TCPIP详解-卷一-协议-10.1引言
TCPIP协议介绍

TCPIP协议介绍TCP/IP协议介绍1. 引言TCP/IP协议是互联网的基础协议,它定义了计算机在网络上如何通信。
本协议介绍旨在详细讲解TCP/IP协议的基本原理和功能,以及其在互联网通信中的应用。
2. 协议概述TCP/IP协议是一个分层的协议体系,包括四个层次:网络接口层、网络层、传输层和应用层。
每个层次都有特定的功能和协议。
2.1 网络接口层网络接口层负责将数据包从一个网络节点传输到相邻节点。
它定义了数据包的物理传输方式和数据帧的格式。
常用的网络接口层协议包括以太网、Wi-Fi和蓝牙等。
2.2 网络层网络层负责将数据包从源节点传输到目标节点。
它通过IP地址和路由选择算法实现数据包的路由和转发。
IP协议是网络层的核心协议,它定义了数据包的格式和地址分配方式。
2.3 传输层传输层负责在源节点和目标节点之间建立可靠的数据传输通道。
它通过端口号标识不同的应用程序,并提供可靠的数据传输机制。
常用的传输层协议包括TCP和UDP。
2.4 应用层应用层负责定义各种应用程序的通信规则。
它提供了一系列的协议,如HTTP、FTP、SMTP和DNS等,用于不同类型的应用程序之间的通信。
3. TCP协议TCP协议是一种可靠的传输层协议,它提供了面向连接的数据传输服务。
TCP协议通过三次握手建立连接,通过序列号和确认应答机制保证数据的可靠性。
它还提供了流量控制和拥塞控制机制,以确保网络的稳定性和公平性。
3.1 连接建立TCP连接的建立需要进行三次握手。
首先,客户端发送一个带有SYN标志的数据包给服务器端。
服务器接收到后,回复一个带有SYN/ACK标志的数据包。
最后,客户端再回复一个带有ACK标志的数据包,完成连接的建立。
3.2 数据传输TCP协议将数据分割成多个小的数据段,并为每个数据段分配一个序列号。
接收方根据序列号重新组装数据,并发送确认应答给发送方。
如果发送方没有收到确认应答,将重新发送数据段,以确保数据的可靠性。
tcp ip协议详解

tcp ip协议详解TCP/IP协议详解一、引言TCP/IP协议是互联网的核心协议之一,它定义了互联网上数据传输的规则和标准。
本协议详解将对TCP/IP协议的各个层次进行逐一解析,包括物理层、数据链路层、网络层、传输层和应用层。
二、物理层物理层是TCP/IP协议的最底层,它负责将数据从计算机转换成电信号,并通过物理媒介传输。
在这一层,数据以比特流的形式传输,常见的物理媒介包括以太网、无线电波和光纤等。
三、数据链路层数据链路层建立在物理层之上,主要负责将数据分割成帧并传输。
它通过MAC地址来识别网络中的设备,并通过帧的发送和接收来保证数据的可靠传输。
常见的数据链路层协议包括以太网、无线局域网(WLAN)和令牌环网等。
四、网络层网络层是TCP/IP协议的核心层次,它负责将数据从源主机传输到目标主机。
在这一层,数据被分割成数据包,并通过IP地址进行路由选择和转发。
网络层的主要协议是Internet协议(IP),它定义了数据包的格式和传输规则。
五、传输层传输层建立在网络层之上,主要负责在源主机和目标主机之间建立可靠的数据传输通道。
在这一层,数据被分割成报文段,并通过端口号进行进程间的通信。
常见的传输层协议包括传输控制协议(TCP)和用户数据报协议(UDP)。
六、应用层应用层是TCP/IP协议的最高层,它负责为用户提供各种网络服务和应用程序。
在这一层,数据被封装成消息或请求,并通过应用层协议进行传输。
常见的应用层协议包括超文本传输协议(HTTP)、文件传输协议(FTP)和域名系统(DNS)等。
七、总结TCP/IP协议是互联网的基础,它通过分层的结构和各个层次的协议,实现了数据的可靠传输和网络的互联互通。
物理层负责数据的物理传输,数据链路层负责数据的分割和传输,网络层负责数据的路由选择和转发,传输层负责数据的可靠传输,应用层负责为用户提供各种网络服务和应用程序。
以上是对TCP/IP协议的详细解析,希望对您有所帮助。
TCP-IP详解-目录

