电子科技大学研究生数理方程与特殊函数检测1
电子科大研究生数理方程与特殊函数2013

电子科技大学研究生试卷(考试时间: 至 ,共 2小时)课程名称 数理方程与特殊函数 教师 学时60 学分 3 教学方式 闭卷 考核日期 2013年 12 月 31 日 成绩 考核方式: (学生填写)1.将方程547sin xx xy yy y u u u u x +++=化为标准型. (10分)2. 求解定解问题:(15分)20300,(0,0)0,0,0tt xx x x x t t t u a u x t u u u x u ππ====⎧=<<>⎪⎪==⎨⎪==⎪⎩.第 1页学 号 姓 名 学 院 教师 座位号……………………密……………封……………线……………以……………内……………答……………题……………无……………效……………………3.一根长为1的均匀细杆,侧面与一端绝热,另一端温度保持0T ,初始时刻温度为0(1)T x x +-. (1) 写出温度函数(,)u x t 满足的定解问题(不需要推导过程);(2) 用分离变量方法求出(,)u x t 的表达式. (15分)4.求函数21,1()0,1x x f x x ⎧-<⎪=⎨≥⎪⎩的Fourier 变换.(15分)第2页5.求下面的定解问题:(10分)220020,(,0)(),()tt xx t t t t u a u u u x R t u x u x εεϕψ==⎧-++=∈>⎪⎨==⎪⎩.6.求证:12()J x x =.(15分) 第3页学 号 姓 名 学 院 教师 座位号……………………密……………封……………线……………以……………内……………答……………题……………无……………效……………………7.(1) 写出上半空间的Dirichlets 问题对应的Green 函数;(2) 计算32012()4()x J x x J x dx ⎡⎤+⎣⎦⎰.(10分)8.(1)写出Bessel 方程和第一类Bessel 函数的一般形式; (2)写出Legendre 方程和Legendre 多项式.(10分)第4页。
成都电子科技大学概率论与数理统计2012-2016年考研初试真题+答案

第 1 页 共 4 页电子科技大学2016年攻读硕士学位研究生入学考试试题考试科目857 概率论与数理统计注:所有答案必须写在答题纸上,写在试卷或草稿纸上均无效。
一、 填空题(每题3分,共15分)1、任取一正整数,该数的平方的末位数是1的概率是__________.2、 设随机变量123,,X X X 相互独立,其中1X 在区间[0,6]上服从均匀分布,2X 服从正态分布2(0,2)N ,3X 服从参数为3λ=的泊松分布,记12323Y X X X =-+,则D (Y )=___________.3、 设随机变量X 服从参数为2的泊松分布,且Y =3X -2,则E (3Y +2)=__________.4、 设随机变量,X Y 相互独立且都服从正态分布2(0,3)N ,而129,,,X X X ⋅⋅⋅和129,,,Y Y Y ⋅⋅⋅为分别来自总体X 和Y 的简单随机样本,则统计量U =服从 ,参数为 . 5、 假设一批产品中一,二,三等品各占60%,30%,10%,从中随意取出一件,结果不是三等品,则取得的是一等品的概率为 .二、 单项选择题(每题3分,共15分)1、设当事件A 与B 同时发生时,事件C 必发生,则( )(A)()()()1P C P A P B ≤+- (B) ()()()1P C P A P B ≥+- (C) ()()P C P AB = (D) ()()P C P A B =2、设随机变量,X Y 均服从正态分布,2(,4)X N μ,2(,5)YN μ,记1{4}p P X μ=≤-,2{5}p P Y μ=≥+,则()第 2 页 共 4 页(A)对任何实数μ,都有12p p =(B )对任何实数μ,都有12p p < (C) 只对μ的个别值,才有12p p = (D )对任何实数μ,都有12p p > . 3、如果,ξη满足()()D D ξηξη+=-,则必有 ( ) (A)ξ与η独立 (B) ξ与η不相关 (C) 0D η=(D) 0D D ξη= 4、若设随机变量X 和Y 都服从标准正态分布,则( )(A) X +Y 服从正态分布 (B)22X Y +服从2χ分布 (C)2X 和2Y 都服从2χ分布 (D)22/X Y 服从F 分布 5、设12,,X X ⋅⋅⋅为独立同分布序列,且(1,2,)i X i =⋅⋅⋅均服从参数为4的指数分布,当n 比较大时,11ni i X n =∑近似服从 ( ). (A) 4(4,)N n(B) 11(,)416N n (C)11(,)416N (D) (4,)16n N 三、简答题(每题10分,共30分)1、 有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球,由甲袋中任取一个球放入乙袋,再从乙袋中取出一个球,求取得白球的概率。
电子科技大学数值分析研究生期末考试

一、已知方程()exp sin 1x x =
1、 确定方程全部正根的隔根区间。
2、 设最小正根为*x ,取猜测值0x ,写出*
x 的牛顿迭代法计算格式。
3、 判定是否有**''(x )12'(x )
f R f =< 求成立,并解释其意义。
二、设111
23111231
1133A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦
1、 求雅可比迭代矩阵1h (I 1)A -=- 的范数G 。
2、 写出高斯-赛德尔迭代矩阵。
三、求1112112112A -⎡⎤⎢⎥--⎢⎥=⎢⎥--⎢⎥-⎣⎦
