九年级数学公开课导学案
九年级高效课堂导学案数学广西

九年级高效课堂导学案:数学广西一、导学内容本次导学将带领大家学习九年级数学广西部分的知识点。
本节课的主要内容包括以下几个部分:1.定义:回顾圆的定义、弧长的定义等数学概念;2.判断:通过理论知识来判断一些几何图形的性质;3.计算:运用数学公式和算法计算一些几何问题。
二、定理和公式在本次导学中,我们将会用到以下定理和公式:1.圆的定义:圆是平面上到一个定点的距离等于常数的所有点的集合;2.弧的定义:在一个圆周上,连接圆上两点的弧是两点之间的点集;3.弧与弦的关系:夹在圆的圆周上的弧与它所对的弦所对应的角相等;4.圆的切线与半径的关系:切点连线与圆半径构成直角。
三、数学题目题目1:圆的计算已知一个圆的半径为5cm,请计算其周长和面积。
请保留两位小数。
题目2:弧长计算已知圆的半径为8cm,某弧所夹的圆心角等于120°,请计算该弧的弧长。
请保留两位小数。
题目3:判断几何图形性质根据以下几个几何图形的特点,请判断其性质是否正确并给出理由:1.直径和弦的长度相等;2.圆的直径是最长的弦;3.圆的切线与半径垂直。
四、解答过程题目1:圆的计算根据圆的周长公式C=2πr,其中 r 是圆的半径,可以计算出该圆的周长为C=2π×5cm≈31.42cm。
根据圆的面积公式A=πr2,可以计算出该圆的面积为A=π×52cm2≈78.54cm2。
所以,该圆的周长约为 31.42cm,面积约为 78.54cm²。
题目2:弧长计算,其中 r 是圆的半径,θ是圆心角的度数,可以计根据弧长公式L=2πr×θ360°≈16.75cm。
算出该弧的弧长为L=2π×8cm×120°360°所以,该弧的弧长约为 16.75cm。
题目3:判断几何图形性质1.错误。
直径是弦的一种特殊情况,直径是弦的最长情况;2.正确。
圆的直径是圆内所有弦的最长弦;3.正确。
人教版九年级上册数学全册导学案

6、对于二次函数,当x=时,y有最小值.ห้องสมุดไป่ตู้
这两题都在考查顶点横坐标公式。
7、抛物线的开口方向向,顶点坐标是,对称轴是,与x轴的交点坐标是,与y轴的交点坐标是,当x=时,y有最值是.
8、已知二次函数的最小值为1,求m的值.本题考查顶点坐标纵坐标公式。
9、利用配方法,把下列函数写成+k的形式,并写出它们的图象的开口方向、对称轴和顶点坐标.
1、抛物线的开口,对称轴是,顶点坐标是。
2、函数,当x时,函数值y随x的增大而减小.当x时,函数取得最值,最值y=.
3、对于二次函数对称轴,顶点坐标.
4、已知抛物线的顶点在坐标轴上,则的值为
双休日作业出过让学生回忆。
5、(1)二次函数的对称轴是.
(2)二次函数的图象的顶点是,当x时,y随x的增大而减小.
(1)(2)
10、确定抛物线的开口方向、对称轴和顶点坐标,再描点画图.作图可作草图。
人教版九年级上册数学全册导学案
人教版九年级上册数学全册导学案(52份)-人教版九年级上册数学知识点
环节1
二次函数解析式常用的有三种形式:
(开口方向、大小、对称轴、顶点坐标、增减性、极值)
(1)一般式:_______________ (a≠0)
(2)顶点式:_______________ (a≠0)
对应训练:
学九年级数学导学案(2)

学九年级数学导学案(2)九年级班姓名审核【课题】24.1.2 垂直于弦的直径【课时】第2课时一、学习目标:1. 探索圆的对称性,进而得到垂直于弦的直径所具有的性质。
2. 能够利用垂直于弦的直径的性质解决相关实际问题。
二、学习重点、难点:1. 重点:垂直于弦的直径所具有的性质以及证明。
2. 难点:利用垂直于弦的直径的性质解决实际问题。
三、学习过程:(一)温故知新1.举例说出生活中的圆。
2.你是怎样画圆的?你能讲出形成圆的方法有多少种吗?(二)自主学习阅读课本P80---P81思考下列问题:1.通过对折圆,圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?2.教材思考?从图中找到哪些相等的线段和弧?为什么?3.什么是垂径定理?请默写一遍。
4.由垂径定理又得到了什么推论?试着逻辑证明一下。
(三)合作探究例2:如图,已知AB是⊙O的弦,P是AB上一点,若AB=10,PB=4,OP=5,求⊙O的半径的长。
(四)巩固练习(教材练习)(五)达标训练1.如图1,如果AB为⊙O的直径,弦CD⊥AB,垂足为E,那么下列结论中,•错误的是().A.CE=DE B.BC = BD C.∠BAC=∠BAD D.AC>AD(图1) (图2) (图3) (图4)2.如图2,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,则弦AB的长是()A.4 B.6 C.7 D.83.如图3,已知⊙O的半径为5mm,弦AB=8mm,则圆心O到AB的距离是()A.1mm B.2mmm C.3mm D.4mm4.P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为________;•最长弦长为_______.5.如图4,OE⊥AB、OF⊥CD,如果OE=OF,那么_______(只需写一个正确的结论)6.如图,以O为圆心的两个同心圆中,小圆的弦AB的延长线交大圆于点C,若AB=3,BC=1,则圆环的面积最接近的整数是()A.9B. 10C.15D.13。