《TCP/IP协议详解卷1》的目录第1章概述1.1引言1.2分层1.3TCP/IP的分层1.4互联网的地址1.5域名系统1.6封装1.7分用1.8客户-服务器模型1.9端口号1.10标准化过程1.11RFC1.12标准的简单服务1.13互联网1.14实现1.15应用编程接口1.16测试网络1.17小结第2章链路层2.1引言2.2以太网和IEEE 802封装2.3尾部封装2.4SLIP:串行线路IP2.5压缩的SLIP2.6PPP:点对点协议2.7环同接口2.8最大传输单元MTU2.9路径MTU2.10串行线路吞吐量计算2.11小结第3章IP:网际协议3.1引言3.2IP首部3.3IP路由选择3.4子网寻址3.5子网掩码3.6特殊情况的IP地址3.7一个子网的例子3.8ifconfig命令3.9netstat命令3.10IP的未来3.11小结第4章ARP:地址解析协议4.1引言4.2一个例子4.3ARP高速缓存4.4ARP的分组格式4.5ARP举例4.5.1一般的例子4.5.2对不存在主机的ARP请求4.5.3ARP高速缓存超时设置4.6ARP代理4.7免费ARP4.8arp命令4.9小结第5章RARP:逆地址解析协议5.1引言5.2RARP的分组格式5.3RARP举例5.4RARP服务器的设计5.4.1作为用户进程的RARP服务器5.4.2每个网络有多个RARP服务器5.5小结第6章ICMP:Internet控制报文协议6.1引言6.2ICMP报文的类型6.3ICMP地址掩码请求与应答6.4ICMP时间戳请求与应答6.4.1举例6.4.2另一种方法6.5ICMP瑞口不可达差错6.6ICMP报文的4.4BSD处理6.7小结第7章Ping程序7.1引言7.2Ping程序7.2.1LAN输出7.2.2WAN输出7.2.3线路SLIP链接7.2.4拨号SLIP链路7.3IP记录路由选项7.3.1通常的例子7.3.2异常的输出7.4IP时间戳选项7.5小结第8章Traceroute程序8.1引言8.2Traceroute程序的操作8.3局域网输出8.4广域网输出8.5IP源站选路选项8.5.1宽松的源站选路的traceroute程序示例8.5.2严格的源越选路的traceroute程序示例8.5.3宽松的源站选路traceroute程序的往返路由8.6小结第9章IP选路9.1引言9.2选路的原理9.2.1简单路由表9.2.2初始化路由表9.2.3较复杂的路由表9.2.4没有到达目的地的路由9.3ICMP主机与网络不可达差错9.4转发或不转发9.5ICMP重定向差错9.5.1一个例子9.5.2更多的细节9.6ICMP路由器发现报文9.6.1路由器操作9.6.2主机操作9.6.3实现9.7小结第10章动态选路协议10.1引言10.2动态选路10.3Unix选路守护程序10.4RIP:选路信息协议10.4.1报文格式10.4.2正常运行10.4.3度量10.4.4问题10.4.5举例10.4.6另一个例子10.5RIP版本210.6OSPF:开放最短路径优先10.7BGP:边界网关协议10.8CIDR:无类型域间选路10.9小结第11章UDP:用户数据报协议11.1引言11.2UDP首部11.3UDP检验和11.3.1tCpdmp输出11.3.2一些统计结果11.4一个简单的例子11.5IP分片11.6ICMP不可达差错(需要分片)11.7用Traceroute确定路径MTU 11.8采用UDP的路径MTU发现11.9UDP和ARP之间的交互作用11.10最大UDP数据报长度11.11ICMP源站抑制差错11.12UDP服务器的设计11.12.1客户IP地址及端口号11.12.2目标IP地址11.12.3UDP输入队列11.12.4限制本地IP地址11.12.5限制远端IP地址11.12.6每个端口有多个接收者11.13小结第12章广播和多播12.1引言12.2广播12.2.1受限的广播12.2.2指向网络的广播12.2.3指向子网的广播12.2.4指向所有子网的广播12.3广播的例子12.4多播12.4.1多播组地址12.4.2多播组地址到以太网地址的转换12.4.3FDDI和个牌环网络中的多播12.5小结第13章IGMP:Internet组管理协议13.1引言13.2IGMP报文13.3IGMP协议13.3.1加入一个多播组13.3.2IGMP报告和查询13.3.3实现细节13.3.4生存时间牢段13.3.5所有主机组13.4一个例子13.5小结第14章DNS:域名系统14.1引言14.2DNS基础14.3DNS的报文格式14.3.1DNS查询报文中的问题部分14.3.2DNS应报文中的资源记录部分14.4一