圆锥曲线例题讲解5
圆锥曲线经典例题及总结(全面实用,你值得拥有)(K12教育文档)

圆锥曲线经典例题及总结(全面实用,你值得拥有)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(圆锥曲线经典例题及总结(全面实用,你值得拥有)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为圆锥曲线经典例题及总结(全面实用,你值得拥有)(word版可编辑修改)的全部内容。
圆锥曲线 1。
圆锥曲线的两定义:第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a一定要小于|F 1F 2|,定义中的“绝对值"与2a <|F 1F 2|不可忽视。
若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时2222bx a y +=1(0a b >>)。
方程22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A,B ,C 同号,A ≠B)。
(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222bx a y -=1(0,0a b >>)。
高中数学圆锥曲线知识点梳理+例题解析

x0 x a2
y0 y b2
1.
7.
x2
椭圆
a2
y2 b2
1
(a>b>0)的左右焦点分别为 F1,F 2,点 P 为椭圆上任意一点 F1PF2
,则椭圆的焦点角形的面积
S 为 F1PF2
b2
tan 2
.
-4-
8.
椭圆 x2 y2 a2 b2
1(a>b>0)的焦半径公式 | MF1 | a ex0 , | MF2 | a ex0 ( F1(c, 0)
x0
中心 顶点 对称轴
原点 O(0,0)
(a,0), (─a,0), (0,b) , (0,─b)
x 轴,y 轴; 长轴长 2a,短轴长 2b
原点 O(0,0)
(a,0), (─a,0) x 轴,y 轴;
实轴长 2a, 虚轴长 2b.
(0,0) x轴
焦点
F1(c,0), F2(─c,0)
F1(c,0), F2(─c,0)
e=1
a
a
-2-
【备注 1】双曲线:
⑶等轴双曲线:双曲线 x 2 y 2 a 2 称为等轴双曲线,其渐近线方程为 y x ,离心率 e 2 .
⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线. x 2 y 2 与 a2 b2
x 2 y 2 互为共轭双曲线,它们具有共同的渐近线: x 2 y 2 0 .
e 的点的轨迹.(e>1)
与定点和直线的距离相等的点的 轨迹.
-1-
轨迹条件
点集: ({M||MF1+|MF2|=2a,|F
高考数学一轮复习专题02 圆锥曲线弦长问题(解析版)

解析几何专题二:圆锥曲线弦长问题一、知识储备弦长公式||AB =12||AB x ==-= (最常用公式,使用频率最高)= 二、例题讲解1.(2022·辽宁高三开学考试)已知椭圆C 的标准方程为:22221(0)x y a b a b +=>>,若右焦点为F(1)求椭圆C 的方程;(2)设M ,N 是C 上的两点,直线MN 与曲线222x y b +=相切且M ,N ,F 三点共线,求线段MN 的长. 【答案】(1)2213x y +=;(2【分析】(1)根据椭圆的焦点、离心率求椭圆参数,写出椭圆方程即可.(2)由(1)知曲线为221(0)x y x +=>,讨论直线MN 的存在性,设直线方程联立椭圆方程并应用韦达定理求弦长即可. 【详解】(1)由题意,椭圆半焦距c =c e a =,则a =2221b a c =-=, ∴椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>当直线MN 的斜率不存在时,直线:1MN x =,不合题意:当直线MN 的斜率存在时,设()11,M x y ,()22,N x y 又M ,N ,F 三点共线,可设直线:(MN y k x =,即0kx y -=, 由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立22(13y x x y ⎧=±⎪⎨+=⎪⎩,得2430x -+=,则12x x +=1234x x ⋅=,∴||MN ==2.(2022·全国高三专题练习)过双曲线142x y -=的右焦点F 作斜率为2的直线l ,交双曲线于A ,B 两点.(1)求双曲线的离心率和渐近线; (2)求AB 的长. 【答案】(1)e =,渐近线方程为y =;(2)207.【分析】(1)由双曲线方程得出,a b ,再求出c ,可得离心率,渐近线方程;(2)写出直线方程,代入双曲线方程,设()11,A xy ,()22,B x y,由韦达定理得1212,x x x x +,然后由弦长公式计算弦长. 【详解】解:(1)因为双曲线方程为22142x y -=, 所以2a =,b =则c =所以62cea,渐近线方程为2y x =±. (2)双曲线右焦点为0),则直线l 的方程为2(y x = 代入双曲线22142x y -=中,化简可得27520x -+=设()11,A x y ,()22,B x y 所以12x x +=12527x x ⋅=,所以2120|||7AB x x -==. 【点睛】方法点睛:本题考查双曲线的离心率和渐近线方程,考查直线与双曲线相交弦长.解题方法是直线方程与双曲线方程联立并消元后应用韦达定理求出1212,x x x x +,然后由弦长公式12d x =-求出弦长.3.(2022·全国高三模拟预测)在平面直角坐标系xOy 中,已知()2,0F ,()2,3M -,动点P 满足12OF MP PF ⋅=. (1)求动点P 的轨迹C 的方程;(2)过点()1,0D 作直线AB 交C 于A ,B 两点,若AFD 的面积是BFD △的面积的2倍,求AB . 【答案】(1)28y x =;(2【分析】(1)设(),P x y ,求得,,MP OF PF 的坐标,结合12OF MP PF ⋅=,化简、整理,即可求得抛物线的方程; (2)设()()1122,,,A x y B x y ,不妨设120,0y y ><,由2AFD BFD S S =△△,求得122y y =-,设直线AB 的方程为1x my =+,联立方程组,结合根与系数的关系,求得128y y m +=,128y y =-,进而求得12,,y y m ,利用弦长公式,即可求解. 【详解】(1)设(),P x y ,因为()2,0F ,()2,3M -,则()2,3MP x y =+-,()2,0OF =,()2,PF x y =--. 由12OF MP PF ⋅=,可得2x +=28y x =,即动点P 的轨迹C 的方程为28y x =. (2)设()11,A x y ,()22,B x y , 由题意知112AFD S FD y =⋅△,212BFD S FD y =⋅△, 易知120y y <,不妨设120,0y y ><,因为2AFD BFD S S =△△,所以122y y =,所以122y y =-. ① 设直线AB 的方程为1x my =+,联立281y xx my ⎧=⎨=+⎩消去x ,得2880y my --=,则264320m ∆=+>,可得128y y m +=,128y y =- ② 由①②联立,解得1214,2,4y y m ==-=,所以124(2)AB y =-=--=. 【点睛】本题主要考查了向量的坐标运算,抛物线的标准方程的求解,以及直线与抛物线的位置关系的综合应用,解答此类题目,通常联立直线方程与抛物线方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.三、实战练习1.(2022·江门市培英高级中学高三模拟预测)已知椭圆()2222:10x y C a b a b +=>>过点P ⎭,离心率为12. (1)求椭圆C 的标准方程;(2)若1A 为椭圆C 的左顶点,直线l 过右焦点2F 与椭圆C 交于M ,N 两点(M ,N 与1A 不重合),l 不与x 轴垂直,若11A M A N MN k k k +=-,求MN .