EMP8042

合集下载

intel_8042芯片编程

intel_8042芯片编程

ps/2 键盘硬件概述对于驱动来说,和键盘相关的最重要的硬件是两个芯片。

一个是 intel 8042 芯片,位于主板CPU 通过 IO 端口直接和这个芯片通信,获得按键的扫描码或者发送各种键盘命令。

另一个是 intel8048 芯片或者其兼容芯片,位于键盘中,这个芯片主要作用是从键盘的硬件中得到被按的键所产生的扫描码,与 i8042 通信,控制键盘本身。

当键盘上有键被按下时,i8048 直接获得键盘硬件产生的扫描码。

i8048 也负责键盘本身的控制,比如点亮 LED 指示灯,熄灭 LED 指示灯。

i8048 通过 ps/2 口和 i8042 通信,把得到的扫描码传送给i8042。

CPU 通过读写端口,可以直接把 i8042 中的数据读入到 CPU 的寄存器中,或者把 CPU 寄存器中的数据写入 i8042 中。

ps/2 口一共有 6 个引脚,可以拔下 ps/2 插头看一下,这 6 个引脚分别为,时钟,数据,电源地,电源+5V,还有2个引脚没有被用到。

由于只有一个引脚传输数据,所以 ps/2 口上的数据传输是串行的。

下面几幅图是一个键盘的内部,可以看到用来产生扫描码的按键矩阵( Key Martix ),可以看到键盘中的芯片(这里不是i8048,是一个兼容的其他型号的芯片)。

i8042 键盘控制器键盘驱动直接读写 i8042 芯片,通过 i8042 间接的向键盘中的 i8048 发命令。

所以对于驱动来说,直接发生联系的只有 i8042 ,因此我们只介绍 i8042 ,不介绍 i8048。

象 i8042,i8048 这样的芯片,本身就是一个小的处理器,它的内部有自己的处理器,有自己的 Ram,有自己的寄存器,等等。

i8042 有 4 个 8 bits 的寄存器,他们是 Status Register(状态寄存器),Output Buffer(输出缓冲器),Input Buffer (输入缓冲器),Control Register(控制寄存器)。

