七年级数学难题集合

合集下载

七年级的数学难题

七年级的数学难题

七年级的数学难题一、有理数运算相关。

1. 计算:(-2)^3 + (-3)×[(-4)^2 + 2]-(-3)^2÷(-2)- 解析:- 先计算指数运算:(-2)^3=-8,(-4)^2 = 16,(-3)^2=9。

- 原式=-8+(-3)×(16 + 2)-9÷(-2)- 接着计算括号内的式子:16+2 = 18。

- 则原式=-8+(-3)×18 - 9÷(-2)- 再计算乘法和除法:(-3)×18=-54,9÷(-2)=-(9)/(2)。

- 原式=-8-54+(9)/(2)- 继续计算:-8-54=-62。

- 最后-62+(9)/(2)=(-124 + 9)/(2)=-(115)/(2)=-57.5。

2. 若| a| = 3,| b| = 2,且a < b,求a + b的值。

- 解析:- 因为| a| = 3,所以a=±3;因为| b| = 2,所以b = ±2。

- 又因为a < b,当a=-3,b = 2时,a + b=-3+2=-1;当a=-3,b=-2时,a + b=-3+(-2)=-5。

二、整式加减相关。

3. 化简求值:3x^2y-[2xy - 2(xy-(3)/(2)x^2y)+x^2y^2],其中x = 3,y =-(1)/(3)。

- 解析:- 先去括号:- 原式=3x^2y-(2xy - 2xy + 3x^2y+x^2y^2)- =3x^2y-(3x^2y+x^2y^2)- 再去括号得3x^2y - 3x^2y - x^2y^2=-x^2y^2。

- 当x = 3,y =-(1)/(3)时,代入-x^2y^2得:- -3^2×(-(1)/(3))^2=-9×(1)/(9)=-1。

4. 已知A = 2x^2+3xy - 2x - 1,B=-x^2+xy - 1,且3A + 6B的值与x无关,求y的值。

人教版七年级上册数学难题

人教版七年级上册数学难题

人教版七年级上册数学难题一、有理数运算相关难题。

1. 计算:(-2)^2020+(-2)^2021- 解析:- 根据幂运算法则a^m× a^n = a^m + n。

- 对于(-2)^2020,它是一个正数,因为负数的偶次幂是正数。

- 对于(-2)^2021,它可以写成(-2)^2020×(-2)。

- 那么(-2)^2020+(-2)^2021=(-2)^2020+(-2)^2020×(-2)。

- 提取公因式(-2)^2020得(-2)^2020×(1 - 2)。

- 因为(-2)^2020=2^2020,所以2^2020×(-1)= - 2^2020。

2. 若| a|=3,| b| = 5,且a与b异号,求a + b的值。

- 解析:- 因为| a| = 3,所以a=±3;因为| b| = 5,所以b=±5。

- 又因为a与b异号,当a = 3时,b=-5,则a + b=3+( - 5)=-2;当a=-3时,b = 5,则a + b=-3 + 5 = 2。

3. 计算:(-1)+2+(-3)+4+·s+(-99)+100- 解析:- 可以将相邻的两项看作一组,如(-1)+2 = 1,(-3)+4 = 1,以此类推。

- 从1到100共有100个数,两两一组,共有50组。

- 所以原式的值为50×1 = 50。

4. 已知a,b互为相反数,c,d互为倒数,m的绝对值是2,求(a + b)/(m)+m - cd 的值。

- 解析:- 因为a,b互为相反数,所以a + b = 0。

- 因为c,d互为倒数,所以cd = 1。

- 因为m的绝对值是2,所以m=±2。

- 当m = 2时,(a + b)/(m)+m - cd=(0)/(2)+2 - 1 = 1;当m=-2时,(a +b)/(m)+m - cd=(0)/(-2)-2 - 1=-3。

七年级下册数学难题

七年级下册数学难题

七年级下册数学难题一、相交线与平行线类1. 如图,已知直线AB∥CD,∠1 = 30°,∠2 = 90°,则∠3等于多少度?解析:因为AB∥CD,所以∠1 = ∠4(两直线平行,同位角相等),已知∠1 = 30°,所以∠4 = 30°。