【答案】(1)22143x y +=;(2)247 【分析】(1)由题意可得关于,,a b c 的方程组,求解,a b 的值,即可求得椭圆C 的标准方程;(2)根据题意设()()1122,,,M x y N x y ,直线l :()1,0x my m =+≠,联立直线方程与椭圆方程,化为关于y 的一元二次方程,利用根与系数的关系结合11A M A N MN k k k +=-,求出m 的值,再根据弦长公式即可求得MN . 【详解】(1)由题意可得:22222123314c a a b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:224,3a b ==,∴ 椭圆C 的标准方程为:22143x y +=; (2)()()211,0,2,0F A -,由题意可设:直线l :()1,0x my m =+≠,()()1122,,,M x y N x y ,联立:221143x my x y =+⎧⎪⎨+=⎪⎩ 得:()2234690m y my ++-=, 则12122269,3434m y y y y m m --+==++, 1112121,,22A M A N MN y y k k k x x m===++, 11121222A M A N y yx k x k ∴+=+++ ()()()()1221122222y x y x x x +++=++()()()()1221213333y my y my my my +++=++()()2122112122339y y y m y y y my m y ++=+++222229623343496393434mm m m m m m m m --⨯+⨯++=--⨯+⨯+++ m =-,又11A M A N MN k k k +=-, 1m m∴-=-, 解得:21,1m m ==±, 故1212226699,347347m y y y y m m --+==±==-++,247MN =.2.(2022·广东执信中学高三月考)已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F三点共线的充要条件是||MN =【答案】(1)2213x y +=;(2)证明见解析.【分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN =充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k=+,联立直线与椭圆方程结合弦长公式可得=1k =±,即可得解. 【详解】(1)由题意,椭圆半焦距c =c e a =,所以a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N,F 三点共线,可设直线(:MN y k x =即0kx y --=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以121234x x x x +⋅=,所以MN ==所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN === 化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩1k b =-⎧⎪⎨=⎪⎩:MN y x =或y x =-+所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||MN = 【点睛】 关键点点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.3.(2022·全国高三月考(文))已知椭圆2222:1(0)x y C a b a b+=>>与抛物线24y x =有公共的焦点F ,1A ,2A 分别为椭圆C 长轴的左、右端点,P 为C 上一动点,且12PAA ∆的最大面积为 (1)求椭圆C 的标准方程;(2)直线l 经过点F ,且与C 交于A ,B 两点,若10||3AB =,求直线l 的方程. 【答案】(1)22143x y +=;(20=. 【分析】(1)利用已知条件可以直接得出焦点F 的坐标,当三角形面积最大时P 为短轴端点,从而解出a ,b 的值即可; (2)利用(1)中求出的点F 的坐标,设出直线方程,然后与椭圆方程联立,利用弦长公式即可求出直线的方程. 【详解】(1)抛物线24y x =的焦点F 坐标为()1,0∴椭圆C 中的半焦距为1.由椭圆的几何性质可知,当12PA A ∆面积最大时,P 为椭圆短轴端点,不妨令()0,P b ,则221a b ab ⎧-=⎪⎨=⎪⎩解得2a b =⎧⎪⎨=⎪⎩∴椭圆C 的标准方程为22143x y +=. (2)直线l 经过椭圆C 的右焦点,且10||3AB =∴直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为(1)y k x =-, 与椭圆C 的方程联立可得()22223484120k xk x k +-+-=,0∆>,设()11,A x y ,()22,B x y ,则2122834k x x k +=+,212241234k x x k -=+12||AB x ∴-=()2212110343k k +==+解得k =∴直线l 0=0.【点睛】本题考查椭圆的标准方程、抛物线的几何性质以及直线与椭圆的位置关系,要求较高的运算求解能力,属于中档题.本题的关键点有:(1)韦达定理的应用,韦达定理是联系各个变量之间的桥梁是解决解析几何问题的重要方法; (2)计算能力和计算技巧是解决解析几何问题的关键能力.4.(2022·陕西(文))已知点B 是圆22:(1)16C x y -+=上的任意一点,点(1,0)F -,线段BF 的垂直平分线交BC 于点P .(1)求动点P 的轨迹E 的方程;(2)直线:2l y x m =+与E 交于点M ,N ,且MN =m 的值. 【答案】(1)22143x y +=,(2)1m =±.(1)由条件可得42PC PF PC PB BC FC +=+==>=,然后由椭圆的定义可求出答案;(2)设()()1122,,,M x y N x y ,然后联立直线与椭圆的方程消元,韦达定理得出1212,x x x x +,然后利用MN =出m 的值即可. 【详解】(1)由条件可得42PC PF PC PB BC FC +=+==>=所以动点P 的轨迹E 是以,F C 为焦点的椭圆,设其方程为()222210x y a b a b+=>>所以24,22a c ==,所以2,1,a c b ===所以方程为22143x y += (2)设()()1122,,,M x y N x y联立221432x y y x m ⎧+=⎪⎨⎪=+⎩可得221916+4120x mx m +-= 所以由()22256764120m m ∆=-->得(m ∈2121216412,1919m m x x x x -+=-=因为MN =所以可解得1m =±5.(2022·全国高三专题练习)已知点(A 和B ,动点C到A ,B 两点的距离之差的绝对值为2,记点C 的(1)求轨迹E 的方程;(2)设E 与直线2y x =-交于两点M ,N ,求线段MN 的长度. 【答案】(1)2212y x -=;(2)【分析】(1)设(,)C x y ,由于||||2CA CB -=,||AB =,利用双曲线的定义求解即可; (2)直线和双曲线方程联立消y ,利用韦达定理以及弦长公式求解即可. 【详解】 (1)设(,)C x y , 则||||2CA CB -=,所以点C 的轨迹E 为双曲线22221(0,0)x y a b a b-=>>,且22a =,2||c AB == 则1a =,2222b c a =-=, 所以轨迹E 的方程为2212y x -=;(2)由22122y x y x ⎧-=⎪⎨⎪=-⎩, 得2460x x +-=, 因为0∆>,所以直线与双曲线有两个交点, 设()11,M x y ,()22,N x y , 则124x x +=-,126x x =-,故MN =所以线段MN 的长度为6.