﹣c的对称轴,f (﹣1)为最小值0,可得c,b的方程组,求得b,c,即可得到所求和.【解答】解:函数f(x)=有意义,可得﹣x2+bx+c≥0,即为x2﹣bx﹣c≤0,由对于D内的任意x都有f(﹣1)≤f(x)≤f(1)成立,可得f(1)为最大值,f(﹣1)为最小值0,则b=1,﹣1﹣b+c=0,解得b=2,c=3,f(x)=,bc+f(3)=6+=6,故选:A.【点评】本题考查函数的定义域问题解法,注意运用偶次根式被开方式非负,以及函数的最值的定义,考查运算能力,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分).13.(5分)已知集合A={1,2},集合B满足A∪B={1,2},则集合B有4个.【分析】根据集合B满足A∪B={1,2},可得B⊆A,进而根据n元集合有2n个子集,得到答案.【解答】解:∵集合A={1,2}有两个元素,若A∪B={1,2},则B⊆A故满足条件的集合B有22=4个故答案为:4【点评】本题考查的知识点是并集及其运算,子集的个数,由已知得到B⊆A,及n元集合有2n个子集,是解答的关键.14.(5分)写出一个定义域为{x|0<x<3},值域为{y|0≤y<4}的函数解析式y=(x﹣2)2,x∈(0,3)..【分析】求出函数的对称轴,结合二次函数的性质求出函数的解析式即可.【解答】解:令f(x)=(x﹣2)2,x∈(0,3),则f(x)的对称轴是x=2,f(x)min=f(2)=0,f(x)<f(0)=4,故y=f(x)的值域是[0,4),故答案为:y=(x﹣2)2,x∈(0,3).【点评】本题考查了函数的定义域,值域问题,是一道基础题.15.(5分)已知函数f(x)=,与函数g(x)=a图象恰有一个交点,则a的范围为[﹣1,1]∪{2}∪(3,6),.【分析】作出函数的图象,根据图象的平移得出a的范围.【解答】解:分别画出f(x),g(x)的图象,如图所示,结合函数的图象可得,f(x)与函数g(x)=a图象恰有一个交点的a的范围为[﹣1,1]∪{2}∪(3,6),故答案为:[﹣1,1]∪{2}∪(3,6)【点评】本题主要考查函数的零点与方程的根的关系,体现了化归与转化、数形结合的数学思想,属于中档题.16.(5分)集合A={x|b<x<3b﹣1}中的元素恰有2个整数,则b的范围为(,]∪{2} .【分析】由集合A={x|b<x<3b﹣1}中的元素恰有2个整数,得集合长度T=3b ﹣1﹣b=2b﹣1,长度T=2b﹣1,要满足涵盖两个整数,则其必须满足在(1,3]之间,得1<b≤2,当b∈(1,2)时,,当b=2时,3b﹣1=5,由此能求出b的范围.【解答】解:∵集合A={x|b<x<3b﹣1}中的元素恰有2个整数,∴b<3b﹣1,解得b>,集合长度T=3b﹣1﹣b=2b﹣1,长度T=2b﹣1,要满足涵盖两个整数,则其必须满足在(1,3]之间,即1<2b﹣1≤3,解得1<t≤2,当t∈(1,2)时,,∴,当b=2时,3b﹣1=5,恰好符合题意.故答案为:(]∪{2}.【点评】本题考查的实数的取值范围的求法,考查集合等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.三、解答题:本大题共6小题,共48分.解答写出文字说明、证明过程或演算过程.17.(10分)已知函数f(x)=.(1)写出函数f(x)的单调减区间.(不用写过程)(2)证明:函数f(x)在(0,+∞)上是减函数.【分析】(1)求出单调区间即可;(2)根据函数的单调性的定义证明即可.【解答】解:(1)f(x)在(﹣∞,0),(0,+∞)递减;(2)证明:设0<x1<x2,则f(x1)﹣f(x2)=﹣=,∵x1<x2,∴x2﹣x1>0,∴f(x1)﹣f(x2)>0,故f(x)在(0,+∞)递减.【点评】本题考查了函数的单调性问题,考查通过定义证明函数的单调性,是一道基础题.18.(12分)设全集U=R,集合A={x|x2+ax﹣12=0},B={x|x2+bx+b2﹣28=0},若A∩∁U B={2},求a、b的值.【分析】根据集合A={x|x2+ax﹣12=0},集合B={x|x2+bx=0},若A∩∁U B={2},则2∈A,方程x2+ax﹣12=0的另一根∈B,代入可得实数a,b的值.【解答】解:全集U=R,集合A={x|x2+ax﹣12=0},B={x|x2+bx+b2﹣28=0},若A∩∁U B={2},则2∈A,可得4+2a﹣12=0,解得a=4,即有A={x|x2+4x﹣12=0}={2,﹣6},则﹣6∈B,可得36﹣6b+b2﹣28=0,解得b=2或b=4,则B={﹣6,4}或B={﹣6,2}.显然b=4舍去.故a=4,b=2.【点评】本题考查的知识点是集合的交集,并集,补集运算,正确理解A∩∁U B={2}的含义是解答的关键.19.(12分)某工厂生产某种产品的固定成本(固定投入)为5万,已知生产100件这样的产品需要再增加可变成本(另增加投入)2.5万元,根据市场调研分析,销售的收入为g(x)=50x﹣5x2(万元),(0≤x≤5),其中x是产品售出的数量(单位:百件).假设此种产品的需要求量最多为500件,设该工厂年利润为y 万元.(1)将年利润表示为年产量的函数;(2)求年利润的最大值.【分析】(1)本题考查的是分段函数的有关知识,利用年利润=年销售收入﹣投资成本(包括固定成本),可得年利润表示为年产量的函数;(2)用配方法化简解析式,求出最大值.【解答】解:(1)设年产量为x百件,当0≤x≤5时,产品全部售出∴y=(50x﹣5x2)﹣(5+2.5x)=﹣5x2+47.5x﹣5当x>5时,产品只能售出500件∴y=(50×5﹣5×52)﹣(5+2.5x)=﹣2.5x+120∴y=;(2)当0≤x≤5时,y=﹣5x2+47.5x﹣5,∴x=4.75时,y max=107.8125当x>5时,y<107.5故当年产量为475件时取得最大利润,且最大利润为107.8125元,最佳生产计划475件.【点评】本题考查的是二次函数的实际应用,用配方法可求出最大值,配方法求最值是常用的方法,属于基础题.20.(12分)已知函数f(x)=(a,b为常数),方程f(x)=x﹣12有两个根x1=3,x2=4.(1)求函数f(x)的解析式;(2)设k>1,解关于x的不等式:f(x)<.【分析】(1)将x1=3,x2=4分别代入方程f(x)=x﹣12,得出关于a,b的方程组,解之即得a,b,从而得出函数f(x)的解析式.(2)不等式即为:即(x﹣2)(x﹣1)(x﹣k)>0.下面对k进行分类讨论:①当1<k<2,②当k=2时,③当k>2时,分别求出此不等式的解集即可.