九年级数学导学案全册

九年级数学导学案全册一、整体介绍九年级数学导学案全册是为了帮助九年级学生系统地学习和掌握数学知识而设计的教学辅助材料。
本导学案旨在以清晰的结构和详细的内容,帮助学生理解和掌握每个知识点,并培养学生的问题解决能力和数学思维。
二、导学目标本导学案的目标是帮助学生在九年级学习阶段掌握以下内容:1. 复习和巩固七、八年级学到的数学知识;2. 学习并理解九年级新引入的数学概念和方法;3. 培养学生的问题解决能力和逻辑思维。
三、具体内容1. 单元一:代数运算本单元将复习和巩固整数、有理数的加减乘除运算,并引入一次、二次方程的解法。
通过练习提高学生的计算能力和代数运算技巧。
2. 单元二:平面几何本单元将复习和巩固平面图形的性质和计算方法,包括三角形、四边形和圆的周长、面积计算。
同时引入椭圆、双曲线等二次曲线的基本性质和计算方法。
3. 单元三:立体几何本单元将复习和巩固立体图形的性质和计算方法,包括球体、圆柱体、圆锥体和棱柱、棱锥的体积和表面积计算。
同时引入三角锥、圆锥、三角棱柱等复杂立体图形的计算方法。
4. 单元四:数据统计与概率本单元将复习和巩固数据统计中的表格、图表的制作和分析方法,同时引入概率的基本概念和计算方法。
通过实际案例和练习,培养学生的数据分析和概率计算能力。
四、学习方法和建议1. 在学习过程中,学生应注意理解每个知识点的定义、性质和计算方法。
2. 学生可以通过课堂讲解、课后习题练习以及自主学习的方式来巩固所学内容。
3. 遇到困难和疑惑时,学生可以寻求老师和同学的帮助,或参考相关的数学学习资料。
五、总结九年级数学导学案全册是九年级学生学习数学的重要辅助材料。
通过学习和掌握本导学案中的知识,学生将能够提高数学思维能力,解决实际问题,并为高中数学的学习打下坚实的基础。
希望本导学案能够帮助九年级学生在数学学习中取得优秀的成绩,为未来的学习和发展打下坚实的基础。
人教版九年级数学导学案全册

人教版九年级数学导学案全册九年级数学导学案-全册第一章:有理数导学目标:了解有理数的定义,会对有理数进行加减法运算1. 有理数的定义有理数是指可以表示为两个整数比例的数,包括正整数、负整数、零以及可以表示为分数形式的小数。
2. 有理数的表示有理数可以通过分数、小数和负号表示。
例如:32/5,-1.2,-3。
3. 有理数的比较有理数的大小可以通过数轴进行比较,数轴的左边表示负数,右边表示正数。
例如:-5 < -1 < 0 < 2 < 4。
4. 有理数的加法运算有理数的加法运算遵循以下规则:- 两个正数相加,结果为正数;- 两个负数相加,结果为负数;- 正数加负数时,找到两个数的绝对值中较大的数,并用它的符号作为结果的符号。
5. 有理数的减法运算有理数的减法运算可以转化为加法运算,即求减数的相反数后再进行加法运算。
例如:7-3可以转化为7+(-3)。
第二章:代数基础导学目标:掌握代数基础概念,灵活运用代数式进行计算1. 代数式的定义代数式是由数或运算符号组成的表达式,可以包括数字、字母和运算符号。
2. 代数式的计算代数式可以通过代数运算进行计算,其中常用的运算符号包括加减乘除和指数符号。
3. 代数式的展开和因式分解代数式的展开指的是将括号中的内容按照规则进行计算,例如:(a+b)^2 = a^2 + 2ab + b^2。
代数式的因式分解指的是将代数式分解成乘积的形式,例如:4x^2 + 12x = 4x(x + 3) 。
4. 代数式的简化代数式可以通过合并同类项进行简化,合并同类项是将相同字母的项合并在一起,例如:2x + 3x = 5x。
第三章:图形的认识导学目标:了解几何图形的基本概念和性质,能够进行图形的分类和判断1. 平面图形的分类平面图形包括点、线段、射线、直线和曲线,可以通过形状和大小进行分类,例如:三角形、四边形、圆等。
2. 几何图形的性质几何图形有不同的性质,例如:矩形的对边相等、正方形的对角线相等。
初三数学导学案(全集)

第一章一元二次方程§1.1 一元二次方程(1)一、学习目标:1.在具体情境中,理解一元二次方程相关概念及其解的概念;2.通过自主探索和小组合作,会列出问题情境中的方程,并学会估算一元二次方程的解;3.积极参与数学学习活动,对数学有好奇心和求知欲,在数学活动中,获得成功的体验,锻炼克服困难的意志,建立自信心。
二、学习重点:一元二次方程的概念.难点:如何把实际问题转化为数学方程.三、学习导航:A、预习感知1.回忆并说出一元一次方程的概念及特征.2.按要求完成下列问题.(1)剪一块面积是150cm2的矩形铁片,使它的长比宽多5cm,这块铁片应该怎样剪?如果设这块铁片的宽为xcm,则长为cm,则可得方程为①(2)一块四周镶有宽度相等的花边的地毯如图所示,它的长为8m,宽为5m, 如果地毯中央长方形图案的面积为18㎡,那么花边有多宽?如果设草坪的宽度为xm,则可得方程为②(3)要组织一次排球邀请赛,参赛的每两队之间都要比赛一场,依据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,请问全校有多少个队参赛?如果设有x个队参加,则可得方程为③B、探索新知:1.整理上述问题中的方程①、②、③并回答下列问题:(1)方程左右两边的代数式是整式吗?(2)分析整理的方程与一元一次方程的异同点.(3)你能类比一元二次方程的定义得到一元二次方程的定义吗?2.一元二次方程的概念:像这样的等号两边都是_____,只含有___个未知数,并且未知数的最高次数是___的方程叫做一元二次方程。