(2022·全国高三专题练习)已知双曲线C :22221(0,0)x y a b a b-=>>)是双曲线的一个顶点.(1)求双曲线的方程;(2)经过双曲线右焦点2F 作倾斜角为30的直线,直线与双曲线交于不同的两点A ,B ,求AB . 【答案】(1)22136x y -=;(2【分析】(1)求出,a b ,即可得出双曲线方程;(2)可先求出直线方程为3)y x =-,联立椭圆方程,再利用弦长公式即可求出. 【详解】(1)由题可得c a a ⎧=⎪⎨⎪=⎩3c =,b ,所以双曲线的方程为22136x y-=;(2)双曲线22136x y -=的右焦点为()23,0F所以经过双曲线右焦点2F 且倾斜角为30°的直线的方程为3)y x =-.联立221363)x y y x ⎧-=⎪⎪⎨⎪-⎪⎩得256270x x +-=.设()11,A x y ,()22,B x y ,则1265x x +=-,12275x x =-.所以AB ==【点睛】本题考查双曲线方程的求法,考查直线与双曲线相交弦长的求法,属于基础题.7.(2022·重庆高三模拟预测)已知直线l :4y kx =+与抛物线C :2y ax =交于A 、B 两点,O 为坐标原点,OA OB ⊥. (1)求抛物线C 的标准方程;(2)若过点A 的另一条直线1l 与抛物线C 交于另一点M ,与y 轴交于点N ,且满足||||AN AM =,求BM 的最小值.【答案】(1)214y x =;(2)【分析】(1)先联立直线与抛物线,得到判别式和韦达定理,再根据垂直关系,利用0OA OB ⋅=,求得参数即可;(2)设直线BM 的方程,并与抛物线联立,得到判别式和韦达定理,根据已知关系,判断中点位置,利用坐标关系求得参数m ,最后利用弦长公式计算BM ,利用二次函数判断最小值即可. 【详解】解:(1)依题意,设()()1122,,,A x y B x y ,由24y ax y kx ⎧=⎨=+⎩,消去y ,得240ax kx --=,2121604k a x x a ⎧∆=+>⎪∴⎨=-⎪⎩, OA OB ⊥,12120OA OB x x y y ∴⋅=+=,即2212120x x ax ax +⋅=,即22212120x x a x x +=,所以22440a a a ⎛⎫⎛⎫-+⋅-= ⎪ ⎪⎝⎭⎝⎭,解得14a =,∴抛物线C 的标准方程为214y x =; (2)由题意知,直线BM 的斜率存在,故可设直线BM 的方程为y tx m =+,()33,M x y ,由214y xy tx m ⎧=⎪⎨⎪=+⎩,消去y ,得2440x tx m --=,223231616044t m x x m x x t ⎧∆=+>⎪∴=-⎨⎪+=⎩,由(1)知,1216x x =-,故1123321644x x x x x x m m-===-, 由题意知,,A M N 三点共线,且|AN |=|AM |,即A 为线段MN 的中点,设()0,N n , 则3102x x +=,即13142x x m ==,即8m =,22323161680324t x x x x t⎧∆=+⨯>⎪∴=-⎨⎪+=⎩,23BM x ∴=-=)20t ==≥, 故20t =时,BM最小为=【点睛】 思路点睛:直线与抛物线中的弦长问题,我们常让直线与抛物线方程联立,再利用韦达定理及弦长公式,建立关系式.其中弦长公式:(已知直线上的两点距离)设直线:l y kx m =+,l 上两点()()1122,,,A x y B xy ,所以12AB x =-或12AB y =-,解决相关问题.8.(2022·全国高三模拟预测)已知抛物线()2:20C y px p =>的焦点为F ,点(),2P t -在C 上,且2PF OF =(O 为坐标原点).(1)求C 的方程;(2)若A ,B 是C 上的两个动点,且A ,B 两点的横坐标之和为8,求当AB 取最大值时,直线AB 的方程. 【答案】(1)24yx =;(2)220x ±-=. 【分析】(1)根据题意,列出方程组22242pp t pt⎧+=⨯⎪⎨⎪=⎩,求得p 的值,即可求得C 的标准方程; (2)设()11,A x y ,()22,B x y ,当12x x =时,得到AB 的方程4x =;当12x x ≠时,得到2AB k n =,得到()42nx y n =-+,联立方程组,结合根与系数的关系,得到1212,y y y y +,根据弦长公式和基本不等式,即可求解. 【详解】(1)由题意,点(),2P t -在()2:20C y px p =>上,且2PF OF =,可得22242pp t pt ⎧+=⨯⎪⎨⎪=⎩,解得21p t =⎧⎨=⎩,所以C 的标准方程为24y x =.(2)设()11,A x y ,()22,B x y ,且128x x +=,设AB 中点为(),D m n ,则122x x m +=,122y y n +=, 当12x x =时,:4AB l x =,8AB =; 当12x x ≠时,()212122212121442AB y y y y k x x y y y y n--====--+, 则()2:4AB l y n x n-=-,即()42n x y n =-+,与C 联立方程消去x ,整理得2222160y ny n -+-=, 由22(2)4(216)0n n ∆=--->,解得216n <,且122y y n +=,212216y y n =-,所以2212416102n n AB y ++-=-==, 当26n =时取“=”,所以AB 的最大值为10,此时AB 的方程为220x -=. 【点睛】直线与圆锥曲线的综合问题的求解策略:对于直线与圆锥曲线的位置关系的综合应用问题,通常联立直线方程与圆锥曲线方程,应用一元二次方程根与系数的关系,以及弦长公式等进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力.9.(2022·浙江高三模拟预测)已知直线:4l y kx =+与抛物线2:C y ax =交于A 、B 两点,O 为坐标原点,OA OB ⊥. (1)求抛物线C 的标准方程;(2)若过点A 的另一条直线1l 与抛物线C 交于另一点M ,与y 轴交于点N ,且满足AN AM =,求BM 的最小值. 【答案】(1)24x y=;(2)最小值为【分析】(1)联立直线l 与抛物线C 的方程,列出韦达定理,由已知条件可得出0OA OB ⋅=,利用平面向量数量积的坐标运算结合韦达定理求出a 的值,即可得出抛物线C 的标准方程;(2)设直线BM 的方程为y tx m =+,点()33,M x y ,将直线BM 的方程与抛物线C 的方程联立,列出韦达定理,由已知条件可得1312x x =,代入韦达定理求出m 的值,再利用弦长公式可求得BM 的最小值.【详解】(1)依题意设()11,A x y 、()22,B x y ,由24y ax y kx ⎧=⎨=+⎩消去y ,得240ax kx --=,所以,212160,4.k a x x a ⎧+>⎪⎨=-⎪⎩OA OB ⊥,12120OA OB x x y y ∴⋅=+=,即22212120x x a x x +=,4160a∴-+=,解得14a =,所以,抛物线C 的标准方程为24x y =;(2)由题意知,若直线BM 的斜率不存在,则该直线与抛物线C 只有一个公共点,不合乎题意.所以,直线BM 的斜率存在,故可设直线BM 的方程为y tx m =+,点()33,M x y , 由24x y y tx m ⎧=⎨=+⎩消去y ,得2440x tx m --=,223231616044t m x x t x x m⎧+>⎪∴+=⎨⎪=-⎩, 由(1)知1216x x =-,1123231644x x x x x x m m-∴===-①. 