【解答】解:(1)将x1=3,x2=4分别代入方程f(x)=x﹣12,得,解得,所以f(x)=(x≠2).(2)不等式即为<,可化为<0,即(x﹣2)(x﹣1)(x﹣k)>0.①当1<k<2,解集为x∈(1,k)∪(2,+∞).②当k=2时,不等式为(x﹣2)2(x﹣1)>0解集为x∈(1,2)∪(2,+∞);③当k>2时,解集为x∈(1,2)∪(k,+∞).【点评】本题主要是应用分类讨论思想解决不等式问题,关键是正确地进行分类,而分类一般有以下几个原则:1.要有明确的分类标准;2.对讨论对象分类时要不重复、不遗漏,即分成若干类,其并集为全集,两两的交集为空集;3.当讨论的对象不止一种时,应分层次进行,以避免混乱.根据绝对值的意义判断出f(x)的奇偶性,再利用偶函数的图象关于y轴对称,求出函数在(0,+∞)上的单调区间,并且只要求出当x>0时,函数f(x)=x2﹣2ax(a>0)最小值进而利用f(x)min≤﹣1解答此题.21.(12分)函数f(x)对任意的a,b∈R都有f(a+b)=f(a)+f(b)﹣1,并且当x>0时,f(x)>1.(1)判断函数f(x)是否为奇函数;(2)证明:f(x)在R上增函数;(3)若f(4)=5,解不等式f(3m2﹣m﹣2)<3.【分析】(1)令a=b=0,可得f(0)=1,令a=x,b=﹣x,可得f(0)=f(x)+f (﹣x)﹣1,可得f(﹣x)=﹣f(x),即可判断.(2)先任取x1<x2,x2﹣x1>0.由当x>0时,f(x)>1.得到f(x2﹣x1)>1,再对f(x2)按照f(a+b)=f(a)+f(b)﹣1变形得到结论.(3)由f(2)=3,再将f(m﹣2)<3转化为f(m﹣2)<f(2),由(1)中的结论,利用单调性求解【解答】解:(1)令a=b=0,可得f(0)=1,令a=x,b=﹣x,可得f(0)=f(x)+f(﹣x)﹣1,可得f(﹣x)=﹣f(x),∴函数f(x)为奇函数(2)证明:任取x1<x2,∴x2﹣x1>0.∴f(x2﹣x1)>1.∴f(x2)=f[x1+(x2﹣x1)]=f(x1)+f(x2﹣x1)﹣1>f(x1),∴f(x)是R上的增函数.(2)∵f(4)=5,令a=b=2,可得5=f(4)=2f(2)﹣1那么:f(2)=3解不等式f(3m2﹣m﹣2)<3.∴f(3m2﹣m﹣2)<3=f(2).又由(1)的结论知,f(x)是R上的增函数,∴3m2﹣m﹣2<2,解得:﹣1<m故得不等式f(3m2﹣m﹣2)<3的解集为:(﹣1,).【点评】本题主要考查抽象函数的单调性证明和利用单调性定义解抽象不等式,利用定义法以及转化法是解决本题的关键.22.(12分)已知函数f(x)=x3+ax2+bx+c.(1)若a2+c2=0,判断函数f(x)的奇偶性,并说明理由;、(2)若0<f(﹣1)=f(﹣2)=f(﹣3)<3,求a+b+c的范围;(3)若g(x)=f(x)﹣x3,且g(﹣1)=0,是否存在a,b,c,使得x≤g(x)≤对于x∈R恒成立,若有,求f(x)的解析式?若无,说明理由.【分析】(1)由题意可得a=c=0,由奇偶性的定义,即可判断f(x)为奇函数;(2)解方程组可得a,b,进而得到c的范围,即有a+b+c的范围;(3)求得g(x)的解析式,假设存在a,b,c,使得x≤g(x)≤对于x ∈R恒成立.求得g(1)=1,结合g(﹣1)=0,解得b,再由恒成立思想运用判别式法,即可得到所求a,c的值,进而判断存在性.【解答】解:(1)若a2+c2=0,则a=c=0,可得f(x)=x3+ax2+bx+c=x3+bx为奇函数,由定义域为R,且f(﹣x)=﹣x3﹣bx=﹣f(x),可得f(x)为奇函数;(2)0<f(﹣1)=f(﹣2)=f(﹣3)<3,可得0<﹣1+a﹣b+c=﹣8+4a﹣2b+c=﹣27+9a﹣3b+c<3,即为,解得,则f(x)=x3+6x2+11x+c,由0<f(﹣1)<3,得0<﹣1+6﹣11+c<3,即6<c<9,则23<a+b+c<26;(3)g(x)=f(x)﹣x3=ax2+bx+c,且g(﹣1)=0,可得a﹣b+c=0,①假设存在a,b,c,使得x≤g(x)≤对于x∈R恒成立.可令x=1,可得1≤g(1)≤1,即为g(1)=1,可得a+b+c=1,②由①②解得b=,a+c=,又ax2+(b﹣1)x+c≥0恒成立,可得a>0,△=﹣4ac≤0,即为ac≥,又2ax2+2bx+2c﹣(x2+1)≤0恒成立,则2a﹣1<0,△=1﹣4(2a﹣1)(2c﹣1)≤0,可得a<,ac≥,即为ac≥,代入c=﹣a,可得a(﹣a)≥,即有16a2﹣8a+1≤0,即有(4a﹣1)2≤0,但(4a﹣1)2≥0,则4a﹣1=0,即a=,c=,故存在a,b,c,使得x≤g(x)≤对于x∈R恒成立,且a=c=,b=.【点评】本题考查函数的奇偶性的判断,以及不等式的性质,考查存在性问题解法,注意运用二次不等式恒成立思想,考查化简整理的运算能力,属于中档题.。
四川省成都外国语学校20172018学年高一10月月考数学试题Word版含答案

成都外国语学校2017-2018学年上学期第一次月考高一数学(考试时刻:120分钟 试卷满分:150分)(命题人:刘萧旭 审题人:王福孔)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部份。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试终止后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A={x ∈Q|1->x },则 ( ) A .A ∈∅ B .2A ∉ C .2A ∈ D .{}2⊆A2.设m >n >0,m 2+n 2=4mn ,则22m n mn-的值等于( )A .2B.C .D .33.函数2211()31x x f x x x x ⎧-⎪=⎨-->⎪⎩,,,,≤则1(3)f f ⎛⎫⎪⎝⎭的值为( )A .1516 B .2716- C .89 D .184.如图所示,点P 从点A 动身,按逆时针方向沿边长为a 的正三角形ABC 运动一周,O 为ABC ∆的中心,设点P 走过的路程为x ,OAP ∆的面积为()x f (当A 、O 、P 三点共线时,记面积为0),则函数()x f 的图像大致为( )5.下列各组函数中,表示同一个函数的是 ( ) A .f (x )=x 2,g (x )=(x )2 B .f (x )=x 2,g (x )=(x -2)2C .f (x )=⎩⎪⎨⎪⎧x ,x ≥0-x ,x <0,g (t )=|t | D .f (x )=x +1·x -1,g (x )=x 2-16. 