Segmenting multiple concurrent speakers using microphone arrays
语音信号的频分复用关键环节分析

语音信号的频分复用关键环节分析
语音信号的频分复用 (Frequency Division Multiplexing, FDM) 是一种将多个语音信号同时传输的技术。
它通过将不同语音信号分配到不同的频率带宽来实现。
频分复用的关键环节包括以下几个方面:
1. 信号采样:首先需要对每个语音信号进行采样,将其转化为数字信号。
通常使用的采样率为8 kHz,即每秒钟进行8000次采样。
2. 数字信号编码:为了有效压缩数据,信号需要经过编码过程。
常用的编码方式有PCM (脉冲编码调制)、ADPCM (自适应差分脉冲编码调制)、MP3等。
3. 数字信号调制:在频分复用中,需要将编码后的数字信号转化为模拟信号,以便通过传输介质进行传输。
调制过程使用的调制方式包括正交振幅调制 (QAM)、频移键控 (FSK)等。
4. 频率带宽分配:在信号调制之后,需要将不同语音信号分配到不同的频率带宽上。
这样可以避免信号之间的干扰和重叠。
分配的方法可以通过频率分割器进行,每个频率带宽可以容纳一个语音信号。
5. 复用器和解复用器:在传输过程中,使用复用器将不同语音信号的模拟信号混合在一起,形成复合信号进行传输。
在接收端,使用解复用器将复合信号拆分为单个的语音信号。
请注意,以上内容仅涉及频分复用的基本环节,实际应用中还可能涉及反向信道、噪声抑制、误码纠正等其他技术。
耳机分频方案

耳机分频方案1. 引言耳机分频是指通过将音频信号按照频率进行分割,分配给不同的驱动单元来产生不同频段的声音。
耳机分频方案的设计对于提供更好的音频体验非常重要。
本文将介绍一些常见的耳机分频方案,包括被动分频和主动分频。
2. 被动分频方案被动分频是一种基本的耳机分频方案,它通过使用被动元件(如电容器、电阻器和电感器)来将音频信号按照一定的频率分割。
被动分频通常用于低成本的耳机中,其原理简单、成本较低,但对音质的控制有一定的限制。
2.1 低通滤波器低通滤波器是被动分频方案中常用的一种。
它通过限制音频信号中的高频部分,只传递低于一定频率的音频信号,从而使得驱动单元只产生低频声音。
低通滤波器通常由一个电感和一个电容组成,可以根据需要调整截止频率。
2.2 高通滤波器高通滤波器是被动分频方案中的另一种常见方案。
与低通滤波器相反,高通滤波器通过限制音频信号中的低频部分,只传递高于一定频率的音频信号,从而使得驱动单元只产生高频声音。
高通滤波器也可以由电容和电感组成。
3. 主动分频方案主动分频是一种更高级的耳机分频方案,需要使用电子元件(如运放、电容和电阻)和功率放大器来实现。
相比被动分频,主动分频更加灵活,可以实现更精确的频率控制和更好的音质效果。
3.1 被动与主动混合分频有些高端耳机会采用被动与主动混合的分频方案,即在耳机线上放置一些电子元件实现主动分频。
这种方式可以在一定程度上保持被动分频的简单性,并通过主动分频来提升音质效果。
3.2 数字信号处理分频数字信号处理(DSP)分频是一种较新的主动分频方案。
它通过使用数字信号处理器来对音频信号进行实时处理,将信号分割成不同频段并进行精确的控制。
DSP分频可以根据用户的个性化需求进行调整,提供更加定制化的音质体验。
4. 分频方案的选择在选择耳机分频方案时,需要考虑多种因素,包括成本、性能和音质。
对于一般用户而言,被动分频可能是一个更合适的选择,因为它相对简单且成本较低。
demucs语音分离算法 -回复

demucs语音分离算法-回复demucs是一种基于深度学习的音频分离算法,它的目标是将混合在一起的音频信号分离成各个独立的音频源。
该算法采用了深度卷积神经网络(DCNN)和差分磨练(Deep Clustering)的方法,通过数据驱动的方式学习音频信号的表示和分离。
混合在一起的音频信号分离是一项具有挑战性的任务。
在现实世界中,我们经常遇到这样的情况:在录音或音乐会现场,不同乐器或声音同时发出,形成了一个混合的声音场景。
然而,如果我们想要获取每个乐器或声音源的独立音频信号,这就需要进行音频分离。
现有的音频分离方法中,demucs是一种非常有效和先进的技术。
那么,demucs是如何实现音频分离的呢?首先,我们需要在训练阶段准备好音频数据集。
这些数据集是由混合音频和对应的独立音频源组成的。
为了更好地训练分离模型,我们需要大量的数据来覆盖各种音频场景和声音类型。
一旦我们准备好了训练数据,我们就可以开始建立和训练demucs模型了。
该模型由多个卷积神经网络(CNN)层和长短时记忆(Long Short-Term Memory,LSTM)层组成。
CNN层用于提取音频信号的时间和频率特征,而LSTM层则用于建立音频信号的长期依赖关系。
在训练过程中,我们使用差分磨练技术来优化模型的参数。
差分磨练是一种基于梯度下降的方法,用于最小化混合音频和独立音频源之间的差异。
通过不断调整模型参数,我们可以使得分离后的音频源更加接近真实的独立音频源。
一旦我们完成了demucs模型的训练,我们就可以使用它来对新的混合音频进行分离了。
具体来说,我们将混合音频输入到模型中,模型会通过前向传播的方式将其分离成各个独立的音频源。
这些分离后的音频源可以是不同乐器、说话人或其他声音。
demucs在音频分离任务上有很好的表现。
由于其深度学习的框架,demucs能够学习到音频信号的高级表示,并利用这些表示进行准确的分离。
与传统的音频分离方法相比,demucs能够更好地处理不同的声音类型和复杂的声音场景。
音频系统专业名词解释和英汉对照

24位:24位
02 音频处理技术
均衡器
总结词
均衡器是一种音频处理设备,用于调整音频信号的频率特性,以改善音质或满足特定听觉需求。
详细描述
均衡器通过调整不同频段的增益来改变音频信号的频谱分布,从而实现对音色的调整和优化。在录音 、混音和母带处理等过程中,均衡器被广泛应用于调整音频信号的平衡和和谐度,以达到更好的听觉 效果。
总结词
混响是一种模拟声音在空间中传播的自然现 象的效果,通常用于创造空间感。
详细描述
混响是模拟声音在封闭空间中传播的自然现 象的效果,例如在房间、大厅或教堂中。通 过模拟不同环境下的声音反射和散射,混响 效果可以创造出空间感和环境感,使声音更 加自然和逼真。混响效果广泛应用于录音、
混音和扩声等领域。
指游戏中的音频处理软件,用于实时处理游戏中的声音效果和 语音聊天等。
05 音频系统专业词汇英汉对 照
Audio (音频)
总结词
音频通常是指模拟或数字信号的声波,用于记录、传输和重放声音。
详细描述
音频是声音的电信号表示,可以模拟或数字形式存在。模拟音频信号是连续变化的电压或电流,而数字音频则是 离散的样本值。音频广泛应用于录音、广播、电视、电影、音乐制作等领域。
05
04
音效设计
指根据电影情节和场景,设计出相应 的声音效果,以增强电影的表现力。
游戏音效
游戏音效 游戏音效设计
环绕声 声音引擎
指在游戏制作过程中,使用音频设备和技术,为游戏制作逼真 的声音效果,增强游戏的沉浸感和体验感。
指根据游戏情节和场景,设计出相应的声音效果,以增强游戏 的沉浸感。
指使用多个扬声器,模拟出三维空间的声音效果,使玩家能够 感受到声音的来源方向和距离。
如何使用深度学习技术进行音频分类

如何使用深度学习技术进行音频分类在过去的几年里,深度学习技术在各个领域中取得了显著的进展,其中包括音频分类领域。
深度学习技术在音频分类中的应用,可以帮助我们识别和分类不同类型的音频,例如音乐、语音和环境声音。
无论是在音乐产业中自动分类音乐流派,还是在语音识别技术中准确识别不同人的语音,深度学习技术都扮演着重要的角色。