又因为∠2 = 90°,在三角形中,∠3+∠4+∠2 = 180°(三角形内角和为180°)。

把∠4 = 30°,∠2 = 90°代入可得:∠3+30°+90° = 180°。

解得∠3 = 180° 30° 90° = 60°。

2. 已知:如图,EF⊥AB,CD⊥AB,∠1 = ∠2,试说明∠AGD=∠ACB。

解析:因为EF⊥AB,CD⊥AB,所以EF∥CD(在同一平面内,垂直于同一条直线的两条直线互相平行)。

所以∠2 = ∠3(两直线平行,同位角相等)。

又因为∠1 = ∠2,所以∠1 = ∠3(等量代换)。

所以DG∥BC(内错角相等,两直线平行)。

所以∠AGD = ∠ACB(两直线平行,同位角相等)。

二、实数类1. 已知a=√(5)+2,b=√(5)-2,求a^2+b^2+7的值。

解析:先求a + b的值:a + b=√(5)+2+√(5)-2 = 2√(5)。

再求ab的值:ab=(√(5)+2)(√(5)-2)=(√(5))^2-2^2=5 4 = 1。

然后a^2+b^2=(a + b)^2-2ab=(2√(5))^2-2×1=20 2=18。

所以a^2+b^2+7=18 + 7=25。

2. 若√(1 3a)+|8b 3| = 0,求ab的值。

解析:因为√(1 3a)≥slant0,|8b 3|≥slant0,要使√(1 3a)+|8b 3| = 0成立。

则√(1 3a)=0,解得a=(1)/(3);|8b 3| = 0,解得b=(3)/(8)。

七年级经典几何难题20道题

七年级经典几何难题20道题

七年级经典几何难题20道题以下是七年级经典几何难题20道题:1. 已知等边三角形的一边长为a,求面积。

答案:面积为√3/4 * a²。

2. 如果一个矩形的长比宽大2cm,它的面积是24cm²,求矩形的长和宽。

答案:长为6cm,宽为4cm。

3. 已知一个正方形的边长为4cm,求周长和面积。

答案:周长为4*4=16cm,面积为4*4=16cm²。

4. 求一个直径为10cm的圆的面积。

答案:面积为π*(10/2)²=25πcm²。

5. 求一个等腰三角形底为6cm,高为8cm的面积。

答案:面积为1/2 * 6 * 8 = 24cm²。

6. 已知一个长方形的长为10cm,宽为5cm,求面积。

答案:面积为10*5=50cm²。

7. 求一个正方形的对角线长度为13cm的面积。

答案:面积为(13/2)²=169/4=42.25cm²。

8. 已知一个等边三角形的边长为8cm,求面积。

答案:面积为√3/4 * 8²=16√3 cm²。

9. 求一个半径为5cm的圆的周长。

答案:周长为2π*5=10πcm。

10. 已知一个矩形的长为12cm,宽为3cm,求面积。

答案:面积为12*3=36cm²。

11. 求一个边长为6cm的正方形的对角线长度。

答案:对角线长度为6√2 cm。

12. 已知一个等腰三角形底为10cm,高为12cm,求面积。

答案:面积为1/2 * 10 * 12 = 60cm²。

13. 求一个半径为7cm的圆的面积。

答案:面积为π*7²=49πcm²。

14. 已知一个长方形的长为15cm,宽为2cm,求面积。

答案:面积为15*2=30cm²。

15. 求一个正方形的边长为9cm的面积。

答案:面积为9*9=81cm²。

16. 求一个等边三角形的一边长为6cm的面积。

初一上册数学题目大全难题

初一上册数学题目大全难题

初一上册数学题目大全难题
以下是一些初一上册数学难题,供您参考:
1. 小明和小红沿着400米的环形跑道练习跑步,他们同时从同一点出发,同向而行,小明每秒跑米,小红每秒跑米。

经过多少秒,小红比小明多跑一圈?
2. 有一根长为10米的绳子,用它来围成一个长方形,怎样围才能使这个长方形的面积最大?最大面积是多少?
3. 某班学生计划在植树节当天种植80棵树苗,上午种了总数的
$\frac{3}{8}$,下午种的树苗数是上午的$\frac{3}{4}$。

这一天他们按计划种下了多少棵树苗?
4. 一个数的倒数是它本身,这个数是多少?
5. 已知$x = 5$,$y = 2$,且$x - y = -$$(x - y)$,求$x^{2} + xy +
y^{2}$的值。