已知集合1{|,},6A x x a a Z ==+∈1{|,},23b B x x b Z ==-∈1{|,},26c C x x c Z ==+∈则,,A B C 知足的关系为( ).A A B C =⊆ .B A B C ⊆= .C A B C ⊆⊆ .D B C A ⊆⊆ 7. 概念在R 上的函数)(x f 知足:①0)0(=f ,②1)1()(=-+x f x f ,③)(21)3(x f xf =,且当1021≤<≤x x 时,)()(21x f x f ≤,则)81()31(f f +等于( )A .1B .43 C .32 D .21 8. 若函数()y f x =为奇函数,且 ()0,+∞上单调递增, ()20f =,则()20f x ->的解集为( )A. {40}x x x <或B. {|22}x x -<<C. {22}x x x <-或D. {|04}x x <<9. 已知概念在实数R 上的函数y =f (x )不恒为零,同时知足f (x +y )=f (x )f (y ),且当x >0时,f (x )>1,那么当x <0时,必然有( )A .f (x )<-1B .-1<f (x )<0C .f (x )>1D .0<f (x )<1 10. 已知函数2(2)4,f x x -=-则函数()f x 的概念域是( )A .[0,)+∞B .[0,16]C .[0,4]D .[0,2]11. 已知()y f x =在[1,1]-上单调递减,且函数()1y f x =+为偶函数,设12a f ⎛⎫= ⎪⎝⎭, ()2b f =,()3c f =,则,,a b c 的大小关系为( )A. b a c <<B. c b a <<C. b c a <<D. a b c << 12. 用()C A 表示非空集合A 中的元素个数,概念()()()()()()()(),*{,C A C B C A C B A B C B C A C A C B -≥=-<,若{}()(){}221,2,|20A B x x ax x ax ==+++=,且*1A B =,设实数a 的所有可能取值集合是S ,则()C S =( )A. 4B. 3C. 2D. 1第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分) 13. 已知a =-827,b =1771,则÷ 的值为___________.14.已知函数()()()21,143,1x x f x x x x ⎧-≤⎪=⎨-+>⎪⎩.若()()0f f m ≥,则实数m 的取值范围是__________. 15. 已知概念在R 上的函数25,1(),1x ax x f x ax x⎧---≤⎪=⎨>⎪⎩对任意的12x x ≠,都有1212[(())()]x x f x f x --0>成立,则实数a 的取值范围是___________.16已知(),y f x x R =∈,有下列4个命题:①若(12)(12)f x f x +=-,则()f x 的图象关于直线1x =对称; ②(2)y f x =-与(2)y f x =-的图象关于直线2x =对称;③若()f x 为偶函数,且(2)()f x f x +=-,则()f x 的图象关于直线2x =对称; ④若()f x 为奇函数,且()(2)f x f x =--,则()f x 的图象关于直线1x =对称. 其中正确的命题为 .(填序号)三、解答题(本大题共6小题,共70分.解许诺写出文字说明、证明进程或演算步骤)17.(本小题满分10分)已知概念域在R 上的奇函数()f x ,当0x ≥时,1)1()(f 2--=x x 的图象如图所示,(1)请补全函数()f x 的图象并写出它的单调区间. (2)求函数()f x 的表达式.18.(本小题满分12分)已知集合{}121P x a x a =+≤≤+, {}2310Q x x x =-≤. (1)若3a =,求()RP Q ⋂;(2)若PQ Q =,求实数a 的取值范围.19.(本小题满分12分)食物安全问题愈来愈引发人们的重视,农药、化肥的滥用对人民群众的建康带来必然的危害,为了给消费者带来安心的蔬菜,某农村合作社会每一年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每一个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,依照以往的种菜体会,发觉种西红柿的年收入P 、种黄瓜的年收入Q 与投入a (单位:万元)知足1801204P Q a =+=+,设甲大棚的投入为x (单位:万元),每一年两个大棚的总收益为()f x (单位:万元). (1)求()50f 的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益()f x 最大?20.(本小题满分12分)已知函数1()f x x x=-. (1)判定函数()f x 的奇偶性,并加以证明;(2)用概念证明函数()f x 在区间[1,)+∞上为增函数;(3)若函数()f x 在区间[2,]a 上的最大值与最小值之和不小于1122a a-,求a 的取值范围.21.(本小题满分12分)已知函数f (x )=x 2+(2a -1)x -3.(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域.(2) 当32a =-时,函数f (x )在[0,m]的值域为[-7,-3],求m 的取值范围.(3)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值.22. (本小题满分12分)已知函数()f x 知足对一切实数12,x x 都有1212()()()2f x x f x f x +=+-成立,且(1)0f =,当1x >时有()0.f x <(1)判定并证明()f x 在R 上的单调性.(2)解不等式222[(2)]2(21)120f x x f x x -+---<.(3)若()22f x t at ≥-+对任意[]1,1x ∈-, []1,1a ∈-恒成立,求实数t 的取值范围.成都外国语学校2017-2018学年上学期第一次月考高一数学(考试时刻:120分钟 试卷满分:150分)(命题人 刘萧旭 审题 王福孔)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部份。
人教版数学高三第一章解三角形单元测试精选(含答案)1

(1)求 BC 边长; (2)求 AB 边上中线 CD 的长.
