RBF神经网络

合集下载

rbf神经网络原理

rbf神经网络原理

rbf神经网络原理RBF神经网络原理。

RBF神经网络是一种基于径向基函数的神经网络模型,它具有良好的非线性逼近能力和较快的学习速度,在模式识别、函数逼近、时间序列预测等领域有着广泛的应用。

本文将介绍RBF神经网络的原理及其在实际应用中的一些特点。

首先,RBF神经网络由三层结构组成,输入层、隐含层和输出层。

输入层接收外部输入信号,并将其传递给隐含层;隐含层使用径向基函数对输入信号进行非线性映射;输出层对隐含层的输出进行加权求和,并经过激活函数得到最终的输出结果。

整个网络的学习过程包括初始化、前向传播、误差反向传播和参数更新等步骤。

其次,RBF神经网络的核心在于径向基函数的选择。

常用的径向基函数包括高斯函数、多孔径函数等,它们具有局部化、非线性化的特点,能够更好地拟合复杂的非线性关系。

在实际应用中,选择适当的径向基函数对网络的性能有着重要影响,需要根据具体问题进行调整和优化。

另外,RBF神经网络的学习算法通常采用最小均方误差或梯度下降等方法,通过不断调整网络参数来最小化目标函数。

与传统的BP神经网络相比,RBF神经网络在学习速度和全局最优解的搜索能力上有一定优势,但也存在着局部最优解、过拟合等问题,需要结合具体问题进行调整和改进。

此外,RBF神经网络在模式识别、函数逼近、时间序列预测等领域有着广泛的应用。

例如,在模式识别中,RBF神经网络能够处理非线性可分问题,并且对噪声具有一定的鲁棒性;在函数逼近中,RBF神经网络能够较好地拟合复杂的非线性函数关系;在时间序列预测中,RBF神经网络能够捕捉数据的非线性动态特性,有着较好的预测效果。

综上所述,RBF神经网络是一种基于径向基函数的神经网络模型,具有良好的非线性逼近能力和较快的学习速度,在模式识别、函数逼近、时间序列预测等领域有着广泛的应用前景。

然而,在实际应用中,还需要进一步研究和改进其学习算法、径向基函数的选择以及网络结构的优化,以提高网络的性能和稳定性。

rbf神经网络原理

rbf神经网络原理

rbf神经网络原理
RBF神经网络是一种基于径向基函数(Radial Basis Function,简称RBF)的人工神经网络模型。

它在解决分类和回归等问题上具有优良的性能和灵活性。

RBF神经网络的基本思想是利用一组基函数来表示输入空间中的复杂映射关系。

这些基函数以输入样本为中心,通过测量样本与中心之间的距离来计算输出值。

常用的基函数包括高斯函数、多项式函数等。

与传统的前馈神经网络不同,RBF神经网络采用两层结构,包括一个隐含层和一个输出层。

隐含层的神经元是基函数的中心,负责对输入样本进行映射。

输出层的神经元用于组合隐含层的输出,并产生网络的最终输出结果。

RBF神经网络的训练过程分为两个阶段:中心选择和参数调整。

在中心选择阶段,通过聚类算法来确定基函数的中心,例如K-means聚类算法。

在参数调整阶段,使用误差反向传播算法来调整基函数的权值和输出层的权值。

RBF神经网络具有较强的非线性拟合能力和逼近性能。

它可以处理高维数据和大规模数据集,并且对于输入空间中的非线性映射具有较好的适应性。

此外,RBF神经网络还具有较快的训练速度和较好的泛化能力。

总结来说,RBF神经网络通过基函数的组合来实现对输入样
本的映射,从而实现对复杂映射关系的建模。

它是一种强大的人工神经网络模型,在多个领域和问题中表现出色。

RBF神经网络

RBF神经网络

径向基函数(RBF)神经网络RBF网络能够逼近任意的非线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能力,并有很快的学习收敛速度,已成功应用于非线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。