首先,为了使用深度学习技术进行音频分类,我们需要一个合适的数据集。
这个数据集应包含各种类型和来源的音频样本。
通过收集足够多的数据,我们可以建立一个有效的分类模型。
接下来,我们需要对音频数据进行预处理。
这包括以下步骤:1. 按照音频的采样率对数据进行重采样。
不同的音频文件可能具有不同的采样率,为了保持一致性,我们可以将所有的音频文件重采样为相同的采样率。
2. 提取音频的特征。
深度学习模型一般无法直接处理原始音频信号,而是需要将其转化为一组有意义的特征。
常用的特征提取方法包括梅尔频率倒谱系数(MFCC)和短时傅里叶变换(STFT)。
这些特征可以通过使用相关库和工具进行提取。
3. 对特征进行归一化。
归一化可以帮助模型更好地处理特征值的差异,以及减少由于特征尺度差异引起的模型训练问题。
常见的归一化方法包括将特征值缩放到0和1之间或通过Z-score进行标准化。
在预处理完成后,我们可以开始构建深度学习模型进行音频分类。
常见的深度学习模型包括卷积神经网络(CNN)和循环神经网络(RNN)。
1. 卷积神经网络(CNN)是一种用于处理具有网格结构数据的深度学习模型。
在音频分类中,我们可以将音频特征视为图像,并使用CNN模型来提取特征并进行分类。
2. 循环神经网络(RNN)是一种适用于序列数据的深度学习模型。
在音频分类中,我们可以将音频特征视为时间序列,使用RNN模型来学习音频序列中的时间依赖关系。
此外,还可以考虑使用CNN与RNN相结合的混合模型。
这种模型可以同时捕捉音频的时域和频域特征,提高分类准确度。
音频分离的技巧

音频分离的技巧
音频分离是指从混合音频中提取出不同音频源的过程。
以下是一些常用的音频分离技巧:
1. 盲源分离(Blind Source Separation,BSS):通过对混合音频进行矩阵运算和信号处理技术,提取出音频源。
常用的BSS技术包括独立成分分析(Independent Component Analysis,ICA)和非负矩阵分解(Non-Negative Matrix Factorization,NMF)。
2. 时频分析:通过对音频信号进行时频分析,如短时傅里叶变换(Short-Time Fourier Transform,STFT),可以提取出音频信号在不同时间和频率上的特征,从而实现音频分离。
3. 基于机器学习的方法:使用机器学习算法,如深度神经网络(Deep Neural Networks,DNN)和卷积神经网络(Convolutional Neural Networks,CNN),通过训练模型来学习音频分离的过程。
4. 空间滤波技术:基于阵列麦克风或其他多个音源的位置信息,通过将混合音频信号与滤波器的组合进行处理,实现音频分离。
5. 监督学习方法:通过使用已知的单个源音频和混合音频作为训练样本,使用监督学习算法来提取出和训练音频样本相似的音频源。
需要注意的是,音频分离技术的选择取决于具体的应用场景和要求,不同的技巧可能适用于不同的情况。
低频活动漂浮潜水船声探测系统(LFATS)说明书

LOW-FREQUENCY ACTIVE TOWED SONAR (LFATS)LFATS is a full-feature, long-range,low-frequency variable depth sonarDeveloped for active sonar operation against modern dieselelectric submarines, LFATS has demonstrated consistent detection performance in shallow and deep water. LFATS also provides a passive mode and includes a full set of passive tools and features.COMPACT SIZELFATS is a small, lightweight, air-transportable, ruggedized system designed specifically for easy installation on small vessels. CONFIGURABLELFATS can operate in a stand-alone configuration or be easily integrated into the ship’s combat system.TACTICAL BISTATIC AND MULTISTATIC CAPABILITYA robust infrastructure permits interoperability with the HELRAS helicopter dipping sonar and all key sonobuoys.HIGHLY MANEUVERABLEOwn-ship noise reduction processing algorithms, coupled with compact twin line receivers, enable short-scope towing for efficient maneuvering, fast deployment and unencumbered operation in shallow water.COMPACT WINCH AND HANDLING SYSTEMAn ultrastable structure assures safe, reliable operation in heavy seas and permits manual or console-controlled deployment, retrieval and depth-keeping. FULL 360° COVERAGEA dual parallel array configuration and advanced signal processing achieve instantaneous, unambiguous left/right target discrimination.SPACE-SAVING TRANSMITTERTOW-BODY CONFIGURATIONInnovative technology achievesomnidirectional, large aperture acousticperformance in a compact, sleek tow-body assembly.REVERBERATION SUPRESSIONThe unique transmitter design enablesforward, aft, port and starboarddirectional transmission. This capabilitydiverts energy concentration away fromshorelines and landmasses, minimizingreverb and optimizing target detection.SONAR PERFORMANCE PREDICTIONA key ingredient to mission planning,LFATS computes and displays systemdetection capability based on modeled ormeasured environmental data.Key Features>Wide-area search>Target detection, localization andclassification>T racking and attack>Embedded trainingSonar Processing>Active processing: State-of-the-art signal processing offers acomprehensive range of single- andmulti-pulse, FM and CW processingfor detection and tracking. Targetdetection, localization andclassification>P assive processing: LFATS featuresfull 100-to-2,000 Hz continuouswideband coverage. Broadband,DEMON and narrowband analyzers,torpedo alert and extendedtracking functions constitute asuite of passive tools to track andanalyze targets.