【来源】北京 101 中学 2018-2019 学年下学期高一年级期中考试数学试卷
【答案】(1) 3 2 ;(2) 13 .
33.ABC 中,角 A,B,C 所对的边分别为 a,b,c,已知 a 3, cos A 6 , B A ,
【答案】C
3.在 ABC 中,若 a b cb c a 3bc ,则 A ( )
A. 90
B. 60
C.135
D.150
【来源】2015-2016 学年江西省金溪一中高一下期中数学试卷(带解析)
【答案】B
4.设在 ABC 中,角 A,B,C 所对的边分别为 a,b, c , 若 b cos C c cos B a sin A ,
【答案】C
21.设 ABC 的内角 A, B,C 所对边的长分别为 a, b, c ,若 b c 2a, 3sin A 5sin B ,
则角 C =( )
A.
3 3
C.
4
2
B.
3 5
D.
6
【来源】2013 年全国普通高等学校招生统一考试文科数学(安徽卷带解析)
【答案】B
22.在△ABC 中,角 A、B、C 的对边分别为 a、b、c,若 a2 b2 c2 tanB 3ac ,
A.3 6
B.9 6
C.3
D.6
【来源】福建省晋江市季延中学 2017-2018 学年高一下学期期末考试数学试题
【答案】A
2.已知△ABC 的内角 A,B,C 的对边分别为 a,b,c,且cc−−ba=sinCsi+nAsinB,则 B= (
)
A.π
6
高一数学第一次月考试题与答案

2017-2018学年度高一数学9月月考试卷本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分,考试时间120分钟。
学校:___________姓名:___________班级:___________考号:___________分卷I一、选择题(共12小题,每小题5.0分,共60分)1.已知集合M ={x ∈N +|2x ≥x 2},N ={-1,0,1,2},则(∁R M )∩N 等于( ) A . ∅ B . {-1} C . {1,2} D . {-1,0}2.已知集合P ={4,5,6},Q ={1,2,3},定义P ⊕Q ={x |x =p -q ,p ∈P ,q ∈Q },则集合P ⊕Q 的所有真子集的个数为( )A . 32B . 31C . 30D . 以上都不对3.定义A -B ={x |x ∈A ,且x ∉B },若A ={1,2,4,6,8,10},B ={1,4,8},则A -B 等于( ) A . {4,8} B . {1,2,6,10} C . {1} D . {2,6,10}4.下列各组函数中,表示同一个函数的是( ) A .y =x -1和y =B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2 D .f (x )=和g (x )=5.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图像是( )A .B .C .D .6.下列三个函数:①y =3-x ;②y =;③y =x 2+2x -10.其中值域为R 的函数有( ) A .0个 B .1个 C .2个 D .3个 7.一次函数g (x )满足g [g (x )]=9x +8,则g (x )是( ) A .g (x )=9x +8 B .g (x )=3x +8C .g (x )=-3x -4D .g (x )=3x +2或g (x )=-3x -4 8.下列函数中,在[1,+∞)上为增函数的是( ) A .y =(x -2)2 B .y =|x -1| C .y =D .y =-(x +1)2 9.若非空数集A ={x |2a + ≤x ≤3a -5},B ={x |3≤x ≤ },则能使A ⊆B 成立的所有a 的集合是( ) A . {a | ≤a ≤9} B . {a |6≤a ≤9} C . {a |a ≤9} D . ∅10.若函数f (x )= ,, , ,φ(x )=, , , ,则当x <0时,f (φ(x ))为( ) A . -x B . -x 2C .XD .x 2 11.若函数f (x )=的最小值为f (0),则实数m 的取值范围是( )A . [-1,2]B . [-1,0]C . [1,2]D . [0,2]12.已知函数f (x )=4x 2-kx -8在区间(5,20)上既没有最大值也没有最小值,则实数k 的取值范围是( )A. [160,+∞) B. (-∞,40]C. (-∞,4 ]∪[ 6 ,+∞) D. (-∞, ]∪[8 ,+∞)分卷II二、填空题(共4小题,每小题5.0分,共20分)13.已知M={2,a,b},N={2a,2,b2},且M=N,则有序实数对(a,b)的值为________.14.已知函数y=f(x2-1)的定义域为{x|-2<x<3},则函数y=f(3x-1)的定义域为____________.15.设函数f(x)=, ,, ,若f(f(a))=2,则a=_________.16.已知函数y=f(x)的定义域为{1,2,3},值域为{1,2,3}的子集,且满足f[f(x)]=f(x),则这样的函数有________个.三、解答题(共6小题,,共70分)17.(10分)用单调性的定义证明函数f(x)=2x2+4x在[-1,+∞)上是增函数.18(12分).根据下列函数解析式求f(x).(1)已知f(x+1)=2x2+5x+2;(2)已知f=x3+3-1;(3)已知af(x)+f(-x)=bx,其中a≠± 19(12分).已知集合A={x| ≤x<7},B={x|3<x<10},C={x|x<a}.(1)求A∪B,(∁R A)∩B;(2)若A∩C≠∅,求a的取值范围.20(12分).经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t,价格近似满足f(t)=20-|t-10|.(1)试写出该种商品的日销售额y与时间t( ≤t≤ )的函数表达式;(2)求该种商品的日销售额y的最大值与最小值.21(12分).已知函数f(x)=(x-a)2-(a2+1)在区间[0,2]上的最大值为g(a),最小值为h(a)(a∈R).(1)求g(a)和h(a);(2)作出g (a )和h (a )的图像,并分别指出g (a )的最小值和h (a )的最大值各为多少?22(12分).已知函数f (x )的定义域是(0,+∞),当x >1时,f (x )>0,且f (x ·y )=f (x )+f (y ). (1)求f (1)的值;(2)证明:f (x )在定义域上是增函数;(3)如果f (3)=-1,求满足不等式f (x )-f (x - )≥ 的x 的取值范围.2017-2018学年度高一数学9月月考试卷答案解析1.【答案】D【解析】因为M ={1,2},所以(∁R M )∩N ={-1,0},故正确答案为D. 