简单说明一下为什么RBF网络学习收敛得比较快。

当网络的一个或多个可调参数(权值或阈值)对任何一个输出都有影响时,这样的网络称为全局逼近网络。

由于对于每次输入,网络上的每一个权值都要调整,从而导致全局逼近网络的学习速度很慢。

BP网络就是一个典型的例子。

如果对于输入空间的某个局部区域只有少数几个连接权值影响输出,则该网络称为局部逼近网络。

常见的局部逼近网络有RBF网络、小脑模型(CMAC)网络、B样条网络等。

径向基函数解决插值问题完全内插法要求插值函数经过每个样本点,即。

样本点总共有P个。

RBF的方法是要选择P个基函数,每个基函数对应一个训练数据,各基函数形式为,由于距离是径向同性的,因此称为径向基函数。

||X-X p||表示差向量的模,或者叫2范数。

基于为径向基函数的插值函数为:输入X是个m维的向量,样本容量为P,P>m。

可以看到输入数据点X p是径向基函数φp的中心。

隐藏层的作用是把向量从低维m映射到高维P,低维线性不可分的情况到高维就线性可分了。

将插值条件代入:写成向量的形式为,显然Φ是个规模这P对称矩阵,且与X的维度无关,当Φ可逆时,有。

对于一大类函数,当输入的X各不相同时,Φ就是可逆的。

下面的几个函数就属于这“一大类”函数:1)Gauss(高斯)函数2)Reflected Sigmoidal(反常S型)函数3)Inverse multiquadrics(拟多二次)函数σ称为径向基函数的扩展常数,它反应了函数图像的宽度,σ越小,宽度越窄,函数越具有选择性。

完全内插存在一些问题:1)插值曲面必须经过所有样本点,当样本中包含噪声时,神经网络将拟合出一个错误的曲面,从而使泛化能力下降。

神经网络控制(RBF)

神经网络控制(RBF)