Elite Semiconductor EMP8042 高压低功耗线性调压电路说明书

Elite Semiconductor EMP8042 高压低功耗线性调压电路说明书

High Input Voltage, Low Quiescent Current, Low-Dropout Linear RegulatorGeneral DescriptionThe EMP8042 is a high voltage, low quiescent current, low dropout regulator with 150mA output driving capacity. The EMP8042, which operates over an input range of 3V to 20V, is stable with any capacitors, whose capacitance is larger than 1 F, and suitable for powering battery-management ICs because of the virtue of its low quiescent current consumption and low dropout voltage. Below the maximum power dissipation (please refer to Note. 5), It guarantees delivery of 100mA output current, and supports preset output voltages ranging from 1.3V to 6.0V with 0.1V increment.EMP8042 also includes bandgap voltage reference, constant current limiting and thermal overload protection. It’s available in both of SOT-23-5 and SOT-89-3 miniature packages. ApplicationsLogic Supply for High Voltage BatteriesKeep-Alive Supply3-4 Cell Li-ion Batteries Powered systemsFeatures150mA output current driving capacity780mV typical dropout at Io=150mA13µA typical quiescent current1µA typical shutdown mode3.0V to 20V input rangeStable with small ceramic output capacitors (1µF)Over temperature and over currentprotection±2.5% output voltage toleranceTypical ApplicationConnection DiagramsOrder informationEMP8042-XXVF05NRR XX Output voltage VF05 SOT-23-5 Package NRR RoHS & Halogen free packageRating: -40 to 85°CPackage in Tape & ReelEMP8042-XXVG03NRR XX Output voltage VG03 SOT-89-3 Package NRR RoHS & Halogen free packageRating: -40 to 85°CPackage in Tape & ReelOrder, Marking and Packing InformationPackageSOT-23-5 SOT-89-3Pin FunctionsFunctional Block DiagramFIG .1. Functional Block Diagram of EMP8042Absolute Maximum Ratings (Notes 1, 2)V IN ,EN -0.3V to 22V Power Dissipation (Note 5) Storage Temperature Range -65°C to 150°C Junction Temperature (T J ) 160°CLead Temperature (Soldering, 10 sec.) 260°C ESD RatingHuman Body Model 2KVOperating Ratings (Note 1, 2)Supply Voltage 3.0V to 20V Operating Temperature Range -40°C to 85°C Thermal Resistance (θJA , Note 3)) 152°C/W (SOT-23-5)101°C/W (SOT-89-3)Thermal Resistance (θJC, Note 4)) 81°C/W (SOT-23-5) 54°C/W (SOT-89-3)Electrical CharacteristicsT A = 25°C, V OUT (NOM)=5V; unless otherwise specified, all limits guaranteed for V IN = V OUT +1V, C IN = C OUT =1µF.SymbolParameterConditionsMinTyp (Note 6)Max Units V IN Input Voltage 3.020VΔV OTLOutput Voltage ToleranceI OUT = 10mAV OUT (NOM) +1V ≤ V IN ≤ 20V -2.5 +2.5% ofV OUT (NOM) Vref Reference voltage1.176 1.200 1.224 V I OUT Maximum Output Current Average DC Current Rating 150 mA I LIMITOutput Current Limit300 mAI OUT = 0.1mA13 50 I OUT = 100mA 50 100 Supply Current I OUT = 150mA80 130 I QShutdown Supply Current V OUT = 0V, EN = GND 1 5 µA I OUT = 30mA 135 I OUT = 100mA 500 V DODropout Voltage V OUT =5.0V (Note. 7)I OUT = 150mA780mV Line RegulationI OUT = 1mA,(V OUT + 1V) ≤ V IN ≤ 20V0.1 % ΔV OUTLoad Regulation0.1mA ≤ I OUT ≤100mA 0.5 %e n Output Voltage NoiseI OUT =10mA,10Hz ≤ f ≤ 100kHzV OUT = 5.0V 800 µV RMSV IH , (V OUT + 1V) ≤ V IN ≤ 20V 1.0 V EN EN Input Threshold V IL , (V OUT + 1V) ≤ V IN ≤ 20V0.3VI ENEN Input Bias Current EN = GND or V IN0.1 µAThermal ShutdownTemperature 160T SDThermal Shutdown Hysteresis30 ℃t ON Start-Up Time C OUT = 1.0µF, V OUT at 90% of Final Value500µsNote 1: Absolute maximum ratings indicate limits beyond which damage may occur.Note 2: All voltages are in respect to the potential of the ground pin.Note 3: θJA is measured in the natural convection at T A =25℃ on a high effectively thermal conductivity test board (2layers, 2S0P).Note 4: θJC represents the resistance between the chip and the top of the package case.Note 5: Maximum power dissipation for the device is calculated using the following equation:JAθAT - J(MAX)TD PWhere T J (MAX) is the maximum junction temperature, T A is the ambient temperature, and θJA is the junction-to-ambient thermal resistance. For example, for the SOT-89-3 package θJA =101°C/W, T J (MAX)=160°C and using T A =25°C, the maximum power dissipation is 1.33W.The derating factor (-1/θJA )=-9.9mW/°C. Below 25°C the power dissipation figure can be increased by 9.9mW per degree and similarly decreased by this factor for temperatures above 25°C.Note 6: Typical values represent the most likely parametric norm.Note 7: Dropout voltage is measured by reducing V IN until V OUT drops to 98% its nominal value.Typical Performance CharacteristicsUnless otherwise specified, V IN = V OUT (NOM) + 1V, V OUT =5V, C IN = C OUT = 1.0µF, T A = 25°C~400us~400usTypical Performance Characteristics (cont.)Unless otherwise specified, V IN = V OUT (NOM) + 1V, V OUT =5V, C IN = C OUT = 1.0µF, T A = 25°CLine transient (I OUT =1mA) Line transient (I OUT =30mA)Vin (1V/div)Vout (20mV/div)Time (100us/div)Vin (1V/div)Vout (50mV/div)Time (100us/div)Load transient (V OUT =5.0V)Load transient (V OUT =5.0V)Vout (200mV/div)Iout (50mA/div)Time (100us/div)Application InformationGeneral DescriptionReferring to Fig.1 as shown in the Functional Block Diagram section, the EMP8042 adopts the classical regulator topology in which negative feedback control is used to perform the desired voltage regulating function. The negative feedback is formed by using feedback resistors (R1, R2) to sample the output voltage for the non-inverting input of the error amplifier, whose inverting input is set to the bandgap reference voltage. By the virtue of its high open-loop gain, the error amplifier operates to ensure that the sampled output