2.【答案】B【解析】由所定义的运算可知P ⊕Q ={1,2,3,4,5}, ∴P ⊕Q 的所有真子集的个数为25-1=31.故选B. 3.【答案】D【解析】A -B 是由所有属于A 但不属于B 的元素组成,所以A -B ={2,6,10}.故选D. 4.【答案】D【解析】A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D. 5.【答案】C【解析】考查四个选项,横坐标表示时间,纵坐标表示的是离开学校的距离,由此知,此函数图像一定是下降的,由此排除A ;再由小明骑车上学,开始时匀速行驶,可得出图像开始一段是直线下降型,又途中因交通堵塞停留了一段时间,故此时有一段函数图像与x轴平行,由此排除D,后为了赶时间加快速度行驶,此一段时间段内函数图像下降的比较快,由此可确定C正确,B不正确.故选C.6.【答案】B【解析】7.【答案】D【解析】∵g(x)为一次函数,∴设g(x)=kx+b,∴g[g(x)]=k(kx+b)+b=k2x+kx+b,又∵g[g(x)]=9x+8,∴9,8,解得3,或3,4,∴g(x)=3x+2或g(x)=-3x-4.故选D.8.【答案】B【解析】y=(x-2)2在[2,+∞)上为增函数,在(-∞,2]为减函数;y=|x-1|= , ,,在[1,+∞)上为增函数,故选B.9.【答案】B 10.【答案】B【解析】x<0时,φ(x)=-x2<0,∴f(φ(x))=-x2.11.【答案】D【解析】当x≤ 时,f(x)=(x-m)2,f(x)min=f(0)=m2,所以对称轴x=m≥ .当x>0时,f(x)=x++m≥ +m=2+m,当且仅当x=,即x=1时取等号,所以f(x)min=2+m.因为f(x)的最小值为m2,所以m2≤ +m,所以 ≤m≤ .12.【答案】C【解析】由于二次函数f(x)=4x2-kx-8在区间(5,20)上既没有最大值也没有最小值,因此函数f(x)=4x2-kx-8在区间(5,20)上是单调函数.二次函数f(x)=4x2-kx-8图像的对称轴方程为x=8,因此8≤5或8≥ ,所以k≤4 或k≥ 6 .13.【答案】(0,1)或(4,)【解析】∵M={2,a,b},N={2a,2,b2},且M=N,∴或即或或4当a=0,b=0时,集合M={2,0,0}不成立,∴有序实数对(a,b)的值为(0,1)或(4,),故答案为(0,1)或(4,).14.【答案】{x| ≤x<3}【解析】∵函数y=f(x2-1)的定义域为{x|-2<x<3},∴-2<x<3.令g(x)=x2-1,则- ≤g(x)<8,故- ≤3x-1<8,即 ≤x<3,∴函数y=f(3x-1)的定义域为{x| ≤x<3}.15.【答案】【解析】若a≤ ,则f(a)=a2+2a+2=(a+1)2+1>0,所以-(a2+2a+2)2=2,无解;若a>0,则f(a)=-a2<0,所以(-a2)2+2(-a2)+2=2,解得a=.故a=.16.【答案】10【解析】∵f[f(x)]=f(x),∴f(x)=x,①若f:{ , ,3}→{ , ,3},可以有f(1)=1,f(2)=2,f(3)=3,此时只有1个函数;②若f:{ , ,3}→{ },此时满足f(1)=1;同理有f:{ , ,3}→{ };f:{ , ,3}→{3},共有3类不同的映射,因此有3个函数;③首先任选两个元素作为值域,则有3种情况.例如选出1,2,且对应关系f:{ , ,3}→{ , },此时满足f(1)=1,f(2)=2.则3可以对应1或2,又有2种情况,所以共有3× =6个函数.综上所述,一共有1+3+6=10个函数.17.【答案】设x1,x2是区间[-1,+∞)上的任意两个实数,且x1<x2,则f(x1)-f(x2)=(2+4x1)-(2+4x2)=2(-)+4(x1-x2)=2(x1-x2)(x1+x2+2).∵- ≤x1<x2,∴x1-x2<0,x1+x2+2>0,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴f(x)在[-1,+∞)上是增函数.18.【答案】(1)方法一(换元法)设x+1=t,则x=t-1,∴f(t)=2(t-1)2+5(t-1)+2=2t2+t-1,∴f(x)=2x2+x-1.方法二(整体代入法)∵f(x+1)=2x2+5x+2=2(x+1)2+(x+1)-1,∴f(x)=2x2+x-1.(2)(整体代入法)∵f=x3+3-1=3-3x2·-3x·-1=3-3-1,∴f(x)=x3-3x-1(x≥ 或x≤-2).(3)在原式中以-x替换x,得af(-x)+f(x)=-bx,于是得+ - = ,- + =-消去f(-x),得f(x)=.故f(x)的解析式为f(x)=x(a≠± ).19.【答案】(1)因为A={x| ≤x<7},B={x|3<x<10},所以A∪B={x| ≤x<10}.因为A={x| ≤x<7},所以∁R A={x|x<2或x≥7},则(∁R A)∩B={x|7≤x<10}.(2)因为A={x| ≤x<7},C={x|x<a},且A∩C≠∅,所以a>2.20.【答案】(1)y=g(t)·f(t)=(80-2t)·( -|t-10|)=(40-t)(40-|t-10|)=3 4 , ,4 5 ,(2)当 ≤t<10时,y的取值范围是[1 200,1 225],在t=5时,y取得最大值1 225;当 ≤t≤ 时,y的取值范围是[600,1 200],在t=20时,y取得最小值600.综上,第5天,日销售额y取得最大值1 225元;第20天,日销售额y取得最小值600元.21.【答案】( )∵f(x)=(x-a)2-(a2+1),又x∈[ , ],∴当a≤ 时,g(a)=f(2)=3-4a,h(a)=f(0)=-1;当0<a≤ 时,g(a)=f(2)=3-4a,h(a)=f(a)=-(a2+1);当1<a<2时,g(a)=f(0)=-1,h(a)=f(a)=-(a2+1);当a≥ 时,g(a)=f(0)=-1,h(a)=f(2)=3-4a.综上可知g(a)=3 4h(a)=3 4(2)g(a)和h(a)的图像分别为:由图像可知,函数y=g(a)的最小值为-1,函数y=h(a)的最大值为-1.【解析】22.【答案】(1)解令x=y=1,得f(1)=2f(1),故f(1)=0.(2)证明令y=,得f(1)=f(x)+f()=0,故f()=-f(x).任取x1,x2∈( ,+∞),且x1<x2,则f(x2)-f(x1)=f(x2)+f()=f().由于>1,故f()>0,从而f(x2)>f(x1).∴f(x)在(0,+∞)上是增函数.(3)解由于f(3)=-1,而f(3)=-f(3),故f(3)=1.在f(x·y)=f(x)+f(y)中,令x=y=3,得f(9)=f(3)+f(3)=2.故所给不等式可化为f(x)-f(x- )≥f(9),∴f(x)≥f[9(x-2)],∴x≤94.又∴ <x≤94,∴x的取值范围是94.【解析】。