的LU 分解,并求出用“∞-范数”计算矩阵U 的条件数Cond(U)。
四、给点数表
用最小二乘法确定线性拟合函数()01x C C x ϕ=+
五、根据等距结点:11,,j j j x x x -+ (满足11j j j j x x x x h +--=-=),写出二次拉格朗日插值基函数:()()()11,,j j j I x I x I x -+ 。
求:
()()()''k k f x xI x = ,(1,,1k j j j =-+ )
在j x x = 处的值
六、将积分上限函数()()()200exp exp x
y x x t t dt =-⎰ 转换为一阶常微分方程初值问题,取1h n
= ,记i x jh =()0,1,2,...,j n =,写出用Euler 方法计算()1y 的计算公式。
电子科技大学2023年高等代数考研试题

第一部分:数论
(一) 基础题
1.证明欧拉定理:
设n∈N,则φ(n)与n互质的正整数的数量之积等于n:
证:假设n=p1^k1*p2^k2*…*pn^kn,(p1,p2,…,pn 为不同的素数)
取任意m∈N,m<n,
m除以p1后余数r1满足0≤r1<p1
m除以p2后余数r2满足0≤r2<p2
……
m除以pn后余数rn满足0≤rn<pn
因此,m的余数组合方式有:(r1,r2,…rn),其中r1,r2,…rn的取值范
围均为0,1,2,3,…,pn-1
由于m<n,故m和n互质,则m可以同n的不同素数分解系数
(k1,k2,…,kn)各不相同且k1≤r1,k2≤r2,……, kn≤rn
因此,以上m的余数组合方式有:(k1,k2,…kn)
另一方面,m∈Z,且m和n互质,则,任意一个r1,r2,…rn这样的余数组合方式都表示某个m∈N,m<n,m和n互质
则m的组合方式有:p1*p2*…*pn种
故有φ(n)=p1*p2*…*pn
令m= p1^k1*p2^k2*…*pn^kn,则m<n,m和n互质,故
φ(n)=p1*p2*…*pn=n
故欧拉定理成立。
2.证明:m和n互质,则最大公约数 d=1
证:设m和n互质,则,
有质数的分解式m=p1^k1*p2^k2*…*pn^kn,
有质数的分解式n=q1^j1*q2^j2*…*qm^jm
由于m和n互质,故它们的质因数不能相同,
即p1,p2,…,pn,q1,q2,…,qm均互不相同。
故最大公约数d=1
即证毕。
2012、11、10、09年电子科技大学研究生数理方程期末试卷

2012、11、10、09年电子科技大学研究生数理方程期末试卷电子科技大学研究生试卷(考试时间: 14点 至 16 点 ,共 2小时)课程名称 数理方程与特殊函数 教师 学时60 学分 3 教学方式 闭卷 考核日期 2012年 12 月 28 日 成绩 考核方式: (学生填写)1.把方程22222320u u ux x y y∂∂∂++=∂∂∂∂化为标准型,指出其类型,求出其通解. (10分)2.设定解问题:(10分)2000(),0,0,,0(),(),0.tt xx x x l t t t u a u f x x l t u A u B t u x u x x l ϕψ====⎧-=<<>⎪⎪==>⎨⎪==≤≤⎪⎩将该定解问题化成可直接分离变量求解的问题(不需要求出解的具体形式)。
学 号 姓 学 院 教 座位……………………密……………封……………线……………以……………第 1页3.长为l 的均匀细杆,其侧面与左端保持零度,右端绝热,杆内初始温度分布为()x ϕ,求杆内温度分布(,)u x t .(20分)4.求下面的定解问题:(10分)22009,(,0)18,sin 18tttxx t t t u u x e x R t u x x u x ==⎧-=∈>⎪⎨=++=+⎪⎩.第2页5.求22cos()a e x d ϖτϖϖ+∞-⎰.(10分)6. 22223()(22)(25)s s F s s s s s ++=++++,求Laplace 逆变换1(())L F s -.(10分)第3页7.写出球形域的Dirichlets 问题对应的:(1) Green 函数及其定解问题. (2) Green 函数相对于边界外侧的方向导数.(10分)8.设n ϖ(n=1,2,…)是0()0J x =的所有正根,将函数2()1(01)f x x x =-<<展开为Bessel 函数0()n J x ϖ的级数.(10分)9.(1)写出Legendre 多项式的一般形式或罗德利克表示形式; (2)将函数2()23,1f x x x x =++≤用Legendre 多项式展开.(10分)第4页。
电子科大数学真题答案解析

电子科大数学真题答案解析技大学是中国一所著名的高等学府,以其优秀的教学与研究成果而闻名于世。
其数学学科一直以来在国内乃至国际上都具有很高的声誉。
本文将对大数学真题中的一个题目进行详细解析,希望能够帮助读者更好地理解数学的基本概念与解题思路。
首先,我们来看一道大数学真题:已知函数 f(x) 在区间 [a, b] 上具有二阶导数,且满足f(a)=f(b)=0,证明:存在ξ∈(a, b) 使得f''(ξ) = 0。
首先,我们来理解题目的要求。
题目要求证明对于任意满足条件的函数 f(x),在区间 [a, b] 上必然存在一个点ξ,使得f''(ξ) = 0。
这个结论其实是关于函数极值或拐点的一个基本定理,也可以理解为导函数的性质。
那么,我们应该如何证明这个结论呢?我们可以采用反证法的思路来进行证明。
首先,我们假设不存在这样的点ξ,即对于任意满足条件的函数 f(x),在区间 [a, b] 上f''(x) ≠ 0。
根据f''(x) ≠ 0,我们可以得出两种情况:要么 f''(x) > 0,要么 f''(x) < 0。