feedback voltage at its non-inverting input is virtually equal to the preset bandgap reference voltage.The error amplifier compares the voltage difference at its inputs and produces an appropriate driving voltage to the P-channel MOS pass transistor to control the amount of current reaching the output. If there are changes in the output voltage due to load changes, the feedback resistors register such changes to the non-inverting input of the error amplifier. The error amplifier then adjusts its driving voltage to maintain virtual short between its two input nodes under all loading conditions. In a nutshell, the regulation of the output voltage is achieved as a direct result of the error amplifier keeping its input voltages equal. This negative feedback control topology is further augmented by the shutdown, the fault detection, and the temperature and current protection circuitry.Output CapacitorThe EMP8042 is specially designed for use with ceramic output capacitors of as low as 1.0µF to take advantage of the savings in cost and space as well as the superior filtering of high frequency noise. Capacitors of higher value or other types may be used, but it is important to make sure its equivalent series resistance (ESR) is restricted to less than 0.5Ω. The use of larger capacitors with smaller ESR values is desirable for applications involving large and fast input or output transients, as well as for situations where the application systems are not physically located immediately adjacent to the battery power source. Typical ceramic capacitors suitable for use with the EMP8042 are X5R and X7R. The X5R and the X7R capacitors are able to maintain their capacitance values to within ±20% and ±10%, respectively, as the temperature increases.No-Load StabilityThe EMP8042 is capable of stable operation during no-load conditions, a mandatory feature for some applications such as CMOS RAM keep-alive operations.Input CapacitorA minimum input capacitance of 1µF is required for EMP8042. The capacitor value may be increased without limit. Improper workbench set-ups may have adverse effects on the normal operation of the regulator. A case in point is the instability that may result from long supply lead inductance coupling to the output through the gate capacitance of the pass transistor. This will establish a pseudo LCR network, and is likely to happen under high current conditions or near dropout. A 10µF tantalum input capacitor will dampen the parasitic LCR action thanks to its high ESR. However, cautions should be exercised to avoid regulator short-circuit damage when tantalum capacitors are used, for they are prone to fail in short-circuit operating conditions.Power Dissipation and Thermal ShutdownThermal overload results from excessive power dissipation that causes the IC junction temperature to increase beyond a safe operating level. The EMP8042 relies on dedicated thermal shutdown circuitry to limit its total power dissipation. An IC junction temperature T J exceeding 160°C will trigger the thermal shutdown logic, turning off the P-channel MOS pass transistor. The pass transistor turns on again after the junction cools off by about 30°C. When continuous thermal overload conditions persist, this thermal shutdown action then results in a pulsed waveform at the output of the regulator. The concept of thermal resistance θJA (°C/W) is often used to describe an IC junction’s relative readiness in allowing its thermal energy to dissipate to its ambient air. An IC junction with a low thermal resistance is preferred because it is relatively effective in dissipating its thermal energy to its ambient, thus resulting in a relatively low and desirable junction temperature. The relationship between θJA and T J is as follows:T J = θJA x (P D) + T AT A is the ambient temperature, and P D is the power generated by the IC and can be written as:P D = I OUT (V IN - V OUT)As the above equations show, it is desirable to work with ICs whose θJA values are small such that T J does not increase strongly with P D. To avoid thermally overloading the EMP8042, refrain from exceeding the absolute maximum junction temperature rating of 160°C under continuous operating conditions. Overstressing the regulator with high loading currents and elevated input-to-output differential voltages can increase the IC die temperature significantly.ESMT EMP8042 Application Circuit for ADJ outputPackage Outline Drawing SOT-23-5TOP VIEWSIDE VIEWMARKDETAIL AAPackage Outline DrawingSOT-89-3Min1.40.40.354.4Dimension in mmRevision HistoryRevisionDateDescription0.1 2010.08.27 Original1.0 2011.02.231. Skip “Preliminary”2. Page1 revise “Typical Application“3. Page2 add SOT-23-5 package4. Page3 add SOT-23-5 “Pin Functions”1.1 2011.12.121) Added ADJ output voltage option2) Modified 100mA output driving capacity to 150mA. 3) Modified the output voltage accuracy is based on Iout=10mA this condition.4) Added Iout=150mA spec. into electrical characteristics table. 1.2 2012.04.201) Added the typical value of supply current I Q =13uA at Iout=0.1mA.2) Updated the maximum value of supply current I Q =50uA at Iout=0.1mA.3) Updated the package outline drawing. 1.3 2012.08.311) Added the typical value of shutdown supply current I Q =1uA at EN=GND. 2) Added the EN input Threshold. 1.4 2013.10.16 Updated the package outline drawing.Important NoticeAll rights reserved.No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express , implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs. ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.。