>Playback mode: Playback isseamlessly integrated intopassive and active operation,enabling postanalysis of pre-recorded mission data and is a keycomponent to operator training.>Built-in test: Power-up, continuousbackground and operator-initiatedtest modes combine to boostsystem availability and accelerateoperational readiness.UNIQUE EXTENSION/RETRACTIONMECHANISM TRANSFORMS COMPACTTOW-BODY CONFIGURATION TO ALARGE-APERTURE MULTIDIRECTIONALTRANSMITTERDISPLAYS AND OPERATOR INTERFACES>State-of-the-art workstation-based operator machineinterface: Trackball, point-and-click control, pull-down menu function and parameter selection allows easy access to key information. >Displays: A strategic balance of multifunction displays,built on a modern OpenGL framework, offer flexible search, classification and geographic formats. Ground-stabilized, high-resolution color monitors capture details in the real-time processed sonar data. > B uilt-in operator aids: To simplify operation, LFATS provides recommended mode/parameter settings, automated range-of-day estimation and data history recall. >COTS hardware: LFATS incorporates a modular, expandable open architecture to accommodate future technology.L3Harrissellsht_LFATS© 2022 L3Harris Technologies, Inc. | 09/2022NON-EXPORT CONTROLLED - These item(s)/data have been reviewed in accordance with the InternationalTraffic in Arms Regulations (ITAR), 22 CFR part 120.33, and the Export Administration Regulations (EAR), 15 CFR 734(3)(b)(3), and may be released without export restrictions.L3Harris Technologies is an agile global aerospace and defense technology innovator, delivering end-to-endsolutions that meet customers’ mission-critical needs. The company provides advanced defense and commercial technologies across air, land, sea, space and cyber domains.t 818 367 0111 | f 818 364 2491 *******************WINCH AND HANDLINGSYSTEMSHIP ELECTRONICSTOWED SUBSYSTEMSONAR OPERATORCONSOLETRANSMIT POWERAMPLIFIER 1025 W. NASA Boulevard Melbourne, FL 32919SPECIFICATIONSOperating Modes Active, passive, test, playback, multi-staticSource Level 219 dB Omnidirectional, 222 dB Sector Steered Projector Elements 16 in 4 stavesTransmission Omnidirectional or by sector Operating Depth 15-to-300 m Survival Speed 30 knotsSize Winch & Handling Subsystem:180 in. x 138 in. x 84 in.(4.5 m x 3.5 m x 2.2 m)Sonar Operator Console:60 in. x 26 in. x 68 in.(1.52 m x 0.66 m x 1.73 m)Transmit Power Amplifier:42 in. x 28 in. x 68 in.