假设 f''(x) > 0,那么我们可以得到 f'(x) 单调递增(因为导函数与函数的单调性相反)。
根据单调函数的性质可知,若 f'(x) 单调递增,则 f(x) 在 [a, b] 上也单调递增。
因为 f(a) = f(b) = 0,所以在 [a, b] 上 f(x) 恒等于 0。
然而,根据题目条件,我们知道函数 f(x) 在 [a, b] 上有二阶导数,且满足 f(a) = f(b) = 0。
这意味着函数 f(x) 在 [a, b] 上至少有一个拐点(二阶导数正负变换的点)。
这与我们的假设矛盾,因此我们的假设不成立,即存在ξ∈(a, b) 使得f''(ξ) = 0。
电子科大版数理方程课后习题答案

一 准备(Preliminaries )A单摆的数学模型:牛顿第二定律: F = m aa —物体加速度;F —合外力;m —物体质量 虎克定律:(1) f = –k x ; f —弹力;k —弹性系数; x —弹簧伸长 (2) p = Y ux ; Y —杨氏模量; ux —弹性体相对伸长付里叶热传导定律:Q —热量;T —温度;κ—热导率 牛顿冷却定律: q = k (u |S – u 0)q —热流密度; u 0—外界温度;u|S —物体温度B 几个有用的积分公式2()()()222(cos sin )cos Re()sin Im()cos sin sin sin cos cos bi xx baabi xxb aa bi xxb aa bx xxb b aaa b b b aaabb b aaacx e e x i x dx i e exdx i e exdx i e xe exdx x xxx xdx x xxx xdx e dx αβααβααβααααββαββαββαβααββββββββββ+++-+=+=+=+=-=-+=-=⎰⎰⎰⎰⎰⎰+∞-∞⎰C 函数的Fourier 展开θθsin 22mg dt d mL -=dT Q dxκ=-{}(21)()sin2n n X x x L π+⎧⎫=⎨⎬⎩⎭ 是正交函数系二 练习(Exercise)P22 ex 2.1竖直方向合力为零:(1)()cos ()()cos ()(2)cos ()cos ()1T x dx x dx gds T x x x dx x αρααα+++=+≈≈{}⎭⎬⎫⎩⎨⎧=x L n x X n πsin )(10(,)()sin()(,)sin 2n n Ln n f x t f t x LL n f t f x t xdxLππ∞===∑⎰由此(3)dTg dxρ=- 对x=0做受力分析(4)(0)T G Lg ρ==解一阶ODE 的初值问题(initial value problem)(3)(4)得(5)()()T x L x g ρ=-水平合力(6))sin ())sin ()ttF maT x dx x dx T x x dxu ααρ=++-=(((7)sin ()tan ()()sin ()tan ()()x x x dx x dx u x dx x x u x αααα+≈+=+≈=联合(6)(7)(3)(5)(()())()x x tt xx x x ttxx x ttT x u x u Tu T u u L x gu gu u ρρρρρ=+=--=P22 ex2边界条件(Boundary conditions)00|0x x ===端固定,u()(,)()0tt x x L u F t SYu L t F t ερε==--=对端做受力分析0,|0x x L u ε=→=初值条件(initial condition)u (L ,t )Ou (x ,t ) u (x+dx ,t )xLO0()()()()(1)x x t T x dx T x T x const T x SYu u k=+===≡受力分析水平方向注意(2)(0,0)0,(,0)u u L b ==解一阶ODE 的边值问题(boundary value problem)(1)(2)得0|t b u x L==0|0t t u ==P22 ex3(,)()(,)(1)(,)()(,)x x T x t S x Yu x t T x dx t S x dx Yu x dx t =+=++2222()()()()xS x R L x dx S x dx R Lππ=++=由Newton 运动定律222222(2)(,)(,)1()()31()()()3()()()()ttT x dx t T x t dVgu xV x R xLx dx V x dx R x dx LxdV V x dx V x R dx o dx Lρπππ+-==++=+=+-=+ 由(1)(2)得22(3)(())()2x x x ttx x tt xx x ttS x Yu V u x Yu x u xYu Yu xu ρρρ==⇒+=设w xu =,则xx ttYw w ρ=P22 ex4(参考ppt 数理方程2p12,p13)在(,]L L ε- 处受到冲量I ,由动量守恒定理 000/(),()0,lim ()(),()0,()/()/()lim ()lim ()()()LLL LLLLI L x Lx other Ix x L x LIx L other Ix dx I dx I Ix dx x dx IIIx L dx x L dx εεεεεεεεεερεψεψδρδρψρεερρψψρδδρρρ→-→→-<≤⎧=⎨⎩→=-+∞=⎧-=⎨⎩=====-=-=⎰⎰⎰⎰⎰⎰令0,P26 ex1通过两端截面而留下的热量2((,)(,)(,)(,))()x x kdt u x