3.一元二次方程的特征: 4.一元二次方程的一般形式为:其中ax 2,bx,c 分别叫二次项,一次项和常数项;a,b 分别称为二次项系数和一次项系数. 5.注意:①任何一个一元二次方程都可以化为一般形式: 二次项系 数、一次项系数、常数项都要包含它前面的符号。
②二次项系数0a ≠是一个重要条件,不能漏掉,为什么? C 、典型例题[例1] 判断下列方程是否是一元二次方程?并说明理由。
【人教版】九年级数学上册全册导学案

第二十一章 一元二次方程 21.1 一元二次方程1. 了解一元二次方程的概念,应用一元二次方程概念解决一些简单问题. 2.掌握一元二次方程的一般形式ax 2+bx +c =0(a≠0)及有关概念. 3.会进行简单的一元二次方程的试解;理解方程解的概念.重点:一元二次方程的概念及其一般形式;一元二次方程解的探索. 难点:由实际问题列出一元二次方程;准确认识一元二次方程的二次项和系数以及一次项和系数及常数项.《一、自学指导.(10分钟) 问题1:如图,有一块矩形铁皮,长100 cm ,宽50 cm ,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm 2,那么铁皮各角应切去多大的正方形分析:设切去的正方形的边长为x cm ,则盒底的长为__(100-2x)cm __,宽为__(50-2x)cm __.列方程__(100-2x)·(50-2x)=3600__,化简整理,得__x 2-75x +350=0__.①问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛分析:全部比赛的场数为__4×7=28__.设应邀请x 个队参赛,每个队要与其他__(x -1)__个队各赛1场,所以全部比赛共x (x -1)2__场.列方程__x (x -1)2=28__,化简整理,得__x 2-x -56=0__.② 探究:}(1)方程①②中未知数的个数各是多少__1个__.(2)它们最高次数分别是几次__2次__.归纳:方程①②的共同特点是:这些方程的两边都是__整式__,只含有__一个__未知数(一元),并且未知数的最高次数是__2__的方程.1.一元二次方程的定义等号两边都是__整式__ ,只含有__一__个未知数(一元),并且未知数的最高次数是__2__(二次)的方程,叫做一元二次方程.2.一元二次方程的一般形式一般地,任何一个关于x 的一元二次方程,经过整理,都能化成如下形式:ax 2+bx +c =0(a≠0).这种形式叫做一元二次方程的一般形式.其中__ax 2__是二次项,__a__是二次项系数,__bx__是一次项,__b__是一次项系数,__c__是常数项.点拨精讲:二次项系数、一次项系数、常数项都要包含它前面的符号.二次项系数a≠0是一个重要条件,不能漏掉. |二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟) 1.判断下列方程,哪些是一元二次方程 (1)x 3-2x 2+5=0; (2)x 2=1; (3)5x 2-2x -14=x 2-2x +35;(4)2(x +1)2=3(x +1);(5)x 2-2x =x 2+1; (6)ax 2+bx +c =0. 解:(2)(3)(4). 点拨精讲:有些含字母系数的方程,尽管分母中含有字母,但只要分母中不含有未知数,这样的方程仍然是整式方程.2.将方程3x(x -1)=5(x +2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.解:去括号,得3x 2-3x =5x +10.移项,合并同类项,得3x 2-8x -10=0.其中二次项系数是3,一次项系数是-8,常数项是-10. )点拨精讲:将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.求证:关于x 的方程(m 2-8m +17)x 2+2mx +1=0,无论m 取何值,该方程都是一元二次方程.证明:m 2-8m +17=(m -4)2+1, ∵(m -4)2≥0,∴(m -4)2+1>0,即(m -4)2+1≠0.∴无论m 取何值,该方程都是一元二次方程.点拨精讲:要证明无论m 取何值,该方程都是一元二次方程,只要证明m 2-8m +17≠0即可.2.下面哪些数是方程2x 2+10x +12=0的根 `-4,-3,-2,-1,0,1,2,3,4.解:将上面的这些数代入后,只有-2和-3满足等式,所以x =-2或x =-3是一元二次方程2x 2+10x +12=0的两根.点拨精讲:要判定一个数是否是方程的根,只要把这个数代入等式,看等式两边是否相等即可.