神经网络控制(RBF)神经网络控制(RBF)是一种基于径向基函数(RBF)的神经网络,用于控制系统,其主要功能是通过对输入信号进行处理来实现对系统输出的控制。

通过神经网络控制,控制器可以学习系统的动态行为和非线性模型,从而使得控制器能够自适应地进行调整和优化,实现对系统的精确控制。

RBF 网络通常由三层组成:输入层、隐藏层和输出层。

输入层接受系统的输入信号,并将其传递到隐藏层,隐藏层对输入数据进行处理并输出中间层的值,其中每个中间层神经元都使用一个基函数来转换输入数据。

最后,输出层根据隐藏层输出以及学习过程中的权重调整,计算并输出最终的控制信号。

RBF 网络的核心是数据集,该数据集由训练数据和测试数据组成。

在训练过程中,通过输入训练数据来调整网络参数和权重。

训练过程分为两个阶段,第一阶段是特征选择,该阶段通过数据挖掘技术来确定最优的基函数数量和位置,并为每个基函数分配一个合适的权重。

第二阶段是更新参数,该阶段通过反向传播算法来更新网络参数和权重,以优化网络的性能和控制精度。

RBF 网络控制的优点在于其对非线性控制问题具有优秀的适应性和泛化性能。

另外,RBF 网络还具有强大的学习和自适应调整能力,能够学习并预测系统的动态行为,同时还可以自动调整参数以提高控制性能。

此外,RBF 网络控制器的结构简单、易于实现,并且具有快速的响应速度,可以满足实时控制应用的要求。

然而,RBF 网络控制也存在一些局限性。

首先,RBF 网络需要大量的训练数据来确定最佳的基函数数量和位置。

此外,由于网络参数和权重的计算量较大,实时性较低,可能存在延迟等问题。

同时,选择合适的基函数以及与其相应的权重也是一项挑战,这需要在控制问题中进行深入的技术和经验探索。

总体而言,RBF 网络控制是一种非常有效的控制方法,可以在广泛的控制问题中使用。

其结构简单,性能稳定,具有很强的适应性和泛化性能,可以实现实时控制,为复杂工业控制问题的解决提供了一个重要的解决方案。

RBF神经网络概述

RBF神经网络概述

RBF神经网络概述RBF(径向基函数)神经网络是一种基于径向基函数的神经网络模型。

它由两部分组成:输入层和输出层。

输入层接收外部输入信号,然后通过径向基函数层将输入映射到隐含层。

隐含层采用径向基函数来计算输入向量与各个隐含单元的距离,并输出给输出层。

输出层根据隐含层的输出计算最终的输出结果。

1.非线性映射能力:径向基函数作为非线性映射函数,可以将输入空间映射到高维特征空间,从而可以处理非线性问题。

2.局部处理和全局处理:隐含层的每个隐含单元都对输入向量进行局部处理,隐含单元之间相互独立运算。

然后输出层将各个隐含单元的输出结果进行全局处理,得到最终的输出结果。

3.高维特征空间:由于径向基函数的作用,RBF神经网络可以将输入空间映射到高维特征空间,从而提高网络的抽象能力和判别能力。

4.可解释性:RBF神经网络中的隐含单元具有一定的物理意义,例如高斯函数的中心表示样本的分布情况,标准差表示隐含单元的灵敏度。

这样的特点使得RBF神经网络具有较好的可解释性。

1. 中心确定:通过聚类算法(如K-means算法)确定隐含层的中心,中心可以看作是样本的代表点。

2.方差确定:针对每个隐含单元,计算样本与该隐含单元中心的距离,并计算方差。

方差越大,隐含单元对距离远的样本的响应越强,方差越小,隐含单元对距离近的样本的响应越强。

3.权值确定:根据中心和方差计算得到每个隐含单元的权值。

通常采用最小二乘法或者广义逆矩阵法。

4.输出计算:根据隐含层的输出和权值,计算输出层的输出。

5.网络训练:使用样本数据进行网络训练,通过调整权值来减小网络的误差。

常用的方法有梯度下降法、遗传算法等。

RBF神经网络在模式识别、函数逼近、数据挖掘等领域有着广泛的应用。

它具有较好的非线性映射能力和逼近能力,能够处理高维特征空间的模式识别问题。

同时,RBF神经网络具有较好的可解释性,能够提供有关样本分布和网络响应的有效信息。

然而,RBF神经网络也存在一些问题。

RBF神经网络

RBF神经网络

的权向量为:W = [w , w
1
b j为节点的基宽度参数 , 且为大于零的数 。 网络 为节点的基宽度参数, 且为大于零的数。
2
⋯wj ⋯wm ]
k时刻网络的输出为: 时刻网络的输出为:
y m ( k )=wh = w1h1+w 2 h2+ ⋯⋯ +w m hm
设理想输出为y(k), 设理想输出为y(k),则性能指标函数为:
∂y (k ) ∂ym (k ) ≈ = ∂u (k ) ∂u (k )
m
∑w h
j =1
c1 j − x1 b2 j
j j
其中取 x1 = u(k) 。
6 RBF网络逼近仿真实例 RBF网络逼近仿真实例
使用RBF网络逼近下列对象:
y (k ) = u (k ) +
3
y ( k − 1) 1 + y ( k − 1)
Ii
wij
I
j
I1
. . .
R1
. . .
. .u .
u ..
R
j
. . .
1
1
.
V1
C1
. . .
j
j
.
Vj
.
u ..
Cj
i
i
.V
i
Ri
.
Ci
Hopfield网络模型 Hopfield网络模型
RBF神经网络 RBF神经网络
信息工程学院 Alen Fielding
1 RBF神经网络 RBF神经网络
径向基函数(RBF径向基函数(RBF-Radial Basis Function)神经网络 Function)神经网络 是由J Moody和 Darken在80年代末提出的一种神经 是由J.Moody和C.Darken在80年代末提出的一种神经 网络,它是具有单隐层的三层前馈网络。 网络,它是具有单隐层的三层前馈网络。由于它模拟 了人脑中局部调整、相互覆盖接收域(或称感受野了人脑中局部调整、相互覆盖接收域(或称感受野Receptive Field)的神经网络结构,因此,RBF网络 Field)的神经网络结构,因此,RBF网络 是一种局部逼近网络, 是一种局部逼近网络 , 它能够以任意精度逼近任意 连续函数,特别适合于解决分类问题。 连续函数,特别适合于解决分类问题。