(1.07 m x 0.71 m x 1.73 m)Weight Winch & Handling: 3,954 kg (8,717 lb.)Towed Subsystem: 678 kg (1,495 lb.)Ship Electronics: 928 kg (2,045 lb.)Platforms Frigates, corvettes, small patrol boats Receive ArrayConfiguration: Twin-lineNumber of channels: 48 per lineLength: 26.5 m (86.9 ft.)Array directivity: >18 dB @ 1,380 HzLFATS PROCESSINGActiveActive Band 1,200-to-1,00 HzProcessing CW, FM, wavetrain, multi-pulse matched filtering Pulse Lengths Range-dependent, .039 to 10 sec. max.FM Bandwidth 50, 100 and 300 HzTracking 20 auto and operator-initiated Displays PPI, bearing range, Doppler range, FM A-scan, geographic overlayRange Scale5, 10, 20, 40, and 80 kyd PassivePassive Band Continuous 100-to-2,000 HzProcessing Broadband, narrowband, ALI, DEMON and tracking Displays BTR, BFI, NALI, DEMON and LOFAR Tracking 20 auto and operator-initiatedCommonOwn-ship noise reduction, doppler nullification, directional audio。
英语栅格重采样 -回复

英语栅格重采样-回复您提到了“英语栅格重采样”的主题,我将在下面的文章中逐步解答这个问题。
什么是英语栅格重采样?英语栅格重采样是一种用于识别英语语音信号的重采样方法。
重采样是一种处理数字信号的技术,它通过改变采样率来改变信号的频率内容。
在英语语音信号识别中,栅格重采样被用于提高语音信号的质量和准确性。
重采样可以通过多种方式实现,其中栅格重采样是一种有效的方法。
栅格重采样技术通过将输入信号分成均匀的时间段,并在每个时间段内进行采样。
这样做的目的是为了保持信号的平滑性和连续性,同时减少信息丢失。
栅格重采样在语音信号识别中有着广泛的应用。
这是因为英语语音信号的频率范围较宽,包括很多高频信号。
传统的采样方法可能无法准确捕捉到这些高频信号,导致信号的失真和信息的丢失。
而栅格重采样可以通过增加采样率来更好地捕捉到这些高频信号,提高语音信号的准确性。
实现英语栅格重采样的步骤如下:第一步是选择适当的采样率。
采样率表示在给定时间内对信号进行采样的次数。
较高的采样率可以更好地捕捉到信号中的高频信息,但同时也会增加计算和存储的开销。
因此,需要权衡采样率的大小。
第二步是将语音信号分段。
这些段可以是固定长度的,并且彼此之间没有重叠,或者可以是可变长度的,彼此之间有重叠。
分段的目的是将语音信号分为较短的块,以便进行后续处理。
第三步是对每个分段进行栅格重采样。
对于每个分段,可以使用插值算法来增加采样率。
插值算法通过在原始采样点之间插入额外的采样点来增加采样率。
常用的插值算法包括线性插值、多项式插值和样条插值等。
第四步是将重采样后的分段合并。
重采样后的分段可以根据需要进行合并,以恢复原始的连续语音信号。
第五步是进一步处理重采样后的信号。
栅格重采样只是整个语音信号识别过程的一部分,后续还可以对信号进行去噪、降噪、特征提取等处理,以进一步提高识别准确性。
总结起来,英语栅格重采样是一种用于识别英语语音信号的重采样技术。
它通过改变采样率来提高语音信号的质量和准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Segmenting Multiple Concurrent Speakers Using Microphone Arrays Guillaume Lathoud,Iain A.McCowan,Darren C.MooreDalle Molle Institute for Perceptual Intelligence(IDIAP)P.O.Box592,CH-1920Martigny,Switzerlandlathoud,mccowan,moore@idiap.chAbstractSpeaker turn detection is an important task for many speech pro-cessing applications.However,accurate segmentation can be hard to achieve if there are multiple concurrent speakers(over-lap),as is typically the case in multi-party conversations.In such cases,the location of the speaker,as measured using a microphone array,may provide greater discrimination than tra-ditional spectral features.This was verified in previous work which obtained a global segmentation in terms of single speaker classes,as well as possible overlap combinations.However, such a global strategy suffers from an explosion of the number of overlap classes,as each possible combination of concurrent speakers must be modeled explicitly.In this paper,we propose two alternative schemes that produce an individual segmenta-tion decision for each speaker,implicitly handling all overlap-ping speaker combinations.The proposed approaches also al-low straightforward online implementations.Experiments are presented comparing the segmentation with that obtained using the previous system.1.IntroductionSegmenting the speech signal in terms of speaker turns is a nec-essary pre-processing task for many applications:speech recog-nition needs segments of short length,and browsing of record-ings is made easier with a timeline showing who is speaking and when.Other applications include broadcast news indexing, meeting summarisation and video surveillance.While traditional audio features(LPCC,MFCC,energy, etc.)have been used successfully on broadcast recordings and telephone speech,multi-party