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟) 1.判断下列方程是否为一元二次方程. (1)1-x 2=0; (2)2(x 2-1)=3y ;(3)2x 2-3x -1=0; (4)1x 2-2x =0; (5)(x +3)2=(x -3)2; (6)9x 2=5-4x. 解:(1)是;(2)不是;(3)是; (4)不是;(5)不是;(6)是.¥2.若x =2是方程ax 2+4x -5=0的一个根,求a 的值. 解:∵x =2是方程ax 2+4x -5=0的一个根, ∴4a +8-5=0, 解得a =-34.3.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式: (1)4个完全相同的正方形的面积之和是25,求正方形的边长x ; (2)一个长方形的长比宽多2,面积是100,求长方形的长x.解:(1)4x 2=25,4x 2-25=0;(2)x(x -2)=100,x 2-2x -100=0.学生总结本堂课的收获与困惑.(2分钟)1.一元二次方程的概念以及怎样利用概念判断一元二次方程."2.一元二次方程的一般形式ax 2+bx +c =0(a≠0),特别强调a≠0. 3.要会判断一个数是否是一元二次方程的根.学习至此,请使用本课时对应训练部分.(10分钟)21.2 解一元二次方程21. 配方法(1)1. 使学生会用直接开平方法解一元二次方程.2. 渗透转化思想,掌握一些转化的技能.重点:运用开平方法解形如(x +m)2=n(n≥0)的方程;领会降次——转化的数学思想.难点:通过根据平方根的意义解形如x 2=n(n≥0)的方程,知识迁移到根据平方根的意义解形如(x +m)2=n(n≥0)的方程.一、自学指导.(10分钟)问题1:一桶某种油漆可刷的面积为1500 dm 2,小李用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗设正方体的棱长为x dm ,则一个正方体的表面积为__6x 2__dm 2,根据一桶油漆可刷的面积列出方程:__10×6x 2=1500__, 由此可得__x 2=25__,根据平方根的意义,得x =__±5__, 即x 1=__5__,x 2=__-5__.可以验证__5__和-5都是方程的根,但棱长不能为负值,所以正方体的棱长为__5__dm . :探究:对照问题1解方程的过程,你认为应该怎样解方程(2x -1)2=5及方程x 2+6x +9=4方程(2x -1)2=5左边是一个整式的平方,右边是一个非负数,根据平方根的意义,可将方程变形为__2x -1=±5__,即将方程变为__2x -1=5和__2x -1=-5__两个一元一次方程,从而得到方程(2x -1)2=5的两个解为x 1=__1+52,x 2=__1-52__.在解上述方程的过程中,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样问题就容易解决了.方程x 2+6x +9=4的左边是完全平方式,这个方程可以化成(x +__3__)2=4,进行降次,得到 __x +3=±2__ ,方程的根为x 1= __-1__,x 2=__-5__.归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程.如果方程能化成x 2=p(p≥0)或(mx +n)2=p(p≥0)的形式,那么可得x =±p 或mx +n =±p.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟) 解下列方程:(1)2y 2=8; (2)2(x -8)2=50; (3)(2x -1)2+4=0; (4)4x 2-4x +1=0.解:(1)2y 2=8, (2)2(x -8)2=50, *y 2=4, (x -8)2=25, y =±2, x -8=±5,∴y 1=2,y 2=-2; x -8=5或x -8=-5, ∴x 1=13,x 2=3; (3)(2x -1)2+4=0, (4)4x 2-4x +1=0, (2x -1)2=-4<0, (2x -1)2=0, ∴原方程无解; 2x -1=0, ∴x 1=x 2=12.点拨精讲:观察以上各个方程能否化成x 2=p(p≥0)或(mx +n)2=p(p≥0)的形式,若能,则可运用直接开平方法解.[一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.用直接开平方法解下列方程: (1)(3x +1)2=7; (2)y 2+2y +1=24; (3)9n 2-24n +16=11.解:(1)-1±73;(2)-1±26;(3)4±113.点拨精讲:运用开平方法解形如(mx +n)2=p (p≥0)的方程时,最容易出错的是漏掉负根. 2.已知关于x 的方程x 2+(a 2+1)x -3=0的一个根是1,求a 的值. 解:±1.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟) 用直接开平方法解下列方程:((1)3(x -1)2-6=0 ; (2)x 2-4x +4=5; (3)9x 2+6x +1=4; (4)36x 2-1=0; (5)4x 2=81; (6)(x +5)2=25; (7)x 2+2x +1=4.