2017—2018学年度人教版七年级上数学月考试卷含答案

试卷第 2 页,总 4 页
…………○…………内…………○…………装…………○…………订…………○…………线…………○………… …………○…………外…………○…………装…………○…………订…………○…………线…………○…………
绝密★启用前
2017-2018 学年度第一学期 10 月月考试卷
命题人:李政铭
一、选择题 (每小题 3 分,共 30 分)
1.在下列选项中,具有相反意义的量是( )
A. 收入 20 元与支出 20 元 B. 6 个老师与 6 个学生
C. 走了 100 米与跑了 100 米 D. 向东行 30 米与向北行 30 米
※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
数,b 是最大的负整数,c 是绝对值最小的有理数,请问:a,b,c 三数之
④
2③ ,读作“ 2 的圈3 次方”, 3 3 3 3 记作3 ,读作“ 3 的
圈 4 次方”.一般地,把 a a a ... a ( a 0 )记作 a⑧ 读作“ a 的圈 n 次方”
4
四、解答题 (每小题 7 分,共 21 分)
3
4 4 5 5
7.若 ,则 a 与 b 的关系是( )
A.a=b B.a=b C.a=b=0 D.a=b 或 a=-b
(2)李师傅将最后一名乘客送抵目的地时,他距离出发点多少米?
(3)如果汽车耗油量为 0.3 升/千米,那么这天下午汽车共耗油多少升?
25.【概念学习】
规定:求若干个相同的有理数(均不等 0 )的除法运算叫做除方,如
2÷2÷2, 3 3 3 3 等.类比有理数的乘方,我们把 2 2 2 记作
新乐市第三中学校2018-2019学年高三上学期11月月考数学试卷含答案

新乐市第三中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 直径为6的球的表面积和体积分别是( )C .D .36,144ππ36,36ππ一定是( )D .等腰三角形或直角三角形y=x+,三棱锥的三视图如图090=S ABC -C .8D .34意在考查学生空间想象能力和计算能6. 若x ,y 满足且z=y ﹣x 的最小值为﹣2,则k 的值为( )A .1B .﹣1C .2D .﹣27. 已知数列为等差数列,为前项和,公差为,若,则的值为( ){}n a n S d 201717100201717S S -=d A .B .C .D .12011010208. 已知命题p :“若直线a 与平面α内两条直线垂直,则直线a 与平面α垂直”,命题q :“存在两个相交平面垂直于同一条直线”,则下列命题中的真命题为( )A .p ∧qB .p ∨qC .¬p ∨qD .p ∧¬q9. 复数(为虚数单位),则的共轭复数为( )2(2)i z i-=i z A . B . C . D .43i -+43i +34i +34i-【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力.10.已知偶函数f (x )满足当x >0时,3f (x )﹣2f ()=,则f (﹣2)等于()A .B .C .D .11.已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为F 1、F 2,且两条曲线在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形.若|PF 1|=10,椭圆与双曲线的离心率分别为e 1、e 2,则e 1•e 2+1的取值范围为( )A .(1,+∞)B .(,+∞)C .(,+∞)D .(,+∞)12.如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是()A .i ≥7?B .i >15?C .i ≥15?D .i >31?二、填空题13.若非零向量,满足|+|=|﹣|,则与所成角的大小为 .14.满足关系式{2,3}⊆A ⊆{1,2,3,4}的集合A 的个数是 .15.若在圆C :x 2+(y ﹣a )2=4上有且仅有两个点到原点O 距离为1,则实数a 的取值范围是 .16.平面内两定点M (0,一2)和N (0,2),动点P (x ,y )满足,动点P 的轨迹为曲线E ,给出以下命题: ①m ,使曲线E 过坐标原点;∃ ②对m ,曲线E 与x 轴有三个交点;∀ ③曲线E 只关于y 轴对称,但不关于x 轴对称;④若P 、M 、N 三点不共线,则△ PMN 周长的最小值为+4;⑤曲线E 上与M,N 不共线的任意一点G 关于原点对称的另外一点为H ,则四边形GMHN的面积不大于m 。
高一数学质量检测试题-人教版高一全册数学试题

某某省某某市第三中学2020-2021学年高一数学质量检测试题一、单选题(共20题;共40分)1.已知函数f(x)是幂函数,若f(2)=4,则f(3)等于()A.9B.8C.6D.2.已知关于的不等式对任意恒成立,则的取值X围是()A. B. C.或 D.或3.将函数图象上各点的横坐标缩短到原来的(纵坐标不变),再将图象向右平移个单位长度,那么所得图象的一条对称轴方程为()A. B. C. D.4.将函数图象上所有点的横坐标缩短为原来的,再向右平移个单位长度,得到函数的图象,则图象的一条对称轴是直线()A. B. C. D.5.下列四个命题正确有()个①a∥b,b∥c⇒a∥c②a⊥b,b⊥c⇒a∥c③a∥α,b⊂α⇒a∥b④a∥b,b∥α⇒a∥αA.1B.2C.3D.46.将一个等腰梯形绕它的较长的底边所在的直线旋转一周,所得的几何体为()A.一个圆台、两个圆锥B.一个圆柱、两个圆锥C.两个圆柱、一个圆台D.两个圆台、一个圆柱7.某文体局为了解“跑团”每月跑步的平均里程,收集并整理了2018年1月至2018年11月期间“跑团”每月跑步的平均里程(单位:公里)的数据,绘制了下面的折线图.根据折线图,下列结论正确的是()A.月跑步平均里程的中位数为6月份对应的里程数B.月跑步平均里程逐月增加C.月跑步平均里程高峰期大致在8、9月D.1月至5月的月跑步平均里程相对于6月至11月,波动性更小,变化比较平稳8.函数是()A.周期为的偶函数B.周期为的奇函数C.周期为的奇函数D.周期为的偶函数9.已知,则它们从小到大为()A.c<b<aB.a<b<cC.a<c<bD.c<a<b10.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构()A.顺序结构B.条件结构和循环结构C.顺序结构和条件结构D.没有任何结构11.已知函数f(x)=,则f[f(﹣1)]等于()A.3B.2C.﹣1+log27D.log2512.为得到函数的图象,只需将函数的图像()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位13.