由题意知A 、M 、N 三点共线,且A 为线段MN 的中点,设()0,N n ,则3102x x +=,即1312x x =②,由①②得8m =,22323161680432t x x t x x ⎧+⨯>⎪∴+=⎨⎪=-⎩,23BM x ∴=-=)20t ==≥,当且仅当0t =时,等号成立,故BM 的最小值为【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.10.(2022·全国高三专题练习)如图所示,A ,B 是焦点为F 的抛物线24y x =上的两动点,线段AB 的中点M 在定直线34x =上.(1)求FA FB +的值; (2)求AB 的最大值. 【答案】(1)72;(2)【分析】(1)由抛物线定义有12FA FB x x p +=++,结合已知条件即可求FA FB +;(2)由直线与抛物线位置关系,联立方程得到一元二次方程,结合根与系数关系、弦长公式即可求AB 的最大值. 【详解】(1)由题意知:2p =,抛物线对称轴方程1x =-.设()11,A x y ,()22,B x y ,12324x x +=,则1272FA FB x x p +=++=; (2)点A 和B 在抛物线24y x =上,有2114y x =,2224y x =,两式相减得:()()()1212124y y y y x x -+=-,令3(,)4M m ,∴12122y y x x m -=-,即2AB k m=, ∴设直线AB 的方程为234y m x m ⎛⎫-=- ⎪⎝⎭,即23224m m x y =-+,代入抛物线方程得222230y my m -+-=,∴22248121240m m m ∆=-+=->,得203m ≤<,122y y m +=,21223y y m =-∴12AB y =-=∴当20m=时,max AB = 【点睛】思路点睛:求抛物线焦半径相关线段长度时注意抛物线定义的应用,即抛物线焦点到抛物线上点的距离等于该点到抛物线准线的距离;直线与抛物线相交,求弦长时一般要联立方程应用根与系数关系以及弦长公式.11.(2022·全国高三专题练习)已知抛物线C :22(0)y px p =>的焦点F 与椭圆22143x y +=的右焦点重合,点M 是抛物线C 的准线上任意一点,直线MA ,MB 分别与抛物线C 相切于点A ,B .(1)求抛物线C 的标准方程;(2)设直线MA ,MB 的斜率分别为1k ,2k ,证明:12k k ⋅为定值; (3)求AB 的最小值.【答案】(1)24y x =;(2)证明见解析;(3)4.【分析】(1)由椭圆的方程可得右焦点的坐标,由题意可得抛物线的焦点坐标,进而可得抛物线的方程;(2)可设M 的坐标,设过点(1,)M t -的直线方程为(1)y k x t =++,与抛物线方程24y x =联立,消去x 得:24440ky y k t -++=,利用判别式等于零可得结论;(3)设A ,B 的坐标,由(2)可得参数t ,k 的关系,代入过M 的切线方程与抛物线的方程中,可得A ,B 用参数1k ,2k 表示的坐标,代入弦长公式中求||AB的表达式,由参数的范围求出||AB 的最小值.【详解】(1)由椭圆方程得,椭圆的右焦点为(1,0) ∴抛物线的焦点为(1,0)F ,2p ∴=,所以抛物线的标准方程:24y x =. (2)抛物线C 的准线方程为1x =-. 设(1,)M t -,设过点(1,)M t -的直线方程为(1)y k x t =++,与抛物线方程24y x =联立,消去x 得:24440ky y k t -++=. 其判别式△1616()k k t =-+,令△0=,得:210k kt +-=. 由韦达定理知12k k t +=-,121k k =-, 故121k k =-(定值).(3)设1(A x ,1)y ,2(B x ,2)y ,由210k kt +-=,得21k t k-=,故2222214244444440k ky y k t ky y k ky y k y k k k -⎛⎫-++=-++⨯=-+=-= ⎪⎝⎭,所以2y k=,代入抛物线方程得21x k =,所以211(A k ,12)k ,221(B k ,22)k ,||AB=因为121k k =-,12k k t +=-,所以12|||AB k k -244t =+,当且仅当0t =时取等号. 当且仅时取等号. 故||AB 的最小值为4.【点睛】求曲线弦长的方法:(1)利用弦长公式12l x -;(2)利用12l y =-;(3)如果交点坐标可以求出,利用两点间距离公式求解即可.12.(2022·广西河池·高三期末(理))已知抛物线2:4C y x =的焦点为F ,斜率为2的直线l 与抛物线C 相交于A 、B 两点.(Ⅰ)若直线l 与抛物线C 的准线相交于点P ,且PF =l 的方程; (Ⅱ)若直线l 不过原点,且90AFB ∠=︒,求ABF 的周长.【答案】(Ⅰ)2y x =;(Ⅱ)15+【分析】(Ⅰ)设直线l 的方程为2y x m =+,则点P 的坐标为()1,2m --,联立直线与抛物线,由判别式大于0可得12m <,由PF =0m =或4m =(舍去),从而可得结果;(Ⅱ)设直线l 的方程为()20=+≠y x b b ,并代入抛物线2:4C y x =,根据韦达定理和0FA FB ⋅=可解得12b =-,根据弦长公式可得||AB =||||AF BF +,进一步可得ABF 的周长. 【详解】(Ⅰ)由抛物线2:4C y x =可知(1,0)F ,准线为1x =-, 设直线l 的方程为2y x m =+,则点P 的坐标为()1,2m --,联立方程242y x y x m⎧=⎨=+⎩,消去y 后整理为()224440x m x m +-+=,又由()22441616320m m m ∆=--=->,可得12m <,由点F 的坐标为()1,0,有PF ==, 解得0m =或4m =(舍去), 故直线l 的方程为2y x =.(Ⅱ)设直线l 的方程为()20=+≠y x b b , 点A 、B 的坐标分别为()11,x y ,()22,x y ,联立方程242y x y x b⎧=⎨=+⎩,消去y 后整理为()224440x b x b +-+=,可得121x x b +=-,21214x x b =,()()()()222121212122242212y y x b x b x x b x x b b b b b b =++=+++=+-+=又由()22441616320b b b ∆=--=->,可得12b <. 又由()111,FA x y =-,()221,FB x y =-,可得()()()1212121212111FA FB x x y y x x x x y y ⋅=--+=-+++ ()22111123044b b b b b =--++=+=,得0b =(舍去)或12b =-.由12b =-,可得1213x x +=,1236x x =,所以AB ===()()121211215AF BF x x x x +=+++=++=,故ABF 的周长为15+ 【点睛】本题考查了直线与抛物线的位置关系,考查了抛物线的定义,韦达定理和弦长公式,考查了运算求解能力,属于中档题.。
高考数学圆锥曲线习题精选精讲可编辑

学前教育理论与实务袁玉长春光华学院.第三章学前教育观第一节学前教育的价值第二节学前教育的发展第三节学前教育的目标第四节科学学前教育观的树立学前儿童的因材施教第五节第一节学前教育的价值一、学前教育在儿童发展中的作用学前教育对于儿童的成长至关重要。
无论是对胎儿,还是对婴儿,或是对幼儿,只要有适宜的教育和训练,就能得到很好的成长与发展。
(一)保证胎儿健康的出生胎儿在5个月,听觉系统的发育已基本完善,6-7个月时能分辨出母亲的情感。
孕妇的情绪会通过神经——体液的变化,去影响胎儿的血液供应、呼吸、胎动等。
(二)保证婴儿及时的成长婴儿期是学前儿童发展的第二个重要时期。
有研究者认为:儿童八个月-2岁这段时期是特别重要的,因为语言、好奇心、智能和社会化的发展等基础都是在此期间奠定的、脑科学研究的人员发现:每个人的学习能力的50%是在生命的头4年发展起来的,早期学习不但不会剥夺童年的换了,而且能够为儿童提供各种发展的良机。
1.母乳喂养有利于婴儿免疫能力的增强。
母乳喂养对婴儿的呼吸道有保护作用,能降低呼吸道的发病率,母乳中含有较多的疾病免疫的因子,有助于刺激婴儿免疫系统的成熟。