解:(1)x 1=1+2,x 2=1-2; (2)x 1=2+5,x 2=2-5;(3)x 1=-1,x 2=13; (4)x 1=16,x 2=-16; (5)x 1=92,x 2=-92; (6)x 1=0,x 2=-10;)(7)x 1=1,x 2=-3.学生总结本堂课的收获与困惑.(2分钟)1.用直接开平方法解一元二次方程. 2.理解“降次”思想.3.理解x 2=p(p≥0)或(mx +n)2=p(p≥0)中,为什么p ≥0学习至此,请使用本课时对应训练部分.(10分钟)21. 配方法(2)1.会用配方法解数字系数的一元二次方程.`2.掌握配方法和推导过程,能使用配方法解一元二次方程.重点:掌握配方法解一元二次方程.难点:把一元二次方程转化为形如(x -a)2=b 的过程.(2分钟)1.填空:(1)x 2-8x +__16__=(x -__4__)2; (2)9x 2+12x +__4__=(3x +__2__)2; (3)x 2+px +__(p 2)2__=(x +__p2__)2.2.若4x 2-mx +9是一个完全平方式,那么m 的值是__±12__.…一、自学指导.(10分钟)问题1:要使一块矩形场地的长比宽多6 m ,并且面积为16 m 2,场地的长和宽分别是多少米设场地的宽为x m ,则长为__(x +6)__m ,根据矩形面积为16 m 2,得到方程__x(x +6)=16__,整理得到__x 2+6x -16=0__.探究:怎样解方程x 2+6x -16=0对比这个方程与前面讨论过的方程x 2+6x +9=4,可以发现方程x 2+6x +9=4的左边是含有x 的完全平方形式,右边是非负数,可以直接降次解方程;而方程x 2+6x -16=0不具有上述形式,直接降次有困难,能设法把这个方程化为具有上述形式的方程吗解:移项,得x 2+6x =16,两边都加上__9__即__(62)2__,使左边配成x 2+bx +(b2)2的形式,得__x 2__+6__x__+9=16+__9__,左边写成平方形式,得~__(x +3)2=25__,开平方,得__x +3=±5__, (降次)即 __x +3=5__或__x +3=-5__,解一次方程,得x 1=__2__,x 2=__-8__.归纳:通过配成完全平方式的形式解一元二次方程的方法,叫做配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程.问题2:解下列方程:(1)3x 2-1=5; (2)4(x -1)2-9=0; (3)4x 2+16x +16=9.解:(1)x =±2;(2)x 1=-12,x 2=52;.(3)x 1=-72,x 2=-12.归纳:利用配方法解方程时应该遵循的步骤: (1)把方程化为一般形式ax 2+bx +c =0;(2)把方程的常数项通过移项移到方程的右边; (3)方程两边同时除以二次项系数a ;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟) 1.填空:(1)x 2+6x +__9__=(x +__3__)2; -(2)x 2-x +__14__=(x -__12__)2;(3)4x 2+4x +__1__=(2x +__1__)2. 2.解下列方程:(1)x 2+6x +5=0; (2)2x 2+6x +2=0; (3)(1+x)2+2(1+x)-4=0.解:(1)移项,得x 2+6x =-5,配方得x 2+6x +32=-5+32,(x +3)2=4, 由此可得x +3=±2,即x 1=-1,x 2=-5. (2)移项,得2x 2+6x =-2,二次项系数化为1,得x 2+3x =-1,"配方得x 2+3x +(32)2=(x +32)2=54,由此可得x +32=±52,即x 1=52-32, x 2=-52-32.(3)去括号,整理得x 2+4x -1=0, 移项得x 2+4x =1, 配方得(x +2)2=5,x +2=±5,即x 1=5-2,x 2=-5-2.点拨精讲:解这些方程可以用配方法来完成,即配一个含有x 的完全平方式.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟) ;如图,在Rt △ABC 中,∠C =90°,AC =8 m ,CB =6 m ,点P ,Q 同时由A ,B 两点出发分别沿AC ,BC 方向向点C 匀速移动,它们的速度都是1 m /s ,几秒后△PCQ 的面积为Rt △ABC 面积的一半解:设x 秒后△PCQ 的面积为Rt △ABC 面积的一半.根据题意可列方程: 12(8-x)(6-x)=12×12×8×6,即x 2-14x +24=0, (x -7)2=25, x -7=±5,∴x 1=12,x 2=2,x 1=12,x 2=2都是原方程的根,但x 1=12不合题意,舍去.;答:2秒后△PCQ 的面积为Rt △ABC 面积的一半.点拨精讲:设x 秒后△PCQ 的面积为Rt △ABC 面积的一半,△PCQ 也是直角三角形.根据已知条件列出等式.