dx t s x dx t u x t s x t s x s rπ++-==这儿微元段升温所吸热t c sdxu dt ρu (x ,t ) u (x+dx ,t )xLOu (x ,t ) u (x+dx ,t )xLO2,0,0(0,)0,(,)0,0(,0)0,(,0)(),0tt xx t u a u x L t u t u L t t u x u x x x L εψ⎧=<<<<+∞⎪==<<+∞⎨⎪==<<⎩I εερψ=与侧面交换所留下的热量11()side k u u S dt - 侧面是一圆柱2side S rdx π=与侧面交换所留下的热量1111()()2side k u u S dt k u u rdxdt π-=-由热量守恒有11222211((,)(,)(,)(,))()20,02(),,x x t t xx kdt u x dx t s x dx t u x t s x t c sdxu dt k u u rdxdtdt dx k k u a u b u u a b c c rρπρρ++-=--→→-=--==P26 ex4(参考ppt 数理方程3p6,p7) (1)000|0|x x x L x u x L u u ======端绝热,没有热流流入q=0,i.e 端保持温度,(2) 00||x x x x x x L x q ku q u kx L q ku q u k====-==1122热流流入=-(注意负号表示流入的方向和外法方向相反),i.e 热流流入=(注意正号表示流入的方向和外法方向相同),i.e(3)0112120||(|),())|()x x L x L x x L x u u ux L k k u u x k h u t ku hu h t θθ======∂=-=-∂==+=端保持温度,处有热交换这里所以(P36 ex 1(参考ppt 数理方程4 p7-10)(1) 1112212112212221112222,2,30,)a a a a a a a a a a a a aa Hyperbolic ∆=-=-===∆=>判别式这儿故方程的类型为双曲((2) 111221211221222111222,,0,)a a a a a a a a a a a a aParabolic ∆=-=-===∆=判别式这儿故方程的类型为抛物((3)111221211221222 11122222,,0,)a aa a aa aa a a a a aaElliptic∆=-=-===∆=-<判别式这儿故方程的类型为椭圆((4)1112212112212221112221,0,0,0,)0,0,),0,0,))a aa a aa aa a a xx Elliptic x x Hyperbolicx Parabolicmixed type∆=-=-===<>⎧⎪∆=-><⎨⎪==⎩判别式这儿当故方程的类型为椭圆(当故方程的类型为双曲(当故方程的类型为抛物(故方程的类型为混合型(2(1)211122221212()20()10901 or (2)9or9.or99(,)()()()(9) dy dya a adx dxdy dydx dxdy dydx dxy x C y x Ci ey x C y x Cy xy xuu x y f g f y x g y x ξηξηξη-+=-+====+=+-=-==-⎧⎨=-⎩∂=∂∂=+=-+-2特征ODE为即故(1)令原方程变为(3)211122221212()20()83013or (2)222or23.2or23223(,)()()(2)(23) dy dya a adx dxdy dydx dxdy dydx dxy x C y x Ci e y x C y x Cy xy xuu x y f g f y x g y x ξηξηξη-+=-+====+=+-=-==-⎧⎨=-⎩∂=∂∂=+=-+-2特征ODE为即4故(1)令原方程变为P56 ex2(1)(参考ppt数理方程5,p4-10)2000222,(0,0)0,00,)(,)()(),(1)0(2)0Eige 0,0(0)0,()0tt xx x x L t t t tt xx u a u x L t u u u u x L x u x t T t X x T X u a u a T Xconst ODEX X T a T X X x L X X L λλλλλ====⎧=<<>⎪⎪==⎨⎪==-⎪⎩=''''=⇒==-≡''''+=+=''+=<<⎧⎨==⎩(设得到由边界条件得固有值问题(nvalue problem)通解222222210()cos sin (0)0,()00,sin 0(1,2,)()sin 0()cos sin(,)(cos sin )sin00,(,)n n n n n n n n n n n t n X x A B X X L A n n n n X x B xL L n T a T Ln at n atT t C D L Ln at n at n xu x t C D L L L uC u x tD πππλπλλπππππ∞===+==⇒==⇒====''=+==+=+=⇒==∑代入通解由初值条件113330sin sin(,0)()sin()222()sin (cos 1)n n t n n L n n at n xL L n n xu x D L L n n x L D x L x dx n L L L L n ππππππππ∞=∞==⨯=-=--∑∑⎰EX3 (1)0,0(0)0,()0(0)00()000(0)00()000()(0)0,()00,sin 0(1,2,X X x L X X L X