母乳最佳喂养方式:产后半小时开始喂奶;出生后4个月内坚持母乳喂养,4-6个月开始添加辅食,具体月龄依婴儿生长情况而定,6个月月龄的婴儿均应添加辅食。
2.母亲注意卫生保健有利于婴儿的生长发育。
在婴儿哺乳期间,母亲吸烟,分泌的乳汁会减少,并增加婴儿的支气管和肺炎发生率。
3.成人重视体育锻炼,有助于婴儿健康成长。
成人注意语言刺激有利于婴儿4.的智力发展。
成人注意激发阅读兴趣有益于5.婴儿良好品行的塑造。
.成人注意音乐刺激有助于婴儿6.的情感陶冶。
(三)保证幼儿迅速的发展1.重视体育锻炼,能促进幼儿身心健康成长。
重视音乐训练,能提高幼儿的智力水平。
2.3.幼儿期教育能为儿童做好入学准备。
研究表明:上过幼儿园的儿童与未上过幼儿园的儿童相比,适应小学生活的能力更强,语文、数学平均成绩更高,当班干部、三好学生的比例更大。
圆锥曲线专题——定值定点问题(附解析)

第1页(共15页)圆锥曲线专题——定值定点问题1.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,以原点O 为圆心,椭圆的短半轴长为半径的圆与直线0x y -+=相切.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:l y kx m =+与椭圆C 相交于A 、B 两点,且22OA OBb k k a=-,判断AOB ∆的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.【解答】解:(1)椭圆的短半轴长为半径的圆与直线0x y -=相切,∴b ==又222a b c =+,12c e a ==, 解得24a =,23b =,故椭圆的方程为22143x y +=.()II 设1(A x ,1)y ,2(B x ,2)y ,由22143y kx mx y =+⎧⎪⎨+=⎪⎩化为222(34)84(3)0k x mkx m +++-=, △22226416(34)(3)0m k k m =-+->,化为22340k m +->.∴122834mkx x k +=-+,21224(3)34m x x k -=+.22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k-=++=+++=+, 34OA OB k k =-,第2页(共15页)∴121234y y x x =-,121234y y x x =-, 222223(4)34(3)34434m k m k k --=-++,化为22243m k -=,||AB==又11)4d==-=,1||2S AB d ===22342k +=== (1)求椭圆E 的标准方程;(2)过F 作直线l 与椭圆交于A 、B 两点,问:在x 轴上是否存在点P ,使PA PB 为定值,若存在,请求出P 点坐标,若不存在,请说明理由.【解答】解:(1)由题意知1c =,过F 且与x 轴垂直的弦长为3,则223b a =,即222()3a c a -=,则2a =,b∴椭圆E 的标准方程为22143x y +=;(2)假设存在点P 满足条件,设其坐标为(,0)t ,设1(A x ,1)y ,2(B x ,2)y ,当l 斜率存在时,设l 方程为(1)y k x =-,联立22(1)3412y k x x y =-⎧⎨+=⎩,整理得:2222(43)84120k x k x k +-+-=,△0>恒成立.第3页(共15页)2122843k x x k ∴+=+,212241243k x x k -=+. ∴1(PA x t =-,1)y ,2(PB x t =-,2)y .∴222212121212()()(1)()()PA PB x t x t y y k x x k t x x k t =--+=+-++++22222222(1)(412)()8()(43)43k k k t k k t k k +--++++=+, 2222(485)3(12)43t t k t k --+-=+, 当PA PB 为定值时,2248531243t t t ---=,118t ∴=, 此时223121354364t PA PB t -==-=-. 当l 斜率不存在时,11(8P ,0),3(1,)2A ,3(1,)2B -.3(8PA =-,3)2,3(8PB =-,3)2-,∴13564PA PB =-, ∴存在满足条件的点P ,其坐标为11(8,0). 此时PA PB 的值为13564-. 3.已知点(2,1)M 在抛物线2:C y ax =上,A ,B 是抛物线上异于M 的两点,以AB 为直径的圆过点M .(1)证明:直线AB 过定点;(2)过点M 作直线AB 的垂线,求垂足N 的轨迹方程. 【解答】证明:(Ⅰ)点(2,1)M 在抛物线2:C y ax =上,14a ∴=,解得14a =,第4页(共15页)∴抛物线的方程为24x y =,由题意知,故直线AB 的斜率存在,设直线AB 的方程为y kx m =+,设1(A x ,1)y ,2(B x ,2)y ,联立得24x yy kx m⎧=⎨=+⎩,消y 可得2440x kx m --=,得124x x k +=,124x x m =,由于MA MB ⊥,∴0MA MB =,即1212(2)(2)(2)(2)0x x y y --+--=,即121212122()()50x x x x y y y y -++-++=,(*)1212()2y y k x x m +=++,22121212()y y k x x km x x m =+++,代入(*)式得224865k k m m +=-+,即22(22)(3)k m +=-, 223k m ∴+=-,或223k m +=-,即25m k =+,或21m k =-+,当25m k =+时,直线AB 方程为(2)5y k x =++,恒过定点(2,5), 经验证,此时△0>,符合题意,当21m k =-+时,直线AB 方程为(2)5y k x =++,恒过定点(2,1),不合题意,∴直线AB 恒过点(2,5)-,(Ⅱ)由(Ⅰ)设直线AB 恒过定点(2,5)R -,则点N 的轨迹是以MR 为直径的圆且去掉(2,1)±,方程为22(3)8x y +-=,1y ≠.第5页(共15页)4.如图已知椭圆22221(0)x y a b a b+=>>的离心率为32,且过点(0,1)A .(1)求椭圆的方程;(2)过点A 作两条互相垂直的直线分别交椭圆于M ,N 两点.求证:直线MN 恒过定点P .并求点P 的坐标.【解答】解:(1)因为椭圆22221(0)x y a b a b+=>>3,且过点(0,1)A .所以1b =,3c a =, 所以2a =,1b =所以椭圆C 的方程为:2214x y +=⋯(3分)(2)直线MN 恒过定点3(0,)5P -,下面给予证明:设直线1l 的方程为1y kx =+,联立椭圆方程,消去y 得;22(41)80k x kx ++=,解得222814,4141M M k k x y k k -=-=++ 同理可得:22284,(844N N k k x y k k -==⋯++则直线MN 的斜率22222221441414885414k k k k k k k k k k k ----++'==--++,第6页(共15页)则直线MN 的方程为22221418()41541k k ky x k k k ---=+++,即22222141813()4154155k k k k y x x k k k k ---=++=-++,则直MN 过定点3(0,)5-.故直线MN 恒过定点P 3(0,)5-.⋯(12分)B .(1)证明:直线AB 过定点;面积.