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.用配方法解下列关于x 的方程:(1)2x 2-4x -8=0; (2)x 2-4x +2=0;(3)x 2-12x -1=0 ; (4)2x 2+2=5.解:(1)x 1=1+5,x 2=1-5; (2)x 1=2+2,x 2=2-2; (3)x 1=14+174,x 2=14-174;%(4)x 1=62,x 2=-62.2.如果x 2-4x +y 2+6y +z +2+13=0,求(xy)z 的值.解:由已知方程得x 2-4x +4+y 2+6y +9+z +2=0,即(x -2)2+(y +3)2+z +2=0,∴x =2,y =-3,z =-2.∴(xy)z =[2×(-3)]-2=136.学生总结本堂课的收获与困惑.(2分钟)1.用配方法解一元二次方程的步骤. 2.用配方法解一元二次方程的注意事项.学习至此,请使用本课时对应训练部分.(10分钟)21. 公式法,1. 理解一元二次方程求根公式的推导过程,了解公式法的概念.2. 会熟练应用公式法解一元二次方程.重点:求根公式的推导和公式法的应用. 难点:一元二次方程求根公式的推导.(2分钟)用配方法解方程:(1)x 2+3x +2=0; (2)2x 2-3x +5=0. 解:(1)x 1=-2,x 2=-1; (2)无解.~一、自学指导.(8分钟)问题:如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它们的两根问题:已知ax 2+bx +c =0(a≠0),试推导它的两个根x 1=-b +b 2-4ac 2a,x 2=-b -b 2-4ac2a. 分析:因为前面具体数字已做得很多,现在不妨把a ,b ,c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.探究:一元二次方程ax 2+bx +c =0(a≠0)的根由方程的系数a ,b ,c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac≥0时,将a ,b ,c 代入式子x =-b±b 2-4ac2a就得到方程的根,当b 2-4ac <0时,方程没有实数根. (2)x =-b±b 2-4ac2a叫做一元二次方程ax 2+bx +c =0(a≠0)的求根公式. (3)利用求根公式解一元二次方程的方法叫做公式法.(4)由求根公式可知,一元二次方程最多有__2个实数根,也可能有__1__个实根或者__没有__实根. !(5)一般地,式子b 2-4ac 叫做方程ax 2+bx +c =0(a≠0)的根的判别式,通常用希腊字母Δ表示,即Δ=b 2-4ac.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 用公式法解下列方程,根据方程根的情况你有什么结论(1)2x 2-3x =0; (2)3x 2-23x +1=0; (3)4x 2+x +1=0.解:(1)x 1=0,x 2=32;有两个不相等的实数根; (2)x 1=x 2=33;有两个相等的实数根;(3)无实数根.点拨精讲:Δ>0时,有两个不相等的实数根;Δ=0时,有两个相等的实数根;Δ<0时,没有实数根./一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.方程x 2-4x +4=0的根的情况是( B ) A .有两个不相等的实数根 B .有两个相等的实数根 C .有一个实数根 D .没有实数根2.当m 为何值时,方程(m +1)x 2-(2m -3)x +m +1=0, (1)有两个不相等的实数根 (2)有两个相等的实数根 (3)没有实数根!解:(1)m <14; (2)m =14; (3)m >14.3. 已知x 2+2x =m -1没有实数根,求证:x 2+mx =1-2m 必有两个不相等的实数根. 证明:∵x 2+2x -m +1=0没有实数根, ∴4-4(1-m)<0,∴m <0.对于方程x 2+mx =1-2m ,即x 2+mx +2m -1=0, Δ=m 2-8m +4,∵m <0,∴Δ>0,∴x 2+mx =1-2m 必有两个不相等的实数根.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟) 1.利用判别式判定下列方程的根的情况: (1)2x 2-3x -32=0; (2)16x 2-24x +9=0;)(3)x 2-42x +9=0 ; (4)3x 2+10x =2x 2+8x. 解:(1)有两个不相等的实数根; (2)有两个相等的实数根; (3)无实数根;(4)有两个不相等的实数根. 2.用公式法解下列方程:(1)x 2+x -12=0 ; (2)x 2-2x -14=0; (3)x 2+4x +8=2x +11; (4)x(x -4)=2-8x ; (5)x 2+2x =0 ; (6)x 2+25x +10=0. 解:(1)x 1=3,x 2=-4;'(2)x 1=2+32,x 2=2-32; (3)x 1=1,x 2=-3;(4)x 1=-2+6,x 2=-2-6;(5)x 1=0,x 2=-2; (6)无实数根.