如图,PA垂直于以AB为直径的圆所在平面,C为圆上异于A,B的任意一点,垂足为E,点F是PB上一点,则下列判断中不正确的是()﹒A.平面PACB.C.D.平面平面PBC14.已知集合M={﹣1,1},N={x|,},则M∩N=()A.{﹣1,1}B.{﹣1}C.{0}D.{﹣1,0}15.等腰三角形的周长是18,底边长y是一腰长x的函数,则()A.y=9-x(0<x≤9)B.y=9-x(0<x<9)C.y=18-2x(4.5≤x≤9)D.y=18-2x(4.5<x<9)16.函数在[﹣2,2]上的最大值为2,则a的X围是()A.[)B.[0,]C.(﹣∞,0]D.(-,】17.若,则向量与的夹角为()A. B. C. D.18.设f(x)是定义在R上的偶函数,且在上是增函数,设,则a,b,c,的大小关系是()A.c<a<bB.c<b<aC.b<c<aD.a<b<c19.函数的最小正周期为()A. B. C. D.20.已知数列,且,是直角三角形中的两个锐角,则数列的项和()A. B. C. D.二、填空题(共10题;共10分)21.若f(x)=(a2﹣3a+3)a x是指数函数则a=________.22.已知函数f(x)=ax2+bx+3a+b是定义在[a﹣1,2a]的偶函数,则a+b=________23.给出下列叙述:①若α,β均为第一象限,且α>β,则sinα>sinβ②函数f(x)=sin (2x﹣)在区间[0,]上是增函数;③函数f(x)=cos(2x+)的一个对称中心为(﹣,0)④记min{a,b}=,若函数f(x)=min{sinx,cosx},则f(x)的值域为[﹣1,].其是叙述正确的是________(请填上序号).24.设函数f(x)=ax4+bx2﹣x+1(a,b∈R),若f(2)=9,则f(﹣2)=________.25.已知,是不共线的两个平面向量,与所成角为60°,,若对任意的,的最小值为,则的最小值是________.26.设向量,,若与垂直,则的值为________.27.已知,是函数的两个零点,则________.28.的内角的对边分别为,若的面积为,则C=________.29.已知向量=(2,﹣7),=(﹣2,﹣4),若存在实数λ,使得(﹣λ)⊥,则实数λ为________.30.已知函数f(x)=asinxcosx﹣sin2x+的一条对称轴方程为x=,则函数f(x)的最大值为________.三、解答题(共6题;共50分)31.圆台的一个底面周长是另一个底面周长的3倍,它的轴截面面积是392cm2,母线与轴的夹角是45°,求这个圆台的高、母线和两底面的半径.32.(1)已知,且为第三象限角,求的值(2)已知,计算的值.33.已知向量=(4,3),=(2,﹣1),O为坐标原点,P是直线AB上一点.(1)若点P是线段AB的中点,求向量与向量夹角θ的余弦值;(2)若点P在线段AB的延长线上,且||=||,求点P的坐标.34.解答题(1)在等比数列{a n}中,a5=162,公比q=3,前n项和S n=242,求首项a1和项数n.(2)有四个数,其中前三个数成等比数列,其积为216,后三个数成等差数列,其和为36,求这四个数.35.设倒圆锥形容器的轴截面为一个等边三角形,在此容器内注入水,并浸入半径为r的一个实心球,使球与水面恰好相切,试求取出球后水面高为多少?36.已知,且=(1)求tan的值;(2)求的值.答案一、单选题1.【答案】A2.【答案】A3.【答案】A4.【答案】B5.【答案】A6.【答案】B7.【答案】D8.【答案】A9.【答案】A10.【答案】B11.【答案】A12.【答案】A13.【答案】C14.【答案】B15.【答案】D16.【答案】D17.【答案】B18.【答案】B19.【答案】C20.【答案】A二、填空题21.【答案】222.【答案】23.【答案】②④24.【答案】1325.【答案】26.【答案】27.【答案】28.【答案】29.【答案】30.【答案】1三、解答题31.【答案】解:设圆台的轴截面如图:并设圆台上底半径为r,则下底半径为3r,又由已知可得∠EBC=45°则BE=EC=2r.∴392=(2r+6r)2r∴r2=49,2r=14.∴BC=14,高BE=14.则圆台的高为14,母线长为14,两底半径分别是7和2132.【答案】(1)解:,∴,又∵是第三象限.∴(2)解:.33.【答案】(1)解:∵点P是线段AB的中点,∴点P的坐标为,即(3,1),则.∴==.(2)解:设P(x,y),由点P在线段AB的延长线上,且,得,∴,即,解得:,∴点P的坐标为(﹣2,﹣9).34.【答案】(1)解:∴a1=2,n=5(2)解:设这四个数分别为由题意,∴a=6,q=2∴四数为3、6、12、1835.【答案】【解答】解:如图.在容器内注入水,并放入一个半径为r的铁球,这时水面记为AB,将球从圆锥内取出后,这时水面记为EF.三角形PAB为轴截面,是正三角形,三角形PEF也是正三角形,圆O是正三角形PAB的内切圆.由题意可知,DO=CO=r,AO=2r=OP,AC=r∴V球=3πr3,V PC=π(r)2=3πr3又设HP=h,则EH=h∴V水=π(h)2h=h3∵V水+V球=V PC即h3+3πr3=3πr3,∴h=r即圆锥内的水深是r.36.【答案】(1)解:∵,sin=,∴cos==,∴tan==(2)解:∵sin=,∴原式。
人教版数学高一第三章直线与方程单元测试精选(含答案)3

d
Ax0 By0 C A2 B2
.已知点 P1, P2
到直线 l
的有向距离分别是 d1, d2 ,给出以下命题:
试卷第 6页,总 10页
①若 d1 d2 0 ,则直线 P1P2 与直线 l 平行; ②若 d1 d2 0 ,则直线 P1P2 与直线 l 平行; ③若 d1 d2 0 ,则直线 P1P2 与直线 l 垂直;④若 d1d2 0 ,则直线 P1P2 与直线 l 相交;
25.直线 l1:x+my+6=0 与 l2:(m-2)x+3y+2m=0,若 l1//l2 则 m =__________;
【来源】[中学联盟]山东省栖霞市第一中学 2017-2018 学年高一上学期期末测试数学试 题
【答案】 1 1
26.直线 y= x 关于直线 x=1 对称的直线方程是________;
则 m 的倾斜角可以是:①15°;② 30°;③ 45°;④ 60°;⑤ 75°. 其中正确答案的序号是______.(写出所有正确答案的序号) 【来源】2011 届陕西省师大附中、西工大附中高三第七次联考文数
【答案】①或⑤
30.定义点 P(x0 , y0 ) 到直线 l : Ax By C 0( A2 B 2 0) 的有向距离为
评卷人 得分
二、填空题
22.在四边形 ABCD 中,AB = DC = (1,1),且 BA + BC =
|BA| |BC|
|B3BDD| ,则四边形 ABCD 的面积
为
.