【解答】解:(1)证明:22x y =的导数为y x '=,设切点1(A x ,1)y ,2(B x ,2)y ,即有2112x y =,2222x y =,切线DA 的方程为111()y y x x x -=-,即为2112x y x x =-,切线DB 的方程为2222x y x x =-,联立两切线方程可得121()2x x x =+,可得121122y x x ==-,即121x x =-, 直线AB 的方程为2112112()2x y y y x x x x --=--, 即为211211()()22x y x x x x -=+-,第7页(共15页)可化为1211()22y x x x =++,可得AB 恒过定点1(0,)2;(2)法一:设直线AB 的方程为12y kx =+, 由(1)可得122x x k +=,121x x =-, AB 中点21(,)2H k k +,由H 为切点可得E 到直线AB 的距离即为||EH ,15||-= 解得0k =或1k =±, 即有直线AB 的方程为12y =或12y x =±+, 由12y =可得||2AB =,四边形ADBE 的面积为12(12)32ABE ABD S S ∆∆+=⨯⨯+=; 由12y x =±+,可得||1444AB =+=,此时1(1,)2D ±-到直线AB11|1|++= 5(0,)2E到直线AB15||-= 则四边形ADBE的面积为142ABE ABD S S ∆∆+=⨯⨯=;法二:(2)由(1)得直线AB 的方程为12y tx =+.第8页(共15页)由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是122x x t +=,121x x =-,21212()121y y t x x t +=++=+,212|||2(1)AB x x t =-=+.设1d ,2d 分别为点D ,E 到直线AB的距离,则1d =2d =因此,四边形ADBE的面积2121||()(2S AB d d t =+=+. 设M 为线段AB 的中点,则21(,)2M t t +.由于EM AB ⊥,而2(,2)EM t t =-,AB 与向量(1,)t 平行,所以2(2)0t t t +-=.解得0t =或1t =±.当0t =时,3S =;当1t =±时,S =综上,四边形ADBE 的面积为3或(1)求椭圆方程;(2)过直线2y =上的点P 作椭圆的两条切线,切点分别为B ,C ①求证:直线BC 过定点; ②求OBC ∆面积的最大值;【解答】(1)解:椭圆22221(0)x y a b a b+=>>过点(2,1)A ,离心率e =,第9页(共15页)∴22411a b +=,c a = 28a ∴=,22b =,∴椭圆方程为22182x y +=;(2)①证明:设0(P x ,2),1(B x ,1)y ,2(C x ,2)y ,则切线11:182x x y y PB +=,22:182x x y y PC +=, 0(P x ,2)代入,可得直线BC 的方程为018x xy +=, ∴直线BC 过定点(0,1);②018x xy +=代入椭圆方程可得2200(1)4016x x x x +--=, 0122116x x x x∴+=+,12204116x x x -=+,1201||2OBCS x x ∆∴=-=, 令2016u x =+,则1216OBC S ∆=,OBC ∴∆面积的最大值为2.(1)求抛物线C 的方程;(2)动直线:1()l x my m R =+∈与抛物线C 相交于A ,B 两点,问:在x 轴上是否存在定点||||DA DBDA DB +与向量OD 共线(其中存在,求出点D 的坐标;若不存在,请说明理由.第10页(共15页)【解答】解:(1)抛物线2:2(0)C y px p =>的焦点为(2p,0), 准线方程为2px =-, 即有05||22p pPF x =+=,即02x p =, 则2164p =,解得2p =,则抛物线的方程为24y x =;(2)在x 轴上假设存在定点(,0)D t (其中0)t ≠,使得||||DA DB DA DB +与向量OD 共线, 由||DA DA ,||DBDB 均为单位向量,且它们的和向量与OD 共线, 可得x 轴平分ADB ∠, 设1(A x ,1)y ,2(B x ,2)y ,联立1x my =+和24y x =,得2440y my --=,△216(1)0m =+>恒成立.124y y m +=,124y y =-.①设直线DA 、DB 的斜率分别为1k ,2k , 则由ODA ODB ∠=∠得,第11页(共15页) 121221121212()()()()y y y x t y x t k k x t x t x t x t -+-+=+=---- 122112121212(1)(1)2(1)()()()()()y my t y my t my y t y y x t x t x t x t +-++-+-+==----, 12122(1)()0my y t y y ∴+-+=,②联立①②,得4(1)0m t -+=,故存在1t =-满足题意,综上,在x 轴上存在一点(1,0)D -,使得x 轴平分ADB ∠, 即||||DA DB DA DB +与向量OD 共线. 8.已知圆22:(2)1M x y ++=,圆22:(2)49N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求曲线C 的方程;率均存在且斜率之和为2-,证明:直线l 过定点.【解答】解:(1)由圆22:(2)1M x y ++=,可知圆心(2,0)M -,半径1;圆22:(2)49N x y -+=,圆心(2,0)N ,半径7.设动圆的半径为R ,动圆P 与圆M 外切并与圆N 内切,||||1(7)8PM PN R R ∴+=++-=, 而||4NM =,由椭圆的定义可知:动点P 的轨迹是以M ,N 为焦点,4为半长轴长的椭圆, 4a ∴=,2c =,22212b a c =-=.∴曲线C 的方程为2211612x y +=.第12页(共15页)(2)证明:直线l 的斜率不存在时,设直线l 的方程为:x t =,(44)t -. 1(,)A t y ,2(,)B t y ,120y y +=.2AQ BQ k k +====-.解得t =此时直线l的方程为:x =.直线l 的斜率存在时,设直线l 的方程为:y kx m =+,.设1(A x ,1)y ,2(B x ,2)y . 联立2211612y kx m x y =+⎧⎪⎨+=⎪⎩,化为:222(34)84480k x kmx m +++-=. 则122834km x x k +=-+,212244834m x x k -=+,12122AQ BQ y y k k x x --+=+=-,11y kx m =+,22y kx m =+.化为:1212(22)()0k x x m x x ++-+=,代入化为:k =∴直线l的方程为:y m =+.第13页(共15页)令23x =,可得23y =-.可得直线l 过定点(23,23)-.9.如图,椭圆222:1(02)4x y E b b+=<<,点(0,1)P 在短轴CD 上,且2PC PD =- (Ⅰ)求椭圆E 的方程及离心率;(Ⅱ)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA OB PA PB λ+为定值?若存在,求λ的值;若不存在,请说明理由.第14页(共15页)【解答】解:(Ⅰ)由已知,点C ,D 的坐标分别为(0,)b -,(0,)b . 又点P 的坐标为(0,1),且2PC PD =-,即212b -=-, 解得23b =.∴椭圆E 方程为22143x y +=. 221c a b =-,∴离心率12e =; (Ⅱ)当直线AB 的斜率存在时,设直线AB 的方程为1y kx =+,A ,B 的坐标分别为1(x ,1)y ,2(x ,2)y .联立221431x y y kx ⎧+=⎪⎨⎪=+⎩,得22(43)880k x kx ++-=. 其判别式△0>,122843k x x k -+=+,122843x x k -=+. 从而,12121212[(1)(1)]OA OB PA PB x x y y x x y y λλ+=+++-- 21212(1)(1)()1k x x k x x λ=+++++22228(1)(1)4342234343k k k k λλλ-++-+-==--++,第15页(共15页)当2λ=时,24223743k λλ---=-+, 即7OA OB PA PB λ+=-为定值.当直线AB 斜率不存在时,直线AB 即为直线CD , 此时2347OA OB PA PB OC OD PC PD λ+=+=--=-, 故存在常数2λ=,使得OA OB PA PB λ+为定值7-.。