基于嵌入式指纹识别系统设计

基于嵌入式指纹识别系统设计

毕业设计基于嵌入式指纹识别系统设计姓名:学号:班级:专业:所在系:指导老师:基于嵌入式指纹识别系统设计摘要随着科技的蓬勃发展,人们越来越重视自己的个人隐私,由此个人身份识别的需求日益增加。

由于指纹拥有独特的不变性,使得指纹识别技术与传统的身份识别方法相比起来,更加的安全和可操作,所以基于传统的身份识别技术的不足可以被克服,指纹识别日益被认可。

基于指纹认证技术,指纹识别是一个重要手段,其历来通常在PC平台上运行,但随着现代社会的高速发展,指纹识别系统的需求不断提升,同时市场对便携性和易用性的要求更加走高,指纹产品正在朝着嵌入式技术的发展方向。

本文首先介绍了指纹识别技术的研究目的与意义和市场需求,并且给出了嵌入式指纹识别系统的原理,在通过对传统身份认证技术的优缺点进行适当分析后,进而提出了利用生物特征识别的身份认证方式,在它的基础上,设计并实现嵌入式指纹识别系统。

同时提出了嵌入式指纹识别系统的体系架构,主要包括基于指纹模块的设计与实现和MSP430F2370主控芯片的硬件电路、固件端UART 驱动的实现。

在嵌入式指纹识别系统的设计中,硬件方面采用具有性价比优势的MSP430F2370芯片作为主控芯片和TA0701的指纹芯片,并为系统设计了相应的电源和UART接口电路,实现了嵌入式指纹识别系统硬件模块的设计。