Be X A B X L Be A B X Ax BX B X L AL B A B X x A B X X L A n n λλλλλλπ''+=<<⎧⎨==⎩<=+=⇒+==⇒+===<==+=⇒==⇒+====>=+==⇒==⇒==0,则0只有零解0只有零解0通解222)(()sin n n n n n X x B xL Lππλ==固有值)(固有函数)(2)2222222222122,ln 11111111100,0(()()sin()sin(ln )t t t n n n n n n n x e t xdy dy dt dy dx dt dx x dtdy dy d d d y dx x dt dx dx dxdy ddy dt x dt x dxdy ddy dt x dt x x dt dy d y x dt x dt d yy dty y n y x y t B t B x E λλπλλ=========-+=-+=-+⎧+=⎪⎨⎪==⎩====原方程变为固有值)注原方程为uler 型方程P60Ex12000222,(0,0)0,00,)(,)()(),(1)0(2)0Eige 0,0(0)0,()0(t xx x x L t t t t xx u a u x L t u u u u x L x u x t T t X x T X u a u a T Xconst ODEX X T a T X X x L X X L X x λλλλλ====⎧=<<>⎪⎪==⎨⎪==-⎪⎩='''=⇒==-≡''''+=+=''+=<<⎧⎨==⎩(设得到由边界条件得固有值问题(nvalue problem)通解222222222101)cos sin (0)0,()00,sin(1,2,)()sin0()(,)sin(),(,0)sin()2()sin n n n n n n n a tn a tnn t n n n A B X X L A n n n n X x B x L Ln T a T L T t e n x u x t CeLu x L x n xu x C Ln x C x L x L λλπππλπλλπππ-∞-==∞==+==⇒==⇒===='=+====-==-∑∑代入通解由初值条件333022(cos 1)L L dx n L L n ππ⨯=--⎰P70 Ex 2201222201221222200010,00000(1),,(0,0)0,0,P60,EX1(,)sinn axxx x x L axx aLx L aL t xx x x L t a t n n u V WW Ae W W e W A C x C aAW C a e W A C L C aA e A C C a L a V a V x L t V V V T W n x V x t C e Lλπ-==-=-=-===-==+⎧=-⎪⎨==⎪⎩=-++=⇒-+==⇒-++=-==⎧=<<>⎪⎪==⎨⎪=-⎪⎩=重复的步骤22202022222(1)()sin 22(1cos )(1cos )()ax aL L n at e A e A n x C A x T dx L a a L a L T A e np L np np np a L n p π∞----=--+-=--+∑⎰P70 Ex 3(见ppt 数理方程7 p13-15)()20002221cos sin ,0,00,00,00,0(0)0,()0()cos cos sin ()cos ttxx x x x x L t t t n n n n n x u a u A t x L t Lu u u u X X x L X X L n Ln X x A xL x n A t f t xL L πωλπλπππω====∞=⎧=+<<>⎪⎪==⎨⎪==⎪⎩''+=<<⎧⎨''==⎩===∑固有值问题固有值固有函数121112111110sin ()cos ()cos0()sin ()02(,)()cos(,)()cos()sin (0)0,(0)0()sin sin ()1{cos[(2n n n n n tn A t f t x f t x LLf t A t f t n n xx u x t T t u x t T t LL a T T A t L T T L a T t A t d aL ππωωπππωπωτττπω∞=∞=--===≥=⇒=⎧''+=⎪⎨⎪'==⎩=-+∑∑⎰(),解上述ODE 的初值问题得0)]cos[()]}(sinsin )/[()()]sin sin (,)cos ()()ta a a a t t d L L L L a aa a t t LL L L a at t LA x L L u x t a a a L LL ππππτωττππππωωωωππωωππππωω---+=-+--=+-⎰ P76 ex 2(参考ppt 数理方程8 p6)12012121021221212000(),()()(),,(0,0)0,0(),()P56,EX2(1)xx x x L x sx xsx Lxs t xx x x L t t t u V W W f x WM W M W f y dyds C x C W M C M W M f y dyds C L M f y dyds M C C M LV a V x L t V V V x W V x ϕψ=========+=-⎧⎨==⎩=-++=⇒==⇒-+=-==⎧=<<>⎪⎪==⎨⎪=-=⎪⎩⎰⎰⎰⎰⎰⎰重复1(,)(cossin )sin n n n n at n at n xV x t C D L L Lπππ∞==+∑的步骤00002()(())sin ,2()()sin L t n L tt n n xV x W C x W dx L Ln n xV x D x dxL L Lπϕϕππψψ===-⇒=-=⇒=⎰⎰由初值条件P76 ex 22110120001()()(,)()(,)(,)(,)(1)0,0()(,0),()(,)(2)0,00,00(3)0,0()(,0),x x a y y bx a x y y b x ax y y y y W x y y xa u x t V x t W x t V f WVVVx W x Vx W x b V V VV f W V V V V V VVV x W x Vϕϕϕψψψ============-=+=+⎧∆=-∆⎪⎪==⎨⎪=-=-⎪⎩=+⎧∆=-∆⎪⎪==⎨⎪⎪==⎩∆====-2222()(,)(,)()()0000(0)0,()0,sin()bn n n x W x b ppt V x y X x Y y X Y X Y X Y X Y X X Y Y X X X X a n n X B x a aψλλλλππλ⎧⎪⎪⎨⎪⎪=-⎩=''''''''+=⇒-==''+=''-=''+=⎧⎨==⎩⇒==解方程(3)以下步骤参考数理方程6page 17-18设得到ode11102200(,)()sin(),2()(,0)(()(,0))sin()2()(,)(()(,))sin()n n y y a an n n n n y y aan n n ay n n an n b b aay bn n Y Y Y C eD en V x y C eD ex an V x W x C D x W x x dxa a n Vx W x b C eD ex W x b x dx a app ππππππλππψψπψψ-∞-==-=''-==+=+=-⇒+=-=-⇒+=-∑⎰⎰解方程(2)以下步骤参考02221012()(),sin()()()sin(()()()())()sin()()()0,0n n n n n n n n n n n n n n n n n n y x bt V Y y X x n n X x a af W X x n f f W f y x LV f W n Y y X x Y y X x f y x Ln Y y Y y f y LVVππλπππ∞=∞=∞∞=======-∆=-∆=∆=-∆⇒''''+=''-===∑∑∑∑数理方程7page 8-13将展开为的级数()由边界条件得20()()()0,0nn n n n y b y ODE n Y y Y y f y L Y Y π==⎧''-=⎪⎨⎪==⎩到非齐次的边值问题()P90 ex1(1) 直接用D ’lambert 公式23322311(,)[()()]()2211(sin()sin())221sin cos [()()]6sin cos 3x atx at x at x atu x t x at x at d ax at x at d a x at x at x at aa x at x t tϕϕψξξξξ+-+-=++-+=++-+=++--=++⎰⎰(2) 直接用D ’lambert 公式2211(,)[()()]()2211(55)2215[()()]45x atx at x at x at u x t x at x at d a d ax at x at a xtϕϕψξξξξ+-+-=++-+=++=++--=+⎰⎰ P92 EX1参考ppt 数理方程10 pg 5D'lambert 11(,)[()()]()2211(,)[()()]()2211[sin()sin()]cos 221sin cos (sin()sin())2sin cos x atx at x atx at x at x atu x t x at x at d ax t a u x t x at x at d a x at x at d a x at x at x at ax ξξϕϕψξξξξ+-+-+-=Φ++Φ-+ψ≤=++-+=++-+=-+--=⎰⎰⎰半无界弦振动的公式当时sin cos 11(,)[()()]()2211[sin()sin()](sin()sin())22sin cos sin cos x atat x at xat ax t a u x t x at at x d ax at x at x at x at ax atx at aϕϕψξξ+-+>=+--+=++--++-=+⎰当时P108 EX1(())()()()()()j x jxyF g x f f g x e dy f x g y edyωωω+∞--∞+∞--∞===⎰⎰()()[()]()()()()()j x jxy j x jx y jx y F f x f x e dx g y e dye dxg y edydxg y e dx dyωωωω+∞--∞+∞+∞---∞-∞+∞+∞-+-∞-∞+∞+∞-+-∞-∞====⎰⎰⎰⎰⎰⎰⎰1()()()()()[1]121()22()2()[()]()()2()()2()()2i x i x jx y jx y jx y x F e d x e d y e dxDirac y e dxF f x g y e dx dyg y y dyg y y dy ωξωωωωδωπδξωππδωδπδωπδωπδω-∞-∞∞--∞+∞-+-∞+∞-+-∞+∞+∞-+-∞-∞+∞-∞+∞-∞==-=--=+===+=--=⎰⎰⎰⎰⎰⎰⎰⎰注意所以注意函数是偶函数()11()()[()][2()]g f x F F f x F g πωπω---==-另实际上只需证明1[2()]()()()()j