圆锥曲线求最值方法总结及典型例题

圆锥曲线最值问题—5大方面最值问题是圆锥曲线中的典型问题,它是教学的重点也是历年高考的热点。
解决这类问题不仅要紧紧把握圆锥曲线的定义,而且要善于综合应用代数、平几、三角等相关知识。
以下从五个方面予以阐述。
一.求距离的最值例1.设AB 为抛物线y=x 2的一条弦,若AB=4,则AB 的中点M 到直线y+1=0的最短距离为 , 解析:抛物线y=x 2的焦点为F (0 ,41),准线为y=41-,过A 、B 、M 准线y=41-的垂线,垂足分别是A 1、B 1、M 1, 则所求的距离d=MM 1+43=21(AA 1+BB 1) +43=21(AF+BF) +43≥21AB+43=21×4+43=411, 当且仅当弦AB 过焦点F 时,d 取最小值411, 评注:灵活运用抛物线的定义和性质,结合平面几何的相关知识,使解题简洁明快,得心应手。
二.求角的最值例2.M ,N 分别是椭圆12422=+y x 的左、右焦点,l 是椭圆的一条准线,点P 在l 上,则∠MPN 的最大值是 .解析:不妨设l 为椭圆的右准线,其方程是22=x ,点)0)(,22(00>y y P ,直线PM 和PN 倾斜角分别为βα和.∵)0,2(),0,2(N M -∴,232220tan 00y y k PM =+-==α22220tan 00y y k PN =--==β于是)tan(tan αβ-=∠MPN 2321232tan tan 1tan tan 0000y y y y ⋅+-=+-=αβαβ 33622262262200200=≤+=+=y y y y ∵)2,0[π∈∠MPN ∴6π≤∠MPN 即∠MPN 的最大值为6π. 评注:审题时要注意把握∠MPN 与PM 和PN 的倾斜角之间的内在联系.三、求几何特征量代数和的最值例3.点M 和F 分别是椭圆192522=+y x 上的动点和右焦点,定点B(2,2).⑴求|MF|+|MB|的最小值. ⑵求45|MF|+|MB|的最小值. 解析:易知椭圆右焦点为F(4,0),左焦点F ′(-4,0),离心率e=54,准线方程x=±425. ⑴|MF| + |MB| = 10―|MF ′ | + |MB| =10―(|MF ′|―|MB|)≥10―|F ′B|=10―210.故当M ,B ,F ′三点共线时,|MF|+|MB|取最小值10―210.⑵过动点M 作右准线x=425的垂线,垂足为H , 则54||||==e MH MF ⇒||54|H |MF M =. 于是45|MF|+|MB|=|MH|+|MB|≥|HB|=417. 可见,当且仅当点B 、M 、H 共线时,45|MF|+|MB|取最小值417. 评注:从椭圆的定义出发,将问题转化为平几中的问题,利用三角形三边所满足的基本关系,是解决此类问题的常见思路。
高中数学圆锥曲线经典考点及例题专题讲解

圆锥曲线的综合问题考纲解读 1.求圆锥曲线过定点问题;2.利用圆锥曲线求定值、常数值;3.利用圆锥曲线求变量的取值范围,最值问题;4.利用圆锥曲线求解探索性、存在性问题.考点一 圆锥曲线过定点问题|方法突破[例1] (2018·淄博模拟)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.(1)求椭圆C 的标准方程.(2)若直线l :y =kx +m 与椭圆C 相交于A ,B 两点(A ,B 不是左、右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.[解析] (1)因为左焦点(-c,0)到点P (2,1)的距离为10,所以(2+c )2+1=10,解得c =1.又e =c a =12,解得a =2,所以b 2=a 2-c 2=3.所以所求椭圆C 的方程为x 24+y 23=1.(2)证明:设A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,消去y 得(3+4k 2)x 2+8mkx +4(m 2-3)=0, Δ=64m 2k 2-16(3+4k 2)(m 2-3)>0, 化为3+4k 2>m 2.所以x 1+x 2=-8mk 3+4k 2,x 1x 2=4(m 2-3)3+4k 2.y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=3(m 2-4k 2)3+4k 2.因为以AB 为直径的圆过椭圆右顶点D (2,0),k AD ·k BD =-1, 所以y 1x 1-2·y 2x 2-2=-1,所以y 1y 2+x 1x 2-2(x 1+x 2)+4=0, 所以3(m 2-4k 2)3+4k 2+4(m 2-3)3+4k 2+16mk 3+4k 2+4=0.化为7m 2+16mk +4k 2=0, 解得m 1=-2k ,m 2=-2k7.且满足3+4k 2-m 2>0.当m =-2k 时,l :y =k (x -2),直线过定点(2,0)与已知矛盾; 当m =-2k7时,l :y =k ⎝⎛⎭⎫x -27,直线过定点⎝⎛⎭⎫27,0. 综上可知,直线l 过定点⎝⎛⎭⎫27,0 .[方法提升][母题变式]若本例的条件“以AB 为直径的圆过椭圆C 的右顶点”,改为“以AB 为直径的圆过椭圆C 的左顶点”.则直线l 是否还过定点?若过定点,求出该定点的坐标;若不过定点,说明理由.解析:设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,消去y 得(3+4k 2)x 2+8mkx +4(m 2-3)=0, Δ=64m 2k 2-16(3+4k 2)(m 2-3)>0,化为3+4k 2>m 2. 所以x 1+x 2=-8mk 3+4k 2,x 1x 2=4(m 2-3)3+4k 2.y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=3(m 2-4k 2)3+4k 2.因为以AB 为直径的圆过椭圆左顶点D (-2,0),k AD ·k BD =-1,所以y 1x 1+2·y 2x 2+2=-1,所以y 1y 2+x 1x 2+2(x 1+x 2)+4=0,所以3(m 2-4k 2)3+4k 2+4(m 2-3)3+4k 2-16mk 3+4k 2+4=0.化为7m 2-16mk +4k 2=0,解得m 1=2k ,m 2=2k 7.且满足3+4k 2-m 2>0.当m =2k 时,l :y =k (x +2),直线过定点(-2,0)与已知矛盾; 当m =2k7时,l :y =k ⎝⎛⎭⎫x +27,直线过定点⎝⎛⎭⎫-27,0. 综上可知,直线l 过定点⎝⎛⎭⎫-27,0.考点二 圆锥曲线的定值问题|方法突破[例2] 已知椭圆C :x 24+y 23=1.若直线l :y =kx +m 与椭圆C 相交于A ,B 两点,且k OA ·k OB=-34(O 为坐标原点),判断△AOB 的面积是否为定值,若为定值,求出定值;若不为定值,说明理由.[解析] 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1得(3+4k 2)x 2+8mkx +4(m 2-3)=0,则由Δ=64m 2k 2-16(3+4k 2)(m 2-3)>0,得3+4k 2-m 2>0.又x 1+x 2=-8mk3+4k 2,x 1x 2=4(m 2-3)3+4k 2,∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=3(m 2-4k 2)3+4k 2.又由k OA ·k OB =-34,得y 1y 2x 1x 2=-34,即y 1y 2=-34x 1x 2,∴3(m 2-4k 2)3+4k 2=-34·4(m 2-3)3+4k 2,即2m 2-4k 2=3. 