6. 下列计算正确的是()
A. $7a - a = 6$
B. $a^{2} \cdot a^{4} = a^{6}$
C. $a^{6} \div a^{2} = a^{3}$
D. $2a^{-2} = \frac{1}{4a^{2}}$
7. 下列各式中正确的是()
A. $3a + 2b = 5ab$
B. $5a^{2} - 2b^{2} = 3$
C. $a + ( - 3b) = - 2ab$
D. $- (a - b) = - a + b$
8. 下列各式中正确的是()
A. $a^{6} \div a^{2} = a^{3}$
B. $a^{2} \cdot a^{4} = a^{6}$
C. $3a^{2} - 2a^{2} = 1$
D. $a^{2} + b^{2} = (a + b)^{2}$。

七年级数学方程应用题难题

七年级数学方程应用题难题

七年级数学方程应用题难题七班级数学方程应用题难题1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价 (2)商品利润率=×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售(按原价的0.8倍出售.)1.一家商店将一种自行车按进价提高45%后标价,又以八折特惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?假设设这种自行车每辆的进价是*元,那么所列方程为( )A.45% ×(1+80%)*-*=50B. 80%×(1+45%)* - * = 50C. *-80%×(1+45%)* = 50D.80%×(1-45%)* - * = 502. 某商店开张,为了吸引顾客,全部商品一律按八折特惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?特惠价是多少元?3. 一家商店将某种服装按进价提高40%后标价,又以8折特惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?4.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店预备打折出售,但要保持利润率不低于5%,那么至多打几折.七班级数学方程应用题难题2:方案选择问题1. 某蔬菜公司的一种绿色蔬菜,假设在市场上径直销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产技能是:假如对蔬菜进行精加工,每天可加工16吨,假如进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司需要在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上径直销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多 ?为什么?2.某市移动通讯公司开设了两种通讯业务:“全球通”运用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).假设一个月内通话*分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与*之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的`费用相同?(3)假设某人估计一个月内运用话费120元,那么应选择哪一种通话方式较合算?3.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C 种每台2500元.(1)假设家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你讨论一下商场的进货方案.新-课- -第-一 -网(2)假设商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?4.小刚为书房买灯。

七年级下册数学最难的题目

七年级下册数学最难的题目

七年级下册数学最难的题目
七年级下册数学难题:
一、假设题
1、有四张卡片,每张上分别印有数字1、
2、
3、4,从中抽三张,求抽到相同数字的概率是多少?
2、如果一个多边形有10个顶点,求它的内角和是多少?
3、一个口袋里有4个红球,4个白球和4个黑球,求不看颜色的情况
下抽出2个球求含有不同颜色球的概率是多少?
4、已知△ABC,∠B=90°,AB=AC,求∠C是多少度?
二、数列题
1、已知数列{1, 3, 5, 7, 9,...},求101项所代表的数字
2、已知数列{2, 4, 8, 16, 32...},求1000项所代表的数字
3、已知数列{1, 1.5, 2.25, 4.0625, 8.234375…},求最多保留4位小数后,100项所代表的数字
4、已知数列{2, 7, 18, 37, 66...},求第18项代表的数字
三、几何题
1、已知三角形的两个内角的度数分别是15°和24°,求第三个内角的大小
2、已知长方体的面积是600,求它的体积
3、如果椭圆的长轴的长度是10,短轴的长度是8,求它的面积
4、圆心角π,半径是R,求圆的周长
四、方程题
1、求解1/2x+3/5=2/5
2、3x+2y=20,求x、y的值
3、求解 man+mxn+2m=51
4、求解 y+29=2x-4。

七年级上册数学难题(集萃)

七年级上册数学难题(集萃)