x j x jyx F g g e d g e d g y e d f x ωωμμπωωωμμμ+∞--∞+∞-=--∞+∞--∞-=-===⎰⎰⎰Ex 3(1) 参见ppt 数理方程11 pg 6 例1||||0(1)(1)00(1)(1)02[]112111x x i x i xi x i xi xF ee e dxe dx e dxedx edx i i ωωωωωωωω∞----∞+∞-+--∞+∞-+--∞==+=+=+=+-+⎰⎰⎰⎰⎰(2)参见ppt 数理方程 12 pg 42222222()222222()424[()]()()()2224[()]i x x xi xi x cx F f x eedx edxi i i i x x x x F f x e edxeePoisson edx ωππωπωωπππωπωωωωωπππππ∞+∞-+---∞-∞+∞--+-∞-+∞--∞==+=+-=++====⎰⎰⎰⎰利用定义对二次多项式配方所以注意这里利用了积分(3)2222222()222222()424[()]Re()Re ()()()2224[()]Re(Re(Re(Re()4ia x x iax i xaiia x aaiF f x eedx edxx x x x aaaaa F f x e edxe eeωωωωπωωωωωπω∞+∞---∞-∞+∞---∞---==-=--=--=====-⎰⎰⎰利用定义对二次多项式配方所以22)4cx a Poisson edx +∞--∞=⎰注意这里利用了积分P155 ex 1(1) 参见ppt 数理方程 14例 4(pg 15) 上半圆内任一点(,)M x y上半圆内定点: 000(,)M x y 的下半平面镜象点: 000(,)M x y '=-M 0的圆外镜象点: 11100(,)(,)M x y k x y ==其中22200R k x y =+,R 是圆的半径 M 1的下半平面镜象点: 111(,)M x y '=-0011000111(,)[ln ln ln ln ]2MM MM MM MM R R G M M r r r r r r π''=--+'10000010,,,MM MM r OM r OM r MM r MM ''====(2) 上半球内任一点(,,)M x y z上半球内定点: 0000(,,)M x y z 的下半平面镜象点: 0000(,,)M x y z '=-0M 的圆外镜象点: 1111000(,,)(,,)M x y z k x y z ==其中2222000R k x y z =++,R 是球的半径1M 的下半平面镜象点: 1111(,,)M x y z '=-0011000111(,)[]4MM MM MM MM R R G M M r r r r r r π''=--+' 10000010,,,MM MM r OM r OM r MM r MM ''====Ex 2(1)首先证明000000(),() ()()()()( Green ()LL D DC u M C MD u M G M M M dsnG C dsnC G M M dx C M M dx Cϕθϕδ=≡∀∈∂-=∂∂=∂=-∆-=-=⎰⎰⎰⎰如果则由第三Green 公式由公式)0220200022020022020001()1)()1212cos()1)1212cos 1)11212cos D u M r d r r r Cd r r r d r r πππϕθθπθθθπθθπθ-=--+-=-+-=-+⎰⎰⎰注意如果是以为圆心,以为半径的圆盘则由Poisson 公式(((因此022020000220002000002222000022000000()cos ()1)()1212cos()1)cos 1212cos()1)cos 1)sin 11cos sin 212cos 212cos 12a u M r d r r r a d r r r r a d a d r r r r ππππϕθθϕθθπθθθθθθπθθθθθθθθθθθπθπθπ=-=--+--+=--+---=--+-+⎰⎰⎰⎰(1)如果则((()用代替(((220200022020002220020000222200020000022000001)cos 12cos 1)cos 212cos 1)1(1)2212cos 1)11)122212cos 1)122r d r r r d r r r r d r r r r r r d r r r r r r r r r ππππθθθθθπθθπθθπθ--+-=-+-+=---+-+-=-+-+-+=-+=⎰⎰⎰⎰(((((2202000220200001)sin 1212cos 1)1ln()2212cos 0r d r r r d r r r ππθθθπθθπθ--+-=--+=⎰⎰(( 0000000()cos . (,)= cos (,)= cos (2)()cos (,)= +cos u M ar i e u r ar u r ar b a u r b ar θθθθθϕθθθθ==+同理如果 事实上22022202200112cos 1112cos 12cos 1112cos 12cos d d d d d ππππππθρθρθθρθρρθρθθρθρρθρ-+=+-+-+=+-+++⎰⎰⎰⎰⎰tan 22222002222222222000022111122111112()12()111122(1)(1)(1)(1)11112tan()2tan()(1)(1)1(1)(1)12111212t dt dt t t t t t t dt dt t t a t a t θρρρρρρρρρρρρρρρρπρρπρ=+∞+∞+∞+∞+∞+∞=+--++-+++++=+-++++--+=++-++--=---⎰⎰⎰⎰由(万能公式)2201cos d πθθρ=+⎰ P182 ex 1参见ppt 数理方程14 pg 18分离变量,令()()u P Z z ρ=10zz u u u ρρρρ++=(1)()0P P Z PZ ρρ'''''++= (2)P P Z P Zρμρ'''''+=-= 由边界条件得到固有值问题 (3)0(0)()0Z Z Z Z h μ''+=⎧⎨==⎩0P P P ρμρ'''+-=由(3)其固有值222n n hπμ= 所以Bessel 方程222()0n P P P hπρρρ'''+-= 2 证明参见ppt 14 pg 17 220(1)()2!