绝对经典RBF神经网络

绝对经典RBF神经网络
grid on
% 应用newb()函数可以快速构建一个径向基神经网络,并且网络自动根据输入向量和期望值 进行调整,从而进行函数逼近,预先设定均方差精度为eg以及散布常数sc。 eg=0.02; sc=1; net=newrb(P,T,eg,sc);
3.网络测试:将网络输出和期望值随输入向量变化 的曲线绘制在一张图上,就可以看出网络设计是 否能够做到函数逼近。
2I
2.中心自组织选取
常采用各种动态聚类算法对数据中心进行自组织选择,在 学习过程中需对数据中心的位置进行动态调节。常用的方 法是K-means聚类,其优点是能根据各聚类中心之间的距 离确定各隐节点的扩展常数。由于RBF网的隐节点数对其 泛化能力有极大的影响,所以寻找能确定聚类数目的合理 方法,是聚类方法设计RBF网时需首先解决的问题。除聚
两种方法中心的选取
1.中心从样本输入中选取
一般来说,样本密集的地方中心点可以适当多些,样本稀疏的地方 中心点可以少些;若数据本身是均匀分布的,中心点也可以均匀分 布。总之,选出的数据中心应具有代表性。径向基函数的扩展常数 是根据数据中心的散布而确定的,为了避免每个径向基函数太尖或 太平,一种选择方法是将所有径向基函数的扩展常数设为 dmax
径向基函数 取统一的扩展常数
径向基函数的扩展常数 不再统一由训练算法确定
没有设置阈值
输出函数的线性中包含阈值参数, 用于补偿基函数在样本集上的
平均值与目标值之平均值之间的差别。
函数逼近问题(内插值)
一般函数都可表示成一组基函数的线性组合,
RBF网络相当于用隐层单元的输出构成一组基函数,
然后用输出层来进行线性组合,以完成逼近功能。
2.网络设计:设计一个径向基函数网络,网络有两层,隐含层 为径向基神经元,输出层为线性神经元。

RBF(径向基)神经网络

RBF(径向基)神经网络

RBF(径向基)神经⽹络 只要模型是⼀层⼀层的,并使⽤AD/BP算法,就能称作 BP神经⽹络。

RBF 神经⽹络是其中⼀个特例。

本⽂主要包括以下内容:什么是径向基函数RBF神经⽹络RBF神经⽹络的学习问题RBF神经⽹络与BP神经⽹络的区别RBF神经⽹络与SVM的区别为什么⾼斯核函数就是映射到⾼维区间前馈⽹络、递归⽹络和反馈⽹络完全内插法⼀、什么是径向基函数 1985年,Powell提出了多变量插值的径向基函数(RBF)⽅法。

径向基函数是⼀个取值仅仅依赖于离原点距离的实值函数,也就是Φ(x)=Φ(‖x‖),或者还可以是到任意⼀点c的距离,c点称为中⼼点,也就是Φ(x,c)=Φ(‖x-c‖)。

任意⼀个满⾜Φ(x)=Φ(‖x‖)特性的函数Φ都叫做径向基函数,标准的⼀般使⽤欧⽒距离(也叫做欧式径向基函数),尽管其他距离函数也是可以的。

最常⽤的径向基函数是⾼斯核函数 ,形式为 k(||x-xc||)=exp{- ||x-xc||^2/(2*σ)^2) } 其中x_c为核函数中⼼,σ为函数的宽度参数 , 控制了函数的径向作⽤范围。