七年级上册数学难题集萃1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米, ≈3.14).4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.7.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?•应交电费是多少元?8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?答案1.设甲、乙一起做还需x小时才能完成工作.根据题意,得×+(+ )x=1解这个方程,得x==2小时12分答:甲、乙一起做还需2小时12分才能完成工作.2.设x年后,兄的年龄是弟的年龄的2倍,则x年后兄的年龄是15+x,弟的年龄是9+x.由题意,得2×(9+x)=15+x18+2x=15+x,2x-x=15-18∴x=-3答:3年前兄的年龄是弟的年龄的2倍.(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3•年后具有相反意义的量)3.设圆柱形水桶的高为x毫米,依题意,得·()2x=300×300×80x≈229.3答:圆柱形水桶的高约为229.3毫米.4.设第一铁桥的长为x米,那么第二铁桥的长为(2x-50)米,•过完第一铁桥所需的时间为分.过完第二铁桥所需的时间为分.依题意,可列出方程+ =解方程x+50=2x-50得x=100∴2x-50=2×100-50=150答:第一铁桥长100米,第二铁桥长150米.5.设这种三色冰淇淋中咖啡色配料为2x克,那么红色和白色配料分别为3x克和5x克.根据题意,得2x+3x+5x=50解这个方程,得x=5于是2x=10,3x=15,5x=25答:这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克.6.设这一天有x名工人加工甲种零件,则这天加工甲种零件有5x个,乙种零件有4(16-x)个.根据题意,得16×5x+24×4(16-x)=1440解得x=6答:这一天有6名工人加工甲种零件.7.(1)由题意,得0.4a+(84-a)×0.40×70%=30.72解得a=60(2)设九月份共用电x千瓦时,则0.40×60+(x-60)×0.40×70%=0.36x解得x=90所以0.36×90=32.40(元)答:九月份共用电90千瓦时,应交电费32.40元.8.按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算, 设购A种电视机x台,则B种电视机y台.(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程1500x+2100(50-x)=90000即5x+7(50-x)=3002x=50x=2550-x=25②当选购A,C两种电视机时,C种电视机购(50-x)台,可得方程1500x+2500(50-x)=900003x+5(50-x)=1800x=3550-x=15③当购B,C两种电视机时,C种电视机为(50-y)台.可得方程2100y+2500(50-y)=9000021y+25(50-y)=900,4y=350,不合题意由此可选择两种方案:一是购A,B两种电视机25台;二是购A 种电视机35台,C种电视机15台.(2)若选择(1)中的方案①,可获利150×25+250×15=8750(元)若选择(1)中的方案②,可获利150×35+250×15=9000(元)9000>8750 故为了获利最多,选择第二种方案.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.悟空顺风探妖,千里只用四分钟,归时四分行六百,风速多少请算清?
千里只用四分钟,也就是说速度是每分钟250。

顺风。

归时四分行六百,也就是说速度是每分钟150。

逆风
假设悟空的速度是恒定的,风速=X。

顺风时悟空速度+X=250
逆风时悟空速度-X=150
也就是说,250-X=150+X
求得X=50
2.2.某会议室主席台上方有一个长12.8m的长条形会议横标框,铺红色衬底。

开会前将会议名称,贴于其上。

但有时字数不一样,为了方便制作与美观,规定:边空:字宽:字距=9:6:2,现有18字,求字距,字宽与边空?
因为比例为9:6:2,七个空,所以(17X2+6X18+9X2)=12.8.X=0.08,边宽0.72,字
0.48,空0.16
3.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的,该市自来水收费价格见价目表.
(不超过6m³部分为2元每m³,超出6m³不超出10m³部分为4元每m³,超过10立方部分为8元每m³)
若某户居民1月份用水8立方米,则应收水费2×6+4×〔8-6〕=20元.
(1).若该户居民2月份用水12.5立方米,则应收水费多少元? (2).若该户居民3,4月份共用水15立方米〔4月份用水量超过3月份〕,共交水费44元,则该户居民3,4月份各用水多少立方米?
解:设3月份用水X吨,则4月份用水(15-X)吨
情形一:
3月份少于6吨,4月份大于6吨少于10吨:
则可列出方程:
2X+6*2+4*[(15-X)-6]=44
解得:
X=2
15-X=13
不符合4月份大于6吨少于10吨的前提
情形二:
3月份大于6吨,4月份大于6吨少于10吨:
则可列出方程:
6*2+4*(X-6)+6*2+4*[(15-X)-6]=44
无解
情形三:
3月份少于6吨,4月份大于10吨:
则可列出方程:
2X+6*2+4*4+8*[(15-X)-10]=44
解得:
X=4
15-X=11
综上所述,3月份用水4吨,4月份用水11吨
答:3月份用水4吨,4月份用水11吨
4.某市某县城房地产开发公司对某幢住宅楼的标价是:基价为2580元/平方米,楼层差价如下表(“+”表示上浮,“-”表示下浮)
楼层一二三四五六
差价百分比 0% + 8% + 18% + 16% + 10% - 10%
老张买了面积为80平方米的二楼,他若用同样多的钱去买六楼,请你帮他算一算,他可以买多少平米的房子?
解:二楼单价=2580×(1+8%)=2786.4元
六楼单价=2580×(1-10%)=2322元
所以2786.4×80/2322=96平方米
5.在田径运动会上,小强参加了3000米的长跑比赛,他先以6米/秒的速度跑了一段路程,又以4米/秒的速度跑完了,其余的路程,一共花了10分钟,那么小强以6秒/米的速度跑了多少米?
解:设跑了X米,则有:
X/6 +(3000-X)/4=10x60
解出X=1800米
6.某工厂计划生产一种新型豆浆机,每台豆浆机需要3个A种零件和5个B种零件正好配套,已知车间每天能生产A种零件4个或B种零件300个,现在要使在21天中所生产的零件全部配套,那么应该安排多少天生产甲种零件,多少天生产乙种零件?
解:设x天生产甲种零件,21-x天生产乙种零件使所生产的零件全部配套。