个简单的例子14.5指针查询14.5.1举例14.5.2主机名检查14.6资源记录14.7高速缓存14.8用UDP还是用TCP14.9另一个例子14.10小结第15章TFTP:简单文件传送协议15.1引言15.2协议15.3一个例子15.4安全性15.5小结第16章BOOTP:引导程序协议16.1引言16.2BOOTP的分组格式16.3一个例子16.4BOOTP服务器的设计16.5BOOTP穿越路由器16.6特定厂商信息16.7小结第17章TCP:传输控制协议17.1引言17.2TCP的服务17.3TCP的首部17.4小结第18章TCP连接的建立与终止18.1引言18.2连接的建立与终止18.2.1tcpdujn的输出18.2.2时间系列18.2.3建立连接协议18.2.4连接终止协议18.2.5正常的tcpdump输出18.3连接建立的超时18.3.1第一次超时间18.3.2服务类型字段18.4最大报文段长度18.5TCP的半关闭18.6TCP的状态变迁图18.6.12MSL等待状态18.6.2平静时间的概念18.6.3FIN_WAIT_2状态18.7复位报文段18.7.1到不存在的端口的连接请求18.7.2异常终止一个连接18.7.3检测半打开连接18.8同时打开18.9同时关闭18.10TCP选项18.11TCP服务器的设计18.11.1TCP服务器端口号18.11.2限定的本地IP地址18.11.3限定的远端IP地址18.11.4呼入连接请求队列18.12小结第19章TCP的交互数据流19.1引言19.2交互式输入19.3经受时延的确认19.4Nagle算法19.4.1关闭Nagle算法19.4.2一个例子19.5窗口大小通告19.6小结第20章TCP的成块数据流20.1引言20.2正常数据流20.3滑动窗口20.4窗口大小20.5PUSH标志20.6慢启动20.7成块数据的吞吐量20.7.1带宽时延乘积20.7.2拥塞20.8紧急方式20.9小结第21章TCP的超时与重传21.1引言21.2超时与重传的简单例子21.3往返时间测量21.4往返时间RTT的例子21.4.1往返时间RTT的测量21.4.2RTT估计器的计算21.4.3慢启动21.5拥塞举例21.6拥塞避免算法21.7快速重传与快速恢复算法21.8拥塞举例(续)21.9按每条路由进行度量21.10ICMP的差错21.11重新分组21.12小结第22章TCP的坚持定时器22.1引言22.2一个例子22.3糊涂窗口综合症22.4小结第23章TCP的保活定时器23.1引言23.2描述23.3保活举例23.3.1另一端崩溃23.3.2另一端崩溃并重新启动23.3.3另一端不可达23.4小结第24章TCP的未来和性能24.1引言24.2路径MTU发现24.2.1一个例子24.2.2大分组还是小分组24.3长肥管道24.4窗口扩大选项24.5时间戳选项24.6PAWS:防止回绕的序号24.7T/TCP:为事务用的TCP扩展24.8TCP的性能24.9小结第25章SNMP:简单网络管理协议25.1引言25.2协议25.3管理信息结构25.4对象标识符25.5管理信息库介绍25.6实例标识25.6.1简单变量25.6.2表格25.6.3字典式排序25.7一些简单的例子25.7.1简单变量25.7.2get-next操作25.7.3表格的访问25.8管理信息库(续)25.8.1system组25.8.2interface组25.8.3at组25.8.4ip组25.8.5icmp组25.8.6tcp组25.9其他一些例子25.9.1接口MTU25.9.2路由表25.10Trap25.11ASN.1和BER25.12SNMPvZ25.13小结第26章Telnet和Rlogin:远程登录26.1引言26.2Rlogin协议26.2.1应用进程的启动26.2.2流量控制26.2.3客户的中断键26.2.4窗口大小的改变26.2.5服务器到客户的命令26.2.6客户到服务器的命令26.2.7客户的转义符26.3Rlogin的例子26.3.1初始的客户一服务器协议26.3.2客户中断键26.4Telnet协议26.4.1NVT