conversations such as meetings present a more difficult case due to the high amount of over-lapping speech in spontaneous conversations[1].It is difficult to resolve overlaps when using single microphone techniques, since speech from more than one simultaneous speaker is often recorded by the same microphone(crosstalk phenomenon)[2].In applications involving multi-party conversations,it may be possible to acquire the speech using microphone arrays.By spatially sampling an acousticfield,microphone arrays provide the ability to discriminate between sounds based on their source location.This directional discrimination can be exploited to en-hance a signal from a given location,or simply to locate princi-pal sound sources in thefield.In[3],we introduced an approach that processed location-based features from a microphone array within a GMM/HMM framework to produce a global segmentation of speaker turns. The approach gives accurate segmentation on test data includ-ing segments with two simultaneous speakers.However,it suf-fers from the limitation that each possible combination of active speakers(including overlap)has to be modeled with a separate HMM,leading to classes,where is the number of speakers.In this work,instead of performing a global segmentation in terms of all possible single and multiple speaker classes, we propose two techniques that produce parallel individual speaker segmentations.In this way,the need to define all possi-ble combinations of active speakers is removed,and any number of concurrent speakers is handled implicitly.In experiments,results are compared to those obtained us-ing the previous approach,demonstrating that both new ap-proaches successfully handle both single speaker and dual-speaker overlap cases.Section2introduces the fundamentals of localisation using microphone arrays.Section3describes the two proposed ap-proaches that address the limitation of the previous approach. Section4presents the experiments and a discussion of the re-sults obtained.2.Localisation FundamentalsThis section recalls the non-linear relationship between physical space and time-delay space,and then summarises the General-ized Cross-Correlation method for time-delay estimation in the case of the PHAse Transform(GCC-PHAT)[4].We selected the PHAT because it is efficient in high-SNR,reverberant envi-ronments such as meeting rooms.2.1.Link Between Location and Theoretical Time-Delays We define the vector of theoretical time delays asso-ciated with the speaker location as:(1)(2)where is the number of microphone pairs and is the theo-retical time delay(in samples)between the microphones in pair ,given byPHAT is defined as:(8)where is the maximum time-delay(in samples)be-tween the microphones in pair and the frame index.is directly proportional to the distance between thetwo microphones:(10)For a given speaker and a given frame,speech/silenceclassification then amounts to:ifif(11)3.1.2.Steered Response Power ApproachIn contrast to the single stream of features used in the HMM andSSR approaches,we use here a separate stream of features foreach speaker.Therefore,multiple speakers can be active withinthe same frame.For a given speaker and a given frame,weestimate the Steered Response Power(SRP)using a measureknown as SRP-PHAT[6].We sum the time