在软件方面,根据基于嵌入式的指纹识别系统的特点,本文设计的功能模块包括初始化、注册、指纹处理、登录、删除和出错报警。

使用IAR EMBEDDED WORKBENCH软件进行软件部分的调试。

并将程序烧写到芯片中,使用串口调试软件SSCOM32_E666对软件运行过程中存在的问题进行监视,配合编译软件进行命令的修改。

设计并实现了基于嵌入式的高安全性、高性价比的指纹识别系统。

关键字:指纹识别;嵌入式系统;UART;MSP430;TA0701Based on the Embedded Fingerprint System DesignABSTRACTWith the rapid development of technology, more and more people pay attention to their personal privacy, personal identification thereby increasing demand. Since the fingerprint has a unique invariant, so that fingerprint identification technology compared to traditional identification methods together, more secure and operational, so based on the shortcomings of traditional identification technologies can be overcome, fingerprint identification is increasingly being recognized. Based on fingerprint authentication technology, fingerprint recognition is an important tool, it has always been generally run on PC platforms, but with the rapid development of modern society, the demand for fingerprint identification system on the rise, while the market for portability and ease of use requirements more higher, fingerprint products are moving in the direction of the development of embedded technology.This paper introduces the purpose and significance and market needs fingerprint recognition technology, and gives the principle of embedded fingerprint identification system, after the adoption of the advantages and disadvantages of traditional authentication techniques proper analysis, and further proposed the use of biometrics authentication mode, in which, based on the design and implementation of embedded fingerprint identification system.Also proposed architecture embedded fingerprint identification system, including fingerprint module based design of hardware circuit, firmware side implementation and MSP430F2370 master chip UART driver implementations. In the design of embedded fingerprint identification system, the hardware used has a cost advantage of MSP430F2370 chip as the main chip and fingerprint TA0701 chip and system design of the appropriate power and UART interface circuit, embedded fingerprint identification system hardware module design. In terms of software, based on based on the characteristics of embedded fingerprint identification system, this paper designed function modules, including initialization, registration, fingerprint processing, log in, delete, and error alarm. Use IAR EMBEDDED WORKBENCH software debugging software section. And programmed into the chip using serial debugging software SSCOM32_E666 the software running the problems of monitor, modify, compile with software commands. We designed and implemented based on the embedded high security, cost-effective fingerprint recognition system.Key Words:Fingerprint Identification;Embedded System; UART; MSP430;TA0701.目录第一章绪论 (1)1.1 课题的研究目的与意义 (1)1.2 机器人的市场需求 (1)1.3 国内外发展现状 (2)1.4 论文研究内容及基本结构 (3)第二章课题设计方案的选型 (5)2.1 生物特征识别技术概述 (5)2.2 指纹识别技术介绍 (6)2.3指纹采集传感器技术 (8)2.4 关于MSP430单片机的概述 (9)2.5 UART串口通信 (9)2.6小节 (11)第三章嵌入式指纹识别系统硬件的设计 (12)3.1 嵌入式指纹识别系统的硬件结构 (12)3.1.1嵌入式指纹识别系统结构图 (12)3.1.2 硬件框图 (12)3.2 主控芯片选型 (13)3.2.1 选择具体的主控芯片类型 (13)3.2.2 指令系统 (15)3.2.3 寄存器描述 (15)3.3 指纹模块选型 (17)3.3.1指纹模块组 (17)3.3.2管脚分配 (18)3.3.3指纹处理芯片 (18)3.4电路原理图的设计与实现 (19)3.4.1 指纹模块电路 (20)3.4.2 FLASH电路 (21)3.4.3电压调整电路 (21)3.4.4U转串电路 (21)3.4.5烧写电路 (22)3.4.6电源电路 (23)3.4.7显示电路 (23)3.4.8按键电路 (24)3.5硬件实物 (24)3.6硬件调试 (24)3.7 小节 (25)第四章嵌入式指纹系统软件部分与实现 (26)4.1 整体结构 (26)4.2软件的总框图 (26)4.3软件系统的设计与实现 (27)4.3.1软件主工作流程 (27)4.3.2初始化模块实现 (28)4.3.3用户注册模块实现 (29)4.3.4指纹处理模块实现 (33)4.3.5登录 (35)4.3.6删除 (37)4.4软件调试 (38)4.4.1程序的编译 (39)4.4.2程序的烧写 (40)4.5小结 (42)第五章总结与展望 (43)参考文献 (44)致谢 (44)第一章绪论1.1 课题的研究目的与意义本课题的主要来源是人们在生产实践中对指纹识别系统的需求,随着社会日新月异的变化,个人身份识别在各种行业中的应用无处不在,同时也因为智能技术应用的快速发展个人身份识别的应用变得日益增长。

AD8042资料

AD8042资料

G=1 RL = 2k⍀ TO +2.5V 5V
2.5V
0V
1V
1␮s
Figure 1. Output Swing: Gain = –1, VS = +5 V
AD8042
CONNECTION DIAGRAM 8-Lead Plastic DIP and SOIC
OUT1 1 –IN1 2 +IN1 3
APPLICATIONS Video Switchers Distribution Amplifiers A/D Driver Professional Cameras CCD Imaging Systems Ultrasound Equipment (Multichannel)
PRODUCT DESCRIPTION The AD8042 is a low power voltage feedback, high speed amplifier designed to operate on +3 V, +5 V or ± 5 V supplies. It has true single supply capability with an input voltage range extending 200 mV below the negative rail and within 1 V of the positive rail.
CLOSED–LOOP GAIN – dB
15
VS = +5V 12 G = +1
9
CL = 5pF RL = 2k⍀ TO 2.5V
6
3
0
–3
–6
–9
–12
–15 1
10

er804二极管参数

er804二极管参数

er804二极管参数摘要:1.二极管简介2.二极管的参数及其意义3.ER804二极管的详细参数4.如何选择合适的二极管5.二极管的应用领域正文:一、二极管简介二极管(Diode)是一种半导体器件,具有单向导通特性。

它主要由P型半导体、N型半导体以及连接两者的PN结构组成。

当正向电压加在二极管上时,P型半导体与N型半导体之间的PN结处于导通状态,二极管允许电流通过;而当反向电压加在二极管上时,PN结处于截止状态,二极管不允许电流通过。