(1)m n mn n m m x J x m n m -+∞--+=-=Γ-++∑(1/2)21/2(1/2)2012(1)()2!(11/2)m m m m n xJ x m m -+∞--+==-=Γ+-∑(11/2)(1/2)(1/2)(1/2)(3/2)(1/2)(1/2)m m m m m Γ+-=-Γ-=--Γ=(1/2)2(1/2)2(1/2)2(1/2)2(1/2)21/2(1)2!(11/2)(1)(21)!!22m mm m mm m mx m m x m m -+-+-+-+-+-Γ+--=-=所以(1/2)21/21/20()2m m m J x -+∞-==∑ 注意20(1)cos (2)!m mm x x m ∞=-=∑(1/2)21/21/2011/2220()2(1)(2)!m m m m m m J x x x m x -+∞-=∞-==-==∑∑ Ex3 220221212210221021(1)()2!(1)(1)()2!(1)22110(0)0m n mn n m m m n m n n m m n m x n x J x m n m x J x m n m n m x J +∞+=+-∞-+-=+-=--=Γ++-=Γ+++-≥==∑∑, 第二章两道题目,25分第三章一道题目,15分,第四五章两道题目,30分第六章两道题目,15分第七章两道题目,15分。
数学物理方程1 电子科技大学 李明奇

( n 2)
an 1 ( x) y an ( x) y f ( x)
y ( n ) a1 ( x) y ( n 1) a2 ( x) y ( n 2) an 1 ( x ) y an ( x) y 0
y ( n ) a1 y ( n 1) a2 y ( n 2) an 1 y an y 0
单摆: = (t)
d 2 a sin 0 2 dt
弦振动:u=u(x,t )
u 2 u a 2 2 t x
2 2
5
1 0.5 n 0 0.5 1 2 1.5 t 1 0.5 0 0 0.2 0.4 x 0.6 0.8 1
1 0 .5 n 0 0 .5 1 2 1 .5 t 1 0 .5 0 0 0 .2 0 .4 x 0 .6 0 .8 1
15
1 0.5 n 0 0.5 1 2 1.5 t 1 0.5 0 0 0.2 0.4 x 0.6 0.8 1
细金属丝的质量
f(x) O xi f(x) O x x+dx L x
ξi
xi+1+△xi L x
f ( )x
i 1 i
n
i
L
0
f ( x )dx
16
1 0.5 n 0 0.5 1 2 1.5 t 1 0.5 0 0 0.2 0.4 x 0.6 0.8 1
12
1 0.5 n 0 0.5 1 2 1.5 t 1 0.5 0 0 0.2 0.4 x 0.6 0.8 1
9. Bessel 方程
x 2 y xy ( x 2 2 ) y 0
1 J0(x) J1(x) 0.5 J2(x) J 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数理方程与特殊函数检测题(一)
1.(10分) 细杆受到某种外界扰动而产生纵向振动。
以(,)u x t 表示杆上位于x 的点在
时刻t 偏离平衡位置的位移。
假设振动过程中所发生的张力服从胡克定律。
求证(,)u x t 满足以下方程,其中()x ρ为杆的线密度函数,Y 为杆的杨氏弹性模量. (10分)
()u u x Y t t x x ρ∂∂∂∂⎡⎤⎛⎫= ⎪⎢⎥∂∂∂∂⎣⎦⎝⎭
2. 把如下定解问题的非齐次边界条件化为齐次边界条件:(10分)
()[]()
201200,0,0(),()
(),()0tt xx x x x l t t t u a u x l t u ku h t u h t u x u x x l ϕψ====⎧=<<>⎪
+==⎨⎪
==<<⎩.
3.设有长度为L 的,均匀的,内部无热源的热传导细杆,侧面绝热,其左端保持零度,右端绝热,初始温度分布为已知,求温度分布函数. (10分)
4.求解如下波动方程的初值问题:(15分)
2
0(,)(,0)
(),()tt xx t t t u a u f x t x R t u x u x ϕψ==⎧=+∈>⎪⎨
==⎪⎩.
5.求f (x )的Fourior 变换和g (x )的Laplace 变换:(20分)
0,2
(),()sin ,22
a x f x g x kx a a E x ⎧
>⎪⎪==⎨⎪-≤≤⎪⎩.
6.求上半空间的Dirichilet 问题.(10分)
00,0
(,)
z u z u x y ϕ=∆=>⎧⎪⎨
=⎪⎩
7.求证:()(1)(), n n n J x J x n N -=-∈.(13分)
8.求
12
21
(1)()n x P x dx -'-⎡⎤⎣⎦⎰
.(12分)。