domain version ofthe GCC-PHAT function defined in(4)at the theoretical time-delays associated with location:3.2.Step Two:Dilation/Erosion ProcessSpeech from one person mostly consists of short spurts (phonemes,words),interspersed with short silences.In obtain-ing a smooth speech/silence segmentation for each speaker,it is desirable to achieve two goals:Goal1:to group spurts in order to form utterances.Fora given speaker,two spurts that are separated by a smallsilence(e.g.less than1second)must be linked into thesame segment.Goal2:to remove any isolated spurt that lasts less thana minimum duration(e.g.200ms).We assume that sucha spurt contains noise rather than speech.Initially,we attempted to use single speaker HMMs to achieve the above goals.However,since a speech segment contains short alternating periods of speech and silence,it was found that a complex HMM topology was required,similar to that proposed for the overlaps in[3].In addition,obtained re-sults were significantly less than those of the previous work.In the current work,we instead achieve the above goals using an alternative approach based on simple binary dilation and ero-sion operators.We apply a sequence of such operators on the binary series ,thus achieving an effect similar to low-passfiltering in signal processing.The L-frame dilation operator for a binary sequence(with values in)is defined as:whereThe L-frame erosion operator for a binary sequenceis defined as:whereIn practice,the beginning and the end of are mirrored to solve boundary problems.For a given speaker,the two goals mentioned above are achieved using a succession of dilations and erosions:where is the maximum“small silence”duration in frames (relates to goal1.)and is the minimum speech duration in frames(relates to goal2.).This operation can be implemented online with a buffer of frames,incurring a delay of frames.4.ExperimentsWith the two proposed methods,we segmented two data sets in-cluding segments with a single speaker and segments with two overlapping speakers.In order to compare with the single time-line of segments produced by the HMM approach[3],we com-bined the binary series into one sequence of integer tags(one tag per frame):(14)For each frame,describes the combination of active speakers.To assess the performance of each proposed method, we compared the sequence with the ground truth.Figure1:Experimental setup4.1.Evaluation CriteriaTo assess the system performance,we used frame accuracy (FA),precision(PRC),recall(RCL)and F-measure():FAnumber of correctly labelled framesnumber of segment boundaries detected RCLnumber of correctly found segment boundariesPRC RCLvaries between0and1.In most cases,a short interval of silence exists between two consecutive speech segments,and so in comparing segment boundaries to the ground truth,a tol-erance interval of second was chosen.4.2.Test SetsThe two test sets defined in[3]were used.Both sets were cre-ated by mixing fourfive-minute multichannel recordings of read speach from four speakers seated as shown in Figure1.We used a microphone array with4microphones on a14cm-sided square.non-overlap test set:9files of10single-speaker seg-ments(5to20seconds per segment).overlap test set:6files of10single-speaker segments(5to17seconds per segment)interleaved with9two-speaker