二、二极管的参数及其意义1.正向电压(V Forward):正向电压是指使二极管导通所需的最低电压。

不同类型的二极管具有不同的正向电压值。

2.反向电压(V Reverse):反向电压是指二极管所能承受的最高电压。

超过反向电压会导致二极管损坏。

3.正向电流(I Forward):正向电流是指二极管在正向电压下通过的电流。

正向电流与二极管的额定电流有关。

4.反向漏电流(I Reverse):反向漏电流是指二极管在反向电压下通过的电流。

反向漏电流越小,二极管的截止性能越好。

5.动态电阻(R Dynamic):动态电阻是指二极管在正向电压下,电流变化与电压变化之间的比率。

动态电阻越小,二极管的电压-电流特性越平坦。

6.温度系数(Temperature Coefficient):温度系数是指二极管的参数随温度变化的程度。

温度系数越小,二极管的性能越稳定。

三、ER804二极管的详细参数ER804是一款硅材料制成的小信号二极管,广泛应用于放大器、振荡器等电路。

以下是ER804二极管的详细参数:1.正向电压:2V2.反向电压:50V3.正向电流:150mA4.反向漏电流:100nA5.动态电阻:0.1Ω6.温度系数:±20%四、如何选择合适的二极管1.根据电路需求选择二极管的类型:如整流二极管、稳压二极管、开关二极管等。

2.确定二极管的电压、电流参数:确保所选二极管的电压、电流参数大于电路中的最大电压和电流。

TRG804X 系列雷达物位计-6.3GHz 使用说明书

TRG804X 系列雷达物位计-6.3GHz 使用说明书

TRG804XRADAR LEVEL MITTER-6.3GHzTRG804X系列雷达物位计-6.3GHz 使用说明书TRG804X-DT-JS-1006-2018(A)感谢您选择丹东通博电器(集团)有限公司的产品。

本使用说明书给您提供有关安装、连接和调试以及针对维护、故障排除和贮存方面的重要信息。

请在安装调试前仔细阅读并将它作为产品的组成部分保存在仪表的近旁,供随时翻阅。

并可通过输入版本号下载本说明书。

如未遵照本说明书进行操作,则本仪表所提供的防护可能会被破坏。

商标、版权和限制说明通博、通博电器、通博泵业、DDTOP、均为公司的注册商标。

本仪表的性能规格自发布之日起生效,如有更改,恕不另行通知。

丹东通博电器(集团)有限公司有权在任何时候对本说明书所述的产品进行修改,恕不另行通知。

质保丹东通博电器(集团)有限公司保证所有刮板流量计自出厂之日起,一年之内无材料和制造工艺方面的缺陷。

在质保期内,如产品出现质量问题而返回,提出的索赔要求经制造厂检验后确定属于质保范围内,则丹东通博电器(集团)有限公司负责免费为买方(或业主)维修或更换。

丹东通博电器(集团)有限公司对因设备使用不当,劳动力索赔、直接或后续损伤以及安装和使用设备所引起的费用概不负责。

除了关于丹东通博电器(集团)有限公司某些产品的特殊书面保修证明,丹东通博电器(集团)有限公司不提供任何明示或暗示的质量保证。

质量丹东通博电器(集团)有限公司通过了ISO9001质量体系认证,产品生产的全过程均严格依照质量体系的规定范围执行,对产品和服务质量提供最强有力的保证。

1安全提示 (4)1.1爆炸可能会导致死亡或严重伤害。

(4)1.2过程泄漏可能导致严重伤害或死亡。

(4)1.3不遵守安全安装准则可能导致死亡或严重受伤。

(4)2产品说明 (4)2.1 主要结构 (4)2.2 工作原理 (5)2.3包装 (5)2.4吊装运输时 (5)2.5仓储 (5)3技术特性 (5)3.1主要技术参数 (5)3.2 外观及性能参数 (5)3.3 防爆标志 (6)3.4执行标准 (6)4 外形尺寸示意图 (6)5开箱及检查 (7)5.1开箱验货注意事项 (7)5.2检查内容 (8)6安装 (8)6.1安装工具 (8)6.2安装技术要求 (8)7 仪表调试 (10)7.1 电气接线 (10)7.2调试操作过程 (11)8注意事项 (17)9故障分析与排除 (17)10拆卸 (18)10.1警告 (18)10.2 废物清除 (18)11 产品认证 (18)1安全提示出于安全的原因,明确禁止擅自改装或改变产品,维修或替换只允许使用由制造商指定的配件。