⼆、RBF神经⽹络 RBF神将⽹络是⼀种三层神经⽹络,其包括输⼊层、隐层、输出层。

从输⼊空间到隐层空间的变换是⾮线性的,⽽从隐层空间到输出层空间变换是线性的。

流图如下: RBF⽹络的基本思想是:⽤RBF作为隐单元的“基”构成隐含层空间,这样就可以将输⼊⽮量直接映射到隐空间,⽽不需要通过权连接。

当RBF的中⼼点确定以后,这种映射关系也就确定了。

⽽隐含层空间到输出空间的映射是线性的,即⽹络的输出是隐单元输出的线性加权和,此处的权即为⽹络可调参数。

其中,隐含层的作⽤是把向量从低维度的p映射到⾼维度的h,这样低维度线性不可分的情况到⾼维度就可以变得线性可分了,主要就是核函数的思想。

这样,⽹络由输⼊到输出的映射是⾮线性的,⽽⽹络输出对可调参数⽽⾔却⼜是线性的。

⽹络的权就可由线性⽅程组直接解出,从⽽⼤⼤加快学习速度并避免局部极⼩问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6. 调用 void RBFNet::lms(),采用梯度训练算法,由 u[1],计算权值 w,并保存在 w[2]数组 之中,同时计算出输出的结果,保存在 u[2]之中; 7. 调用 double RBFNet::getwucha(),计算 u[2]与样本输出之间的误差大小(选择不同的聚 类中心数,分别计算误差,选出误差最小时的聚类中心数目); 8. 调用 void RBFNet::saveW(double *newW),将计算出的权值,以文件的形式保存下来,以 方便下次调用; 9. 调用 void RBFNet::saveGaosi(double *newG),同上,保存高斯因子,将训练好的网络保 存下来;
RBF 神经网络: RBF 神经网络又称为径向基函数神经网络是一类常用的 3 层前馈网络, 也可用于函数逼近及 分类,常用的 RBF 网络为 n-h-m 结构,即网络具有 n 个输入,h 个隐节点,m 个输出。 RBF 的常用算法用:聚类方法,梯度训练方法,正交最小二乘算法等等,在本次算法实现过 程中,主要用到了聚类方法和梯度训练方法。 常用的 RBF 算法实现流程是: 1. 算法初始化:选择 h 个不同的初始聚类中心,并令 k=1。初始聚类中心的方法很多,比 如,从样本输入中随机选取,或者选择前 h 个样本输入,但这 h 个初始数据中心必须取 不同值。距离||X j –c i(k)||,i=1,2,· · ·,h,j=1,2,· · ·,N。 3. 对样本输入 X j 按最小距离原则对其进行分类: 即当 i(X j)=min||X j –c ( k ) || , i=1,2, · · · ,h i 时,X j 即被归化为第 i 类,将 n 个输入分为 h 类。 4. 重新计算各类的新的聚类中心: C i(k+1)=Ni
1 x∈wi(k) x ,i
= 1,2,· · · ,h
式中,N i 为第 i 个聚类域 w i(k)中包含的样本数。 5. 如果 c i(k+1)≠c i(k),转到步骤 2;否则聚类过程结束,转到步骤 6。 6. 根据各中心之间的距离确定各隐节点的扩展常数(高斯因子)。 7. 一旦各隐节点的数据中心和扩展常数确定了,输出权矢量 w 就可以用有监督学习方法训 练得到,也可以使用最小二乘方法(LMS)直接计算。 LMS: 当输入为 X i,i=1,2,· · ·,N 时,第 j 个隐节点的输出 h ij=Uj(||X i-c j||) ,所以隐层输出阵 为: H=[hi j] 则网络的输出矢量为: y=Hw 所以权值 w 可以通过最小二乘法求得: w=H+y (H+ 为 H 的伪逆) 。 + T -1 T H =(H H) H 。 在用此方法计算时,由于 H 的维数可能会很大,所以传统的矩阵求逆方法(伴随矩阵之 类)计算量会很大,延时也很严重,因此此处我们不能采用传统的矩阵求逆方法。 梯度训练: RBF 网的梯度训练方法是通过最小化目标函数实现对各隐节点数据中心、扩展常数和输 出权值的调节,通过不断调整数据中心、扩展常数和输出权值的值,最终使得得到的测 试结果与给定的结果的误差最小。这样 RBF 神经网络就训练好了。 本次算法的实现过程如下: 1. 将 RBF 神经网络定义为类 class RBFNet; 2. 调用其构造函数 RBFNet::RBFNet(int inputNum,int outputNum,int dataNum),相继输入网 络的输入维数,输出维数,以及输入输出的数据对数; 3. 调用 void RBFNet::readInData(double *inputData),读入输入数据; 4. 调用 void RBFNet::k_means()按样本输入 X j 按最小距离原则对其进行分类计算分类, 计算 新的聚类中心,一直到两次聚类中心基本无变化,再求出扩展常数(高斯因子); 5. 调用 void RBFNet::compute_u1(),计算激活函数 U,并保存在 u[1]数组中;
相关文档
最新文档