ASCII26.4.2Telnet命令26.4.3选项协商26.4.4子选项协商26.4.5半双工、一次一字符、一次一行或行方式26.4.6同步信号26.4.7客户的转义符26.5Telnet举例26.5.1单字符方式26.5.2行方式26.5.3一次一行方式(准行方式)26.5.4行方式:客户中断键26.6小结第27章FTP:文件传送协议27.1引言27.2FTP协议27.2.1数据表示27.2.2FTP命令27.2.3FTP应答27.2.4连接管理27.3FTP的例子27.3.1连接管理:临时数据端口27.3.2连接管理:默认数据瑞口27.3.3文本文件传输:NVT ASCII表示还是图像表示27.3.4异常中止一个文件的传输:Telnet 同步信号27.3.5匿名FTP27.3.6来自一个未知IP地址的匿名FTP 27.4小结第28章SMTP:简单邮件传送协议28.1引言28.2SMTP协议28.2.1简单例子28.2.2SMTP命令28.2.3信封、首部和正文28.2.4中继代理28.2.5NVT ASCll28.2.6重试间隔28.3SMTP的例子28.3.1MX记录:主机非直接连到Internet 28.3.2MX记录:主机出故障28.3.3VRFY和EXPN命令28.4SMTP的未来28.4.1信封的变化:扩充的SMTP28.4.2首部变化:非ASCII字符28.4.3正文变化:通用Internet邮件扩充28.5小结第29章网络文件系统29.1引言29.2Sun远程过程调用29.3XDR:外部数据表示29.4端口映射器29.5NFS协议29.5.1文件句柄29.5.2安装协议29.5.3NFS过程29.5.4UDP还是TCP29.5.5TCP上的NFS29.6NFS实例29.6.1简单的例子:读一个文件29.6.2简单的例子:创建一个目录29.6.3无状态29.6.4例子:服务器崩溃29.6.5等幕过程29.7第3版的NFS29.8小结第30章其他的TCP/IP应用程序30.1引言30.2Finger协议30.3Whois协议30.4Archie、WAIS、Gopher、Veronlca和WWW30.4.1Archie30.4.2WAIS30.4.3Gopher30.4.4Veronica30.4.5万维网WWW30.5X窗口系统30.5.1Xscope程序30.5.2LBX:低带宽X30.6小结附录A tcpdump程序附录B计算机时钟附录C sock程序附录D部分习题的解答附录E配置选项附录F可以免费获得的源代码《TCP-IP详解卷2:实现》详细目录pdf本书完整而详细地介绍了TCP/IP协议是如何实现的。
《TCPIP协议详解》课件

04
05
链路层负责处理网络接口和 硬件细节,如以太网协议。
02
网络接口层
物理层
物理层功能
物理层负责传输原始比特流,实现比特流的 传输与接收。
物理层设备
物理层设备包括各种传输媒介,如双绞线、 同轴电缆、光纤等。
物理层协议
物理层协议定义了比特流传输的电气特性、 机械特性、功能特性等。
物理层与数据链路层的关系
层次,每个层次都有明确的任务和功能。
TCP/IP协议的层次结构
应用层负责处理特定的应用 程序细节,如HTTP、FTP等
协议。
TCP/IP协议分为四个层次: 应用层、传输层、网络层和
链路层。
01
02
03
传输层负责提供端到端的数 据传输服务,如TCP和UDP
协议。
网络层负责数据包的路由和 寻址,如IP协议。
《TCPIP协议详 解》PPT课件
目录
• TCP/IP协议概述 • 网络接口层 • 网际层 • 传输层 • 应用层 • TCP/IP协议的应用与发展
01
TCP/IP协议概述
TCP/IP协议的起源
TCP/IP协议起源于上世纪70年 代,最初是为了满足
ARPANET网络的需求而开发 的。
随着互联网的不断发展, TCP/IP协议逐渐成为全球范 围内广泛使用的通信协议标
POP协议用于从邮件服务器接收电子 邮件,允许用户下载邮件到本地计算 机上。
POP命令
POP协议定义了一组命令,用于在邮 件客户端和服务器之间进行通信和控 制邮件下载和管理。
06
TCP/IP协议的应用与发 展
TCP/IP协议的应用场景
互联网通信
TCP/IP协议是互联网的基础, 用于实现全球范围内的数据传
TCPIP协议详解

TCPIP协议详解TCP/IP协议详解一、引言TCP/IP协议是互联网的核心协议之一,它是一种面向连接的、可靠的、基于分组的协议。
本协议详解旨在对TCP/IP协议的结构、功能和工作原理进行全面的介绍,以便读者能够深入理解和应用该协议。