汽车电脑板常用易损芯片

汽车电脑板常用易损芯片

帕萨特/高端汽车电脑仪表通讯芯片 主营汽车电脑芯片 汽车电脑板易损芯片 贴片20脚
新宝来仪表芯片 贴片SOP16脚 汽车IC 汽车仪表芯片 液晶屏驱动芯片 贴片48脚
大众途观斯柯达明锐昊锐BCM汽车电脑板转向灯控制芯片 汽车电脑板芯片 新帕萨特BCM转向灯芯片 专业汽车IC 速腾途观斯柯达明锐昊锐BCM汽车电脑板转向灯控制芯 大众POLO/波罗电脑板BCM转向灯控制芯片 专业汽车IC 新帕萨特汽车电脑前小灯驱动芯片 贴片12脚 专业汽车IC
捷达西门子汽车电脑板喷油驱动芯片 汽车IC 汽车电脑板 喷油驱动芯片 贴片八脚 专业汽车芯片IC 大众/奥迪A6汽车发动机喷油驱动芯片 博世原装 车身电脑I 伊南特喷油驱动芯片 BOSCH汽车发动机电脑板驱动IC芯片 ME7.5 M382汽车电脑板 全新捷达5V喷油驱动芯片 BOSCH ic
福特福克斯发动机电脑喷油嘴驱动芯片 福特蒙迪欧汽车发动机电脑板喷油嘴驱动芯片 汽车发动机电脑板芯片 大众捷达喷油电路芯片 福特蒙迪欧汽车发动机车身电脑板喷油嘴芯片 ME7.5 M382汽车发动机电脑板喷油驱动芯片 贴片铁底20
转速 转速 转速
存储 存储 存储 存储 存储 存储 存储 存储 存储 存储 存储 存储 存储 存储 存储
驱动 驱动 驱动 驱动 驱动 驱动 驱动 驱动 驱动 驱动 驱动 驱动 驱动 驱动
MEGAMOS-RES
VPSA132A
EM4093 HT1621B
VND5E050AK VNQ5E050MK VND5E050MK
大众朗逸/迈腾汽车车身发动机电脑板 电源驱动模块IC芯片 雪铁龙标致凯璇 马瑞利汽车发动电脑板 电源管理启动芯片 华泰圣达菲汽车发动机车身电脑板 电源管理控制驱动IC芯片
赛欧发动机电脑板电源芯片 BOSCH全新 贴片铁底36脚 汽车发动机电脑板 行身电脑ECU 马瑞利电源驱动芯片

sd-8042线路监控保护装置说明书完整版

sd-8042线路监控保护装置说明书完整版

河南思达高科技股份有限公司电力技术公司版权所有2003.05(V1.00)本说明书和产品今后可能会有小的改动,请注意核对实际产品与说明书的版本是否相符。

更多产品信息,请访问互联网:业务联系电话:(0371)7983270传真:(0371)7983270技术支持电话:(0371)7981062客户服务电话:(0371)7986932传真:(0371)7986932目录1 概述 (1)1.1应用范围 (1)1.2保护配置表 (1)1.3型号及含义 (2)1.4使用环境 (2)1.5装置特点 (2)2 技术参数 (3)2.1机械及环境参数 (3)2.3主要技术指标 (4)2.3.1采样回路精确工作范围(±10%) 误差 (4)2.3.2 三段式相间电流保护 (4)2.3.3 低周减载功能 (4)2.3.4 时间定值误差 (4)2.3.5 整组动作时间 (4)2.3.6 数字化整定级差 (4)2.3.7 电流保护返回系数 (4)2.3.8 测量精度 (4)2.3.9 接点容量 (4)2.3.10 开关量输入 (4)2.3.11 通信接口 (4)2.4绝缘性能 (5)2.4.1绝缘电阻 (5)2.4.2介质强度 (5)2.4.3冲击电压 (5)2.4.4耐湿热性能 (5)2.5电磁兼容性能 (5)2.5.1静电放电抗干扰度 (5)2.5.2射频电磁场辐射抗干扰度 (5)2.5.3电快速瞬变脉冲群抗干扰度 (5)2.5.4浪涌(冲击)抗干扰度 (5)2.5.5 射频场感应的传导骚扰度 (5)2.5.6 工频磁场抗扰度 (5)2.5.7 脉冲磁场抗扰度 (5)2.5.8 阻尼震荡磁场抗扰度 (5)2.5.9 振荡波抗扰度 (5)2.5.10 辐射发射限值试验 (5)2.6机械性能 (5)2.6.1振动 (5)2.6.2冲击 (6)2.6.3碰撞 (6)3 装置硬件 (6)3.1机箱结构 (6)3.1交流插件 (6)3.2CPU插件 (6)3.3.电源插件 (7)3.4.操作箱及辅助操作箱插件 (7)3.5.人机对话(MMI)插件 (7)4.保护原理 (8)4.1保护启动元件 (8)4.2三段式相间电流保护 (8)4.3低电压元件 (9)4.4反时限过流保护 (9)4.5重合闸 (9)4.6低周减载 (10)4.7低压解列元件 (10)4.8PT断线检测 (10)4.10故障录波功能 (10)5 使用说明 (11)5.1定值整定 (11)5.1.1 定值清单 (11)5.1.2定值整定说明 (12)5.2人机对话 (13)5.2.1按键说明 (13)5.2.2 菜单操作 (13)5.2.3 功能简介 (13)5.3操作说明 (14)5.3.1 正常显示画面 (14)5.3.2 主菜单 (14)5.3.3 参数 (14)5.3.4定值查询 (15)5.3.5定值修改 (15)5.3.6开入 (15)5.3.7事件 (15)5.3.8实时 (16)5.3.9开出 (16)5.3.10采样 (16)5.3.11版本 (17)5.3.12复归 (17)6 结构和安装 (17)6.1装置的面板布置 (17)6.3装置内部插件位置 (18)7 用户安装调试说明 (18)7.1通电前检查 (18)7.2装置通电检查 (18)7.2.1 整机通电检查 (18)7.2.2 开入量检查 (18)7.2.3 定值输入 (18)7.3 模拟短路试验 (18)7.3.1 试验目的及项目 (18)7.3.2 试验方法 (18)7.4耐压试验 (19)8.1装置的投运 (19)8.2装置的运行 (20)8.3保护动作信号及报告 (20)8.4其它注意事项 (20)9 订货须知 (20)10 附录 (20)SD-8042线路监控保护装置使用技术说明书1 概述1.1 应用范围SD-8042型线路监控保护装置(以下简称装置),适用于110kV及以下电压等级的输电线路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