【来源】2015 高考数学(理)一轮配套特训:4-3 平面向量的数量积及应用(带解析)
【答案】 3
23.直线 ax+2y-4=0 与直线 x+y-2=0 互相垂直,那么 a=______________ ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宜宾市三中2017-2018学年高一上期第一次月考试题
数学
考试时间:120分钟满分:150分最新试卷十年寒窗苦,踏上高考路,心态放平和,信心要十足,面对考试卷,下笔如有神,短信送祝福,愿你能高中,马到功自成,金榜定题名。
一、选择题(本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有
一项是符合题目要求的)
1.设全集={1,2,3,4},集合={1,3},={4},则T S C U )(等于( )
A 、{2,4}
B 、{4}
C 、Φ
D 、{1,3,4}
2.下列四组函数中,两个函数相等的是 ( ).
A .01y x y 与
B .2
y x y x 与C .2
x
y x y x 与D .33
y x y x 与3.函数x x x f 41
32)(的定义域为()
A.4,23
B. 4,23
C .,4 D. ,
44.已知函数x x x f 3)1(2,则)(x f 的表达式为()
A. 1)(2x x x f
B.2
--)(2x x x f C. 1-)(2x x x f D.2
-)(2x x x f 5.设2:f x x 是集合M 到集合N 的映射, 若N={4,0,9}, 则M 不可能是()
A 、{0}
B 、{2,3}
C 、{0,1,2}
D 、{0,3}
6.已知f (x )=x +1,x <0,
0,x =0,x -1,x >0,
则f 的值是( )
A .23 B.1
3 C. -13D .-2
3
7.函数()f x 是定义域为R 的偶函数,当0x 时()1f x x ,则当0x 时,()f x 的表
达式为(
)A .()
1f x x B .()1f x x C .()1f x x D .()
1f x x 8、已知f(x)是定义在(-2,2)上的减函数,并且
f(m -1)-f(1-2m)>0,则实数m 的取值范围为( )
.A.m <
32 B.-1<m <32 C. 21<m <32 D. m >219.)(x f 为定义在R 奇函数,且在,0上是增函数,若,0)2(f 则0)
(x f x 的解集是( )
A.),2()0,2(
B.)
2,0( C.),2()2,( D.),2(10.已知函数m x m x m mx
x f )1(2)1(2
)(23的定义域是R ,则实数的取值范围是()
A .m >1
B .m <1
C .1m 或m=0
D .1
m 二、填空题(本大题共5小题,每小题5分,满分25分)
11.已知集合A={1,2,3},B={2,m,4},
B A ={2,3},则m=________ 12.函数32)
(2x x x f 的增区间是13.已知集合,0452x x x A ,01ax x B 若A B ,则实数a =
14.国家规定个人稿费的纳税办法是:不超过
800元的不纳税;超过800元而不超过4000元的按超过800元的14%纳税;超过
4000元的按全部稿酬的11%纳税.某人出版了一本书,共纳税420元,则这个人的稿费为
________.15.已知B A f :的映射,(1)若满足任意,,A b a 且b a ,必有)()(b f a f ,则称
B A f :的映射为Q-型映射;(2)若满足任意B d ,必存在A c ,使得d c f )(,则称
B A
f :的映射为Z-型映射,则下列映射既是Q-型映射又是Z-型映射的是。
①12:x y x
f ,R B R A ,;②32:2x x y x f ,),3[,B R A ;③12:x y x f ,]3,1[],2,1[B
A ;④
312:x x y x
f ,2|,3|y y B x x A ;⑤|4|:x y x f ,
R B R A ,。
三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)
16.设全集为U=R ,集合}31|{x x A
,}22|{x x B 求:)
(,,B A C B A B A U 17.(本题12分)
已知全集R U ,集合},3|{2R x x y y A ,集合B 是函数2
25y x x 的
定义域,集合a x a
x C 5|. (Ⅰ)求集合
A 、
B (Ⅱ)求集合
U A C B (结果用区间表示);(III )若C A B ,求实数a 的取值范围.
18.(本题12分)
已知二次函数
)0()(2a b a bx ax x f 为常数且、,)2()0(f f ,且方程)(x f =x 有相等的
实数根.
(1)求)(x f 的解析式;
(2)求函数)(x f 在3,21
的最大值和最小值,并求出取得最大与最小值时的x 的值。
19.(本题12分)
已知函数2()1
x
f x x (1)判断()f x 的奇偶性,并证明;
(2)证明函数()f x 在(1,)为减函数;
20.(本题13分) 已知函数,(1)画出函数
f x 图像;(2)若的值
求m m f ,2)((3)关于
x 的方程a x f )
(有两解,求a 的取值范围21.(本题14分)
已知()f x 是定义在上的奇函数,且f(1) = 1. 若a 、b ∈,a+b ≠0,有()()0f a f b a b 成立。
(1)判断函数
()f x 在上是增函数还是减函数;(2)解不等式1
()(21)2f x f x ;
(3)若()f x ≤221m am 对所有x ∈,a ∈恒成立,求实数
m 的取值范围。
1
2
3
4
-1-2-3
-4-4-3-2-14321O y
x。