segments(1.5to5seconds per segment).4.3.ParametersIn the experiments,we used a sampling frequencyand computed features from32ms,50%overlapped,Hamming-windowed frames.For the dilation/erosion process described in Section3.2,we used frames(1second)andframes(200ms).We used all possible microphone pairs from the4-element array().For the SSR approach we used a diagonal matrix of ones for(tuning it did not bring anyapproach FA PRC RCL HMM99.5% 1.0 1.0 1.0SSR99.1%0.990.990.99SRP96.3%0.850.960.90Table1:Results on the non-overlap test setsignificant change in the results).For the SRP approach weused.4.4.Results and DiscussionTables1and2show results obtained on each test set.In bothsets of results,the performance of the SSR approach is com-parable to that of the HMM approach,while the SRP approachperformance is less but still provides a good segmentation.Inparticular,both approaches performed well on data containingoverlapping speech.We noted that FA calculated on overlapsegments was less for the two new approaches,compared tothe original HMM system.This may be attributed to the factthat the new techniques do not have any explicit overlap classes,and as such do not impose any minimum duration constraint onoverlap segments.The similar performance between the HMM and SSR ap-proaches was expectable,since exactly the same features areused in each case(see Section3.1.1).The degradation in per-formance observed for the SRP approach(particularly on over-lap frames)is atfirst surprising,since the SRP-PHAT featuresshould be able to handle multiple concurrent speakers.Our un-derstanding of this degradation is that it is difficult to give mean-ing to the absolute numerical values obtained by SRP compu-tation.Therefore the single,constant threshold strategy definedin(13)is not an optimal approach:the true speech and silencedistributions may significantly overlap and/or vary over time.Despite this,both approaches proved effective on the readspeech,including the segments with two overlapping speak-ers.While in these experiments we used the same data as inthe previous work[3]for comparison purposes,this data doesnot constitute a comprehensive test-set,as it only contains readspeech and is limited to overlap segments with two concur-rent speakers.The proposed techniques have also been suc-cessfully applied to real meeting recordings1containing spon-taneous speech and segments of up to four concurrent speakers,however as a ground-truth segmentation does not yet exist forthese recordings,we are unable to present results at this stage.Implicit in all of the above approaches is the assumption ofprior knowledge of each speaker’s location,and therefore thenumber of speakers.Ongoing work will investigate ways ofrelaxing this assumption by clustering the output of a source lo-calisation system.Another core assumption made,is that eachspeaker is associated with a single region through a record-ing.This could potentially be addressed by combining witha speaker clustering strategy based on traditional acoustic fea-tures,such as[7].5.ConclusionThis paper has presented two approaches for segmenting speechfrom multiple concurrent speakers using microphone arrays.Previous work in[3]provided a global segmentation in termsof single speaker classes and possible overlap combinations.。