点拨精讲:(1)一元二次方程ax 2+bx +c =0(a≠0)的根是由一元二次方程的系数a ,b ,c 确定的;(2)在解一元二次方程时,可先把方程化为一般形式,然后在b 2-4ac≥0的前提下,把a ,b ,c 的值代入x =-b±b 2-4ac 2a(b 2-4ac≥0)中,可求得方程的两个根; (3)由求根公式可以知道一元二次方程最多有两个实数根.学生总结本堂课的收获与困惑.(2分钟)1.求根公式的推导过程.2.用公式法解一元二次方程的一般步骤:先确定.a ,b ,c 的值,再算.出b 2-4ac 的值、最后代.入求根公式求解. 《3.用判别式判定一元二次方程根的情况.学习至此,请使用本课时对应训练部分.(10分钟)21. 因式分解法1. 会用因式分解法(提公因式法、公式法)解某些简单的数字系数的一元二次方程.2. 能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.重点:用因式分解法解一元二次方程.难点:理解因式分解法解一元二次方程的基本思想.(2分钟)—将下列各题因式分解:(1)am +bm +cm =(__a +b +c__)m ; (2)a 2-b 2=__(a +b)(a -b)__; (3)a 2±2ab +b 2=__(a±b)2__.一、自学指导.(8分钟)问题:根据物理学规律,如果把一个物体从地面以10 m /s 的速度竖直上抛,那么经过x s 物体离地的高度(单位:m )为10x -.你能根据上述规律求出物体经过多少秒落回地面吗(精确到设物体经过x s 落回地面,这时它离地面的高度为0,即10x -=0, ① 思考:除配方法或公式法以外,能否找到更简单的方法解方程① 分析:方程①的右边为0,左边可以因式分解得: :x(10-=0,于是得x =0或10-=0, ② ∴x 1=__0__,x 2≈. 上述解中,x 2≈表示物体约在 s 时落回地面,而x 1=0表示物体被上抛离开地面的时刻,即0 s 时物体被抛出,此刻物体的高度是0 m .点拨精讲: (1)对于一元二次方程,先将方程右边化为0,然后对方程左边进行因式分解,使方程化为两个一次式的乘积的形式,再使这两个一次因式分别等于零,从而实现降次,这种解法叫做因式分解法.(2)如果a·b =0,那么a =0或b =0,这是因式分解法的根据.如:如果(x +1)(x -1)=0,那么__x +1=0或__x -1=0__,即__x =-1__或__x =1.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 1.说出下列方程的根:(1)x(x -8)=0; (2)(3x +1)(2x -5)=0.解:(1)x 1=0,x 2=8; (2)x 1=-13,x 2=52./2.用因式分解法解下列方程: (1)x 2-4x =0; (2)4x 2-49=0; (3)5x 2-20x +20=0.解:(1)x 1=0,x 2=4; (2)x 1=72,x 2=-72; (3)x 1=x 2=2.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.用因式分解法解下列方程:(1)5x 2-4x =0; (2)3x(2x +1)=4x +2;(3)(x +5)2=3x +15.~解:(1)x 1=0,x 2=45; (2)x 1=23,x 2=-12;(3)x 1=-5,x 2=-2.点拨精讲:用因式分解法解一元二次方程的要点是方程的一边是0,另一边可以分解因式.2.用因式分解法解下列方程: (1)4x 2-144=0; (2)(2x -1)2=(3-x)2;(3)5x 2-2x -14=x 2-2x +34; (4)3x 2-12x =-12.解:(1)x 1=6,x 2=-6;。
人教版九年级数学上册全册导学案

人教版九年级数学上册全册导学案近几年,数学被越来越多地视为一门基础性科学研究。
从数学课本内容来看,它主要体现出数学系统的程度、数学分析的深度和微积分的广度,体现出数学的复杂性和解决高等数学问题的能力。
人教版数学上册全册导学案,为学习提供了一系列完善的数学知识结构,为学生提供了数学基本概念、定义、公式、解法和解,以及评价标准等完整的导学案。
人教版九年级数学上册全册导学案以下列内容为主:一、数量1、实数的基本概念及四则运算;2、代数式的四则运算;3、整式的乘法及除法;4、无理数的基本概念及加减法;5、无理数的乘法除法及幂运算;6、统计的基本概念。
二、几何1、几何的基本概念;2、空间几何的基本概念;3、几何图形的分类和性质;4、直角坐标系的基本概念;5、根式的基本概念;6、勾股定理和全等三角形的性质。
三、排列组合1、排列组合的基本概念;2、组合数的基本概念及其运算;3、概率的基本概念及计算。
四、数列1、数列的基本概念;2、等差数列的基本概念及其运算;3、等比数列的基本概念及其运算;4、数列极限的基本概念及运算。
五、不等式1、不等式的基本概念;2、不等式的解法;3、一元二次不等式的解法。
六、函数1、函数的基本概念;2、函数的特征及分析;3、函数及图像的对应解法;4、倒数及指数函数的特征及定义;5、指数函数及对数函数的分析;6、根式及立体函数的函数特征。