二、协议结构TCP/IP协议由四个层次构成,分别是网络接口层、网络层、传输层和应用层。
1. 网络接口层网络接口层负责将数据包从主机发送到网络,并从网络接收数据包。
它定义了物理连接、数据帧格式和地址解析等功能。
2. 网络层网络层负责将数据包从源主机发送到目标主机。
它使用IP协议进行数据包的路由和寻址,确保数据能够正确地传输到目标主机。
3. 传输层传输层负责在源主机和目标主机之间提供端到端的可靠数据传输。
它使用TCP 协议和UDP协议进行数据的分段、重组和错误检测。
4. 应用层应用层是TCP/IP协议的最高层,负责为用户提供各种网络服务。
常见的应用层协议有HTTP、FTP、SMTP等。
三、协议功能TCP/IP协议具有以下主要功能:1. 数据分段和重组传输层使用TCP协议将应用层数据分段,并在目标主机上将分段数据重组成完整的数据。
2. 可靠性传输TCP协议通过序号、确认和重传机制,确保数据能够可靠地传输到目标主机。
3. 流量控制和拥塞控制TCP协议使用滑动窗口和拥塞窗口机制,对数据的发送速率进行控制,以避免网络拥塞和数据丢失。
4. 路由和寻址网络层使用IP协议进行数据包的路由和寻址,确保数据能够正确地传输到目标主机。
5. 地址解析和ARP网络接口层使用地址解析协议(ARP)将IP地址映射为物理地址,以便数据能够正确地发送到目标主机。
四、协议工作原理TCP/IP协议的工作原理如下:1. TCP连接建立在进行数据传输之前,源主机和目标主机需要建立TCP连接。
连接建立过程包括三次握手,即客户端向服务器发送连接请求,服务器回复连接确认,客户端再次回复连接确认。
2. 数据传输一旦TCP连接建立,源主机将数据分段,并通过IP协议将数据包发送到目标主机。
TCPIP协议详解

TCPIP协议详解TCP/IP协议详解TCP/IP协议是互联网最常用的协议之一,它负责网络中数据的传输和通信。
本文将详细讲解TCP/IP协议的基本概念、架构和各层的功能。
一、引言随着互联网的不断发展,TCP/IP协议被广泛应用于各种网络环境中。
它是一个开放的协议,能够支持多种不同的网络设备和操作系统之间的通信。
二、TCP/IP协议的层次结构TCP/IP协议采用分层的设计结构,共分为四层,分别是网络接口层、网络层、传输层和应用层。
下面将对每一层进行详细介绍。
2.1 网络接口层网络接口层是TCP/IP协议的最底层,它负责处理网络物理接口和网络设备之间的通信。
主要包括硬件驱动程序、网络数据帧的封装和解封装等功能。
2.2 网络层网络层是建立在网络接口层之上的一层,它主要负责数据包的路由和转发。
在网络层中,使用IP地址来标识网络中的设备,并通过路由器来实现数据包的转发。
2.3 传输层传输层是TCP/IP协议的核心层,它提供可靠的数据传输和面向连接的通信服务。
在传输层中,有两个主要的协议,即传输控制协议(TCP)和用户数据报协议(UDP)。
2.4 应用层应用层是TCP/IP协议的最高层,它提供各种网络应用程序之间的通信服务。
在应用层中,有很多常见的协议,比如HTTP、FTP、SMTP等。
三、TCP/IP协议的工作原理TCP/IP协议是通过数据包来进行通信的。
发送端将数据按照一定的格式封装成数据包,然后通过网络传输到接收端,接收端再解析数据包并进行相应的处理。
TCP/IP协议的传输方式可以分为面向连接和面向无连接两种。
面向连接的传输方式是指在发送数据之前,需要先在发送端和接收端之间建立一个连接,然后再进行数据传输。
而面向无连接的传输方式则不需要建立连接,直接进行数据传输。
四、TCP/IP协议的优缺点TCP/IP协议作为互联网最主要的协议之一,具有许多优点。
首先,它是一个非常健壮和可靠的协议,能够提供稳定的数据传输服务。
tcp ip协议详解

tcp ip协议详解协议名称:TCP/IP协议详解一、引言TCP/IP协议是互联网上最常用的协议之一,它是一种面向连接的协议,用于在网络上可靠地传输数据。
本协议详解旨在提供对TCP/IP协议的全面理解,包括协议的结构、功能和工作原理。
二、协议概述TCP/IP协议是一个由多个协议组成的协议簇,其中主要包括传输控制协议(TCP)和因特网协议(IP)。
TCP负责数据的可靠传输,而IP则负责数据的路由和分组传输。