(5*450)x=3*300(21-x)
2250x=18900-900x
x=6
乙种:21-6=15
6天生产甲种零件,21-6=15天生产乙种零件,使所生产的零件全部配套。

7.某学校七年级2班组织举行一次羽毛球比赛,需购买羽毛球和球拍,每副球拍25元每只球2元,甲商店羽毛球和羽毛拍都打9折,乙商店买一副球拍赠送两只羽毛球
1.学校准备花90元全部用于买2副球拍即羽毛球若只,问到那家商店更合算?(请详细讲解)
2.若必买2副羽毛球拍,则应当买多少羽毛球时到两家商店都合算?(请详细解释)解:设x天生产甲种零件,21-x天生产乙种零件使所生产的零件全部配套。

(5*450)x=3*300(21-x)
2250x=18900-900x
x=6
乙种:21-6=15
6天生产甲种零件,21-6=15天生产乙种零件,使所生产的零件全部配套。

8.日历上爷爷生日那天的上下左右4个日期的和为80,你能说出爷爷的生日是哪天吗
设,日期是X
上面的是X-7,下面的是X+7,左边的是X-1,右边的是X+1
所以,X-7+X+7+X+1+X-1=80
X=20
答:20日。

9.两根同样长的蜡烛,点完一根粗的要2小时,细的要1小时,一天晚上停电同时将两根蜡烛点燃,若干分钟后,同时将两根蜡烛熄灭,发现粗蜡烛的长是细蜡烛2倍,问停电多少分钟?
假设两根蜡烛长度为1则粗蜡烛每小时燃1/2的蜡那么再乘以60就是粗蜡每分种燃的为30同理算出细蜡每分钟然60.再设停电时间为X分钟,则可根据燃后粗蜡是细蜡的二倍列方程式:1-30X=2(1-60X)可以算出X=40,要分清单位...
10..甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都匀速前进。

已知两人在上午8点同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米。

求A,B两地的路程。

设A,B两地路程为X
8时到10时两人合行了(X-36)千米则速度和为(X-36)/2千米/时
10时到12时两人合行了72千米则速度和为72/2=36千米/时
(x-36)/(10-8)=(36+36)/(12-10)
x=108
而速度和是个定值用等号把任意两个连在一起组成一个方程解得为108千米1.一条环形跑道长400米,甲乙两人练习跑步,甲平均每秒钟跑8米,乙平均每
秒钟跑6米,甲在乙前面20米,两人同时、同向出发,经过多长时间两人首次相遇?
2.一天某人花了3h爬山,已知他上山的速度为3km/h,到达山顶后,休息了一个小时就沿着原路下山,下山速度为5km/h。

那么这条山路长是多少?
3.环形跑道问题(1)同时同地同向而行问题中相等关系是:
(2)同时同地反向相遇问题中的相等关系是:
1、(400-20)÷(8-6)=190(秒)
2、3-1=2(小时)
1/3+1/5=8/15
2÷8/15=3.75(千米)
3、环形跑道问题
(1)同时同地同向(追击问题):路程差÷速度差=时间(2)同时同地反向(相遇问题):路程和÷速度和=时间。

相关文档
最新文档