以上就是人教版九年级数学上册全册导学案的主要内容,涉及数量几何、排列组合、数列、不等式和函数五大部分,涵盖了九年级数学的基础知识。
九年级数学导学案是对学生九年级数学学习的一次全面考察,它包括九年级数学的主要内容,从而为学生提供了一个全面的学习环境。
人教版九年级数学上册全册导学案的学习有很多不同的技巧。
首先,学生要能够正确理解这些知识点,正确掌握相关概念,定义及公式,并灵活运用它们。
其次,学生应该多做练习,以充分熟悉这些基础的知识点,提高解题速度和解题能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学导学案
九()班姓名_____________ 学号_________ 评价___________
课题:一元二次方程的应用(1)初三数学备课组
【学习目标】
1、掌握列出一元二次方程解应用题;并能根据具体问题的实际意义,检验结果的合理性;2、理解将一些实际问题抽象为方程模型的过程,形成良好的思维习惯,学会从数学的角度提出问题、理解问题,并能运用所学的知识解决问题。
【基础学习】
一、自学课本P94页问题,回答下面问题。
1、根据列方程解决问题的一般步骤来自学课本上的问题。
(1)审:认真审题,分析题意,寻找题中的等量关系;
(2)设:根据题意合理设出未知数;
(3)列:依据等量关系列方程;
(4)解:选取适当的的方法解方程;
(5)验:验证方程的解是否符合问题的实际意义或数学意义;
(6)答:对给定的问题作答。
2、我社组团去龙湾风景区旅游,收费标准为:如果人数不超过30人,人均旅游费用为800元;如果人数多于30人且不超过40人,那么每增加1人,人均旅游费用降低10元,但人均旅游费用不得低于500元。
甲公司分批组织员工到龙湾风景区旅游,现计划用28000元组织第一批员工去旅游,问这次旅游可安排多少人参加?
点拨:通过阅读理解,获取题目中的有用信息,找出相等关系。
(1)分析:参加这次旅游员工的人数每名员工的旅游费用= 。
因为当人数达30人时旅游费用为___________________,所以用28000元组织员工去旅游的人数必定超过_____人。
获取信息:题目中的有用信息:如果设安排x人参加,那么超过30人的人数为_________人,每增加____人,人均旅游费用降低____元,这时人均旅游费用为_________________元。
人均旅游费用不得低于500元可以表示为_________________。
旅游总费用为28000元。
本题的等量关系是: _________________________________________________________ (2)求解方程时要注意取舍得到人均旅游费用不得低于_______元。
思考并完成:若甲公司又组织第二批员工到龙湾风景区旅游,并支付给旅行社29250元,求该公司第二批参加旅游的员工。
3、尝试练习
某公园为了吸引游客,制定了以下措施,如果人数不超过20人,票价为每人30元,若人数超过20人,每增加1人,票价降低1元,但票价不得低于10元,现花了400元,可以供多少游客进公园游览?
点拨:(1)因为400不能被_____整除,所以票价不是____元,游客人数一定多于____人。
(2)本题中的等量关系是:_____________×_____________=400,可设未知数建立方程解答。
注意:①在解本题是要先验证用400元去公园游览的人数是否超过20人。
②解方程后必须验证根是否符合题意,不合题意应舍去。
解:
【合作交流】
1.组长检查本组完成情况,组内交流基础学习中遇到的问题。
重点讨论:
①在基础学习问题中为什么要先判断实际人均旅游费用。
②在解完方程后为什么要验根。
2.各小组展示学习成果
3.说出列一元二次方程解决问题的一般步骤?
【析疑解难】
1.各组提出在学习中遇到的疑问,学生组间尝试解决;
2.教师点评在巡视过程中出现的集中问题。
【达标测试】
1.一个直角三角形的面积是242cm ,两条直角边的差是2cm ,求直角边长。
本题的等量关系是:_______________________________________________。
若设较大直角边长为x cm ,则可列方程为:__________________________。
2.某市供电公司规定,本公司职工,每户一个月用电量若超过A 千瓦时,则一个月的电费只10元,若超过A 千瓦时,则除了交10元外,超过部分每千瓦时还要交100
A ,一户职工3月份用电80千瓦时,交电费25元,4月份用45千瓦时交电费10元,试求A 的值。
【课外学习】
1.本节课你有哪些收获?
2.拓展
动手折一折:(1)如何把一张长方形硬纸片折成一个无盖的长方体纸盒?(2)无盖长方体的高与裁去的四个小正方形的边长有什么关系?
问题1:如图,一块长方形铁皮的长是宽的2倍,四角各截去一个相等的小正方形,制成高是5cm,容积是500cm3的长方体容器,求这块铁皮的长和宽.
引申:如上图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方厘米.求截去正方形的边长。