TCP/IP协议通过将数据分割为多个数据包,并通过互联网将这些数据包从源地址传输到目的地址,实现了全球范围内的数据传输。
三、协议结构1. TCP/IP协议分为四个层次:网络接口层、网络层、传输层和应用层。
- 网络接口层负责将数据包从物理层传输到网络层,包括以太网、无线网络等。
- 网络层负责数据包的路由和分组传输,其中IP协议是网络层的核心协议。
- 传输层负责数据的可靠传输,其中TCP协议是传输层的核心协议。
- 应用层负责应用程序之间的数据传输,包括HTTP、FTP等协议。
2. TCP/IP协议采用分层的设计结构,使得各层之间的功能相互独立,易于扩展和维护。
四、协议功能1. IP协议的功能:- 路由选择:根据网络拓扑和路由表,选择最佳路径将数据包传输到目的地址。
- 分组传输:将数据分割为多个数据包,并在网络中传输。
- 地址分配:为设备分配唯一的IP地址,以便在互联网上进行通信。
2. TCP协议的功能:- 可靠传输:通过使用序号、确认和重传机制,确保数据的可靠传输。
- 流量控制:通过滑动窗口机制,控制发送方的发送速率,避免数据的丢失和拥塞。
- 拥塞控制:通过使用拥塞窗口和拥塞避免算法,控制网络的拥塞程度,保证网络的稳定性和可靠性。
五、协议工作原理1. IP协议的工作原理:- 数据包封装:将数据包封装为IP数据报,并添加源IP地址和目的IP地址。
- 路由选择:根据目的IP地址,通过查找路由表选择最佳路径传输数据包。
tcp ip协议详解

tcp ip协议详解协议名称:TCP/IP协议详解一、介绍TCP/IP协议是一种网络通信协议,它是互联网的基础协议,用于在网络中传输数据。
本协议旨在详细解释TCP/IP协议的工作原理、数据传输过程和相关概念。
二、TCP/IP协议的组成1. TCP(传输控制协议)- 描述:TCP是一种面向连接的协议,提供可靠的数据传输和错误检测机制。
- 功能:- 分割和重组数据流- 确保数据按顺序传输- 提供可靠的错误检测和纠正- 运行方式:三次握手建立连接,四次挥手断开连接。
2. IP(互联网协议)- 描述:IP是一种无连接的协议,负责将数据包从源主机发送到目标主机。
- 功能:- 将数据分割为数据包并添加源和目标地址- 路由选择:选择最佳路径将数据包传输到目标主机- 版本:IPv4和IPv6三、TCP/IP协议的工作原理1. 数据传输过程- TCP层:- 将数据分割为适当的数据块(称为段)- 添加TCP头部,包含源端口、目标端口和序列号等信息- 发送段到网络层- IP层:- 将TCP段封装为数据包(称为IP数据报)- 添加IP头部,包含源IP地址和目标IP地址等信息- 发送数据包到网络- 网络层:- 通过路由选择算法选择最佳路径- 将数据包传输到目标主机- 目标主机接收到数据包后,按照相反的顺序进行解封装,将数据包逐层传递到应用层。
2. 概念解释- 端口:用于标识应用程序或服务的数字,范围从0到65535。
- IP地址:用于标识网络中的设备,IPv4地址由32位二进制数组成,IPv6地址由128位二进制数组成。
- 数据包:在网络中传输的数据单元,包含数据和控制信息。
- 路由选择:选择传输数据包的最佳路径的过程。
- 三次握手:建立TCP连接的过程,包括客户端发送连接请求、服务器确认请求和客户端确认连接。
- 四次挥手:断开TCP连接的过程,包括客户端发送断开请求、服务器确认请求、服务器发送断开通知和客户端确认断开。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.1引言
在前面各章中,我们讨论了静态选路。
在配置接口时,以默认方式生成路由表项(对于直接连接的接口),并通过route命令增加表项(通常从系统自引导程序文件),或是通过ICMP重定向生成表项(通常是在默认方式出错的情况下)。
在网络很小,且与其他网络只有单个连接点且没有多余路由时(若主路由失败,可以使用备用路由),采用这种方法是可行的。
如果上述三种情况不能全部满足,通常使用动态选路。
本章讨论动态选路协议,它用于路由器间的通信。
我们主要讨论RIP,即选路信息协议(RoutingInfromationProtocol),大多数TCP/IP实现都提供这个应用广泛的协议。
然后讨论两种新的选路协议,OSPF和BGP。
本章的最后研究一种名叫无分类域间选路的新的选路技术,现在Internet上正在开始采用该协议以保持B类网络的数量。