High Input Voltage, Low Quiescent Current, Low-Dropout Linear RegulatorGeneral DescriptionThe EMP8042 is a high voltage, low quiescent current, low dropout regulator with 100mA output driving capacity. The EMP8042, which operates over an input range of 3V to 20V, is stable with any capacitors, whose capacitance is larger than 1μF, and suitable for powering battery-management ICs because of the virtue of its low quiescent current consumption and low dropout voltage. Below the maximum power dissipation (please refer to Note. 5), It guarantees delivery of 100mA output current, and supports preset output voltages ranging from 1.3V to 6.0V with 0.1V increment.EMP8042 also includes bandgap voltage reference, constant current limiting and thermal overload protection. It’s available in miniature SOT-89-3 packages. Applicationsg Logic Supply for High Voltage Batteriesg Keep-Alive Supplyg3-4 Cell Li-ion Batteries Powered systemsFeaturesg100mA guaranteed output current (without thermal limit)g500mV typical dropout at Io=100mAg 3.0V to 20V input rangeg Stable with small ceramic output capacitors(1µF)g Over temperature and over currentprotectiong±2.5% output voltage toleranceTypical ApplicationConnection DiagramsOrder informationEMP8042-XXVF05NRR XX Output voltage VF05 SOT-23-5 Package NRR RoHS & Halogen free packageRating: -40 to 85°CPackage in Tape & ReelEMP8042-XXVG03NRR XX Output voltage VG03 SOT-89-3 Package NRR RoHS & Halogen free packageRating: -40 to 85°CPackage in Tape & ReelOrder, Marking and Packing InformationPackageSOT-23-5SOT-89-3Pin FunctionsNameSOT-23-5SOT-89-3FunctionV IN 12 Supply Voltage InputRequire a minimum input capacitor of close to 1µF to ensure stability andsufficient decoupling from the ground pin.GND 21 Ground PinEN3 N/A Shutdown InputThe EN pin is pulled “High” internally. Set the regulator into the disable mode bypulling the EN pin low.NC 4 N/ANo connection V OUT 53 Output VoltageFunctional Block DiagramV INV OUTFIG .1. Functional Block Diagram of EMP8042Absolute Maximum Ratings (Notes 1, 2)V IN -0.3V to 22V Power Dissipation (Note 3) Storage Temperature Range -65°C to 150°C Junction Temperature (T J ) 160°CLead Temperature (Soldering, 10 sec.) 260°C ESD RatingHuman Body Model 2KVOperating Ratings (Note 1, 2)Supply Voltage 3.0V to 20V Operating Temperature Range -40°C to 85°CThermal Resistance (θJA, Note 3)) 101°C/W (SOT-89-3) Thermal Resistance (θJC , Note 4)) 54°C/W (SOT-89-3)Electrical CharacteristicsT A = 25°C, V OUT (NOM)=5V; unless otherwise specified, all limits guaranteed for V IN = V OUT +1V, C IN = C OUT =1µF.SymbolParameterConditionsMinTyp (Note 6)Max Units V IN Input Voltage3.020VΔV OTL Output Voltage Tolerance0.1mA ≤ I OUT ≤ 100mA V OUT (NOM) +1V ≤ V IN ≤ 20V -2.5 +2.5% ofV OUT (NOM) I OUT Maximum Output Current Average DC Current Rating 100 mA I LIMITOutput Current Limit300 mA I OUT = 0.1mA 70 I Q Supply CurrentI OUT = 100mA 50 100 µAI OUT = 30mA 135 V DO Dropout Voltage V OUT =5.0V (Note. 7) I OUT = 100mA500mVLine RegulationI OUT = 1mA,(V OUT + 1V) ≤ V IN ≤ 20V0.1 % ΔV OUTLoad Regulation0.1mA ≤ I OUT ≤100mA 0.5 %e n Output Voltage NoiseI OUT =10mA,10Hz ≤ f ≤ 100kHzV OUT = 5.0V800 µV RMSThermal ShutdownTemperature 160T SDThermal Shutdown Hysteresis30 ℃t ON Start-Up Time C OUT = 1.0µF, V OUT at 90% of Final Value500µsNote 1: Absolute maximum ratings indicate limits beyond which damage may occur.Note 2: All voltages are in respect to the potential of the ground pin.Note 3: θJA is measured in the natural convection at T A =25℃ on a high effectively thermal conductivity test board (2layers, 2S0P).Note 4: θJC represents the resistance between the chip and the top of the package case.Note 5: Maximum power dissipation for the device is calculated using the following equation:JAθAT - J(MAX)TD P =Where T J (MAX) is the maximum junction temperature, T A is the ambient temperature, and θJA is the junction-to-ambient thermal resistance. For example, for the SOT-89-3 package θJA =101°C/W, T J (MAX)=160°C and using T A =25°C, the maximum power dissipation is 1.33W.The derating factor (-1/θJA )=-9.9mW/°C. Below 25°C the power dissipation figure can be increased by 9.9mW per degree and similarly decreased by this factor for temperatures above 25°C.Note 6: Typical values represent the most likely parametric norm.Note 7: Dropout voltage is measured by reducing V IN until V OUT drops to 98% its nominal value.Typical Performance CharacteristicsUnless otherwise specified, V IN = V OUT (NOM) + 1V, V OUT =5V, C IN = C OUT = 1.0µF, T A = 25°C~400us~400usTypical Performance Characteristics (cont.)Unless otherwise specified, V IN = V OUT (NOM) + 1V, V OUT =5V, C IN = C OUT = 1.0µF, T A = 25°CLine transient (I OUT =1mA) Line transient (I OUT =30mA)Vin (1V/div)Vout (20mV/div)Time (100us/div)Vin (1V/div)Vout (50mV/div)Time (100us/div)Load transient (V OUT =5.0V)Load transient (V OUT =5.0V)Vout (200mV/div)Iout (50mA/div)Time (100us/div)Application InformationGeneral DescriptionReferring to Fig.1 as shown in the Functional Block Diagram section, the EMP8042 adopts the classical regulator topology in which negative feedback control is used to perform the desired voltage regulating function. The negative feedback is formed by using feedback resistors (R1, R2) to sample the output voltage for the non-inverting input of the error amplifier, whose inverting input is set to the bandgap reference voltage. By the virtue of its high open-loop gain, the error amplifier operates to ensure that the sampled output feedback voltage at its non-inverting input is virtually equal to the preset bandgap reference voltage.The error amplifier compares the voltage difference at its inputs and produces an appropriate driving voltage to the P-channel MOS pass transistor to control the amount of current reaching the output. If there are changes in the output voltage due to load changes, the feedback resistors register such changes to the non-inverting input of the error amplifier. The error amplifier then adjusts its driving voltage to maintain virtual short between its two input nodes under all loading conditions. In a nutshell, the regulation of the output voltage is achieved as a direct result of the error amplifier keeping its input voltages equal. This negative feedback control topology is further augmented by the shutdown, the fault detection, and the temperature and current protection circuitry.Output CapacitorThe EMP8042 is specially designed for use with ceramic output capacitors of as low as 1.0µF to take advantage of the savings in cost and space as well as the superior filtering of high frequency noise. Capacitors of higher value or other types may be used, but it is important to make sure its equivalent series resistance (ESR) is restricted to less than 0.5Ω. The use of larger capacitors with smaller ESR values is desirable for applications involving large and fast input or output transients, as well as for situations where the application systems are not physically located immediately adjacent to the battery power source. Typical ceramic capacitors suitable for use with the EMP8042 are X5R and X7R. The X5R and the X7R capacitors are able to maintain their capacitance values to within ±20% and ±10%, respectively, as the temperature increases.No-Load StabilityThe EMP8042 is capable of stable operation during no-load conditions, a mandatory feature for some applications such as CMOS RAM keep-alive operations.Input CapacitorA minimum input capacitance of 1µF is required for EMP8042. The capacitor value may be increased without limit. Improper workbench set-ups may have adverse effects on the normal operation of the regulator. A case in point is the instability that may result from long supply lead inductance coupling to the output through the gate capacitance of the pass transistor. This will establish a pseudo LCR network, and is likely to happen under high current conditions or near dropout. A 10µF tantalum input capacitor will dampen the parasitic LCR action thanks to its high ESR. However, cautions should be exercised to avoid regulator short-circuit damage when tantalum capacitors are used, for they are prone to fail in short-circuit operating conditions.Power Dissipation and Thermal ShutdownThermal overload results from excessive power dissipation that causes the IC junction temperature to increase beyond a safe operating level. The EMP8042 relies on dedicated thermal shutdown circuitry to limit its total power dissipation. An IC junction temperature T J exceeding 160°C will trigger the thermal shutdown logic, turning off the P-channel MOS pass transistor. The pass transistor turns on again after the junction cools off by about 30°C. When continuous thermal overload conditions persist, this thermal shutdown action then results in a pulsed waveform at the output of the regulator. The concept of thermal resistance θJA (°C/W) is often used to describe an IC junction’s relative readiness in allowing its thermal energy to dissipate to its ambient air. An IC junction with a low thermal resistance is preferred because it is relatively effective in dissipating its thermal energy to its ambient, thus resulting in a relatively low and desirable junction temperature. The relationship between θJA and T J is as follows:T J = θJA x (P D) + T AT A is the ambient temperature, and P D is the power generated by the IC and can be written as:P D = I OUT (V IN - V OUT)As the above equations show, it is desirable to work with ICs whose θJA values are small such that T J does not increase strongly with P D. To avoid thermally overloading the EMP8042, refrain from exceeding the absolute maximum junction temperature rating of 160°C under continuous operating conditions. Overstressing the regulator with high loading currents and elevated input-to-output differential voltages can increase the IC die temperature significantly.ESMT/EMP EMP8042 Package Outline DrawingSOT-89-3SYMBPLS MIN. NOM. MAX.A 1.40 - 1.60B 0.44 -0.56B1 0.36 -0.48C 0.35 -0.44D 4.40 - 4.60D1 1.35 - 1.83E 2.29 - 2.60H 3.94 - 4.25BSCE 1.50e1 3.00BSCL 0.89 - 1.2UNIT: MMRevision History RevisionDate Description 0.1 2010.08.27 Original1.0 2011.02.23 1. Skip “Preliminary”2. Page1 revise “Typical Application“3. Page2 add SOT-23-5 package4. Page3 add SOT-23-5 “Pin Functions”Important NoticeAll rights reserved.No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express , implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs. ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.。

相关文档
最新文档