又|AB |=1+k 2(x 1+x 2)2-4x 1x 2=24(1+k 2)3+4k 2.点O 到直线AB 的距离为d =|m |1+k2= 2-12(1+k 2)≥2-12=62. S △AOB =12|AB |d =1224(1+k 2)3+4k 2·|m |1+k 2=12 24(1+k 2)m 2(3+4k 2)(1+k 2)=12243+4k 2·3+4k 22= 3. [方法提升]已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1(-1,0),长轴长与短轴长的比是2∶ 3.(1)求椭圆的方程;(2)过F 1作两直线m ,n 交椭圆于A ,B ,C ,D 四点,若m ⊥n ,求证:1|AB |+1|CD |为定值.解析:(1)由已知得⎩⎪⎨⎪⎧2a ∶2b =2∶3,c =1,a 2=b 2+c 2.解得a =2,b = 3.故所求椭圆方程为x 24+y 23=1.(2)证明:由已知F 1(-1,0),当直线m 不垂直于坐标轴时,可设直线m 的方程为y =k (x +1)(k ≠0).由⎩⎪⎨⎪⎧y =k (x +1),x 24+y 23=1,得(3+4k 2)x 2+8k 2x +4k 2-12=0. 由于Δ>0,设A (x 1,y 1),B (x 2,y 2), 则有x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2,|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+k 2)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫-8k 23+4k 22-4×4k 2-123+4k 2 =12(1+k 2)3+4k 2.同理|CD |=12(1+k 2)3k 2+4.所以1|AB |+1|CD |=3+4k 212(1+k 2)+3k 2+412(1+k 2)=7(1+k 2)12(1+k 2)=712.当直线m 垂直于坐标轴时,此时|AB |=3,|CD |=4;或|AB |=4,|CD |=3,1|AB |+1|CD |=13+14=712. 综上,1|AB |+1|CD |为定值712.考点三 圆锥曲线中的范围(最值)问题|模型突破[例3] (2018·聊城模拟)椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是椭圆上的一点,l :x =-a 2c ,且PQ ⊥l ,垂足为Q ,若四边形PQF 1F 2为平行四边形,则椭圆的离心率的取值范围是( )A.⎝⎛⎭⎫12,1B.⎝⎛⎭⎫0,12 C.⎝⎛⎭⎫0,22 D.⎝⎛⎭⎫22,1[解析] 设点P (x 1,y 1),由于PQ ⊥l ,故|PQ |=x 1+a 2c ,因为四边形PQF 1F 2为平行四边形,所以|PQ |=|F 1F 2|=2c ,即x 1+a 2c =2c ,则有x 1=2c -a 2c >-a ,所以2c 2+ac -a 2>0,即2e 2+e -1>0,解得e <-1或e >12,由于0<e <1,所以12<e <1,即椭圆离心率的取值范围是⎝⎛⎭⎫12,1. [答案] A [模型解法][高考类题]1.(2015·高考重庆卷)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,右顶点为A ,过F作AF 的垂线与双曲线交于B ,C 两点,过B ,C 分别作AC ,AB 的垂线,两垂线交于点D .若D 到直线BC 的距离小于a +a 2+b 2,则该双曲线的渐近线斜率的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-2,0)∪(0,2)D .(-∞,-2)∪(2,+∞)解析:如图所示,由题意知BC 为双曲线的通径,所以|BC |=2b 2a ,则|BF |=b 2a .又|AF |=c -a ,因为BD ⊥AC ,DC ⊥AB ,所以点D 在x 轴上,由Rt △BF A ∽Rt △DFB ,得|BF |2=|AF |·|FD |,即(b 2a )2=(c -a )|FD |,所以|FD |=b 4a 2(c -a ),则由题意知b 4a 2(c -a )<a +a 2+b 2,即b 4a 2(c -a )<a +c ,所以b 4<a 2(c -a )(a +c ),即b 4<a 2(c 2-a 2),即b 4<a 2b 2,所以0<b 2a 2<1,解得0<b a <1,而双曲线的渐近线斜率为±ba ,所以双曲线的渐近线斜率的取值范围是(-1,0)∪(0,1),故选A.答案:A2.(2017·高考浙江卷)如图,已知抛物线x 2=y ,点A ⎝⎛⎭⎫-12,14,B ⎝⎛⎭⎫32,94,抛物线上的点P (x ,y )⎝⎛⎭⎫-12<x <32.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求|P A |·|PQ |的最大值.解析:(1)设直线AP 的斜率为k ,k =x 2-14x +12=x -12.因为-12<x <32,所以直线AP 斜率的取值范围是(-1,1).(2)联立直线AP 与BQ 的方程⎩⎨⎧kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标是x Q =-k 2+4k +32(k 2+1).因为|P A |=1+k 2⎝⎛⎭⎫x +12=1+k 2(k +1),|PQ |=1+k 2(x Q -x )=-(k -1)(k +1)2k 2+1,所以|P A |·|PQ |=-(k -1)(k +1)3, 令f (k )=-(k -1)(k +1)3. 因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎝⎛⎭⎫-1,12上单调递增,⎝⎛⎭⎫12,1上单调递减,因此当k =12时,|P A |·|PQ |取得最大值2716.考点四 圆锥曲线的存在性问题|方法突破[例4] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点P (0,1)和点A (m ,n )(m ≠0)都在椭圆C 上,直线P A 交x 轴于点M .(1)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(2)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得∠OQM =∠ONQ ?若存在,求点Q 的坐标;若不存在,说明理由.[解析] (1)由题意得⎩⎪⎨⎪⎧b =1,c a =22,a 2=b 2+c 2.解得a 2=2.故椭圆C 的方程为x 22+y 2=1.设M (x M,0).因为m ≠0,所以-1<n <1. 直线P A 的方程为y -1=n -1m x ,所以x M =m 1-n ,即M (m1-n,0).(2)因为点B 与点A 关于x 轴对称,所以B (m ,-n ). 设N (x N,0),则x N =m1+n.“存在点Q (0,y Q )使得∠OQM =∠ONQ ”等价于“存在点Q (0,y Q )使得|OM ||OQ |=|OQ ||ON |”,即y Q 满足y 2Q =|x M ||x N |.因为x M =m 1-n ,x N =m 1+n ,m 22+n 2=1,所以y 2Q =|x M ||x N |=m 21-n 2=2. 所以 y Q =2或y Q =- 2.故在y 轴上存在点Q ,使得∠OQM =∠ONQ , 点Q 的坐标为(0,2)或(0,-2). [方法提升][跟踪训练](2018·徐州模拟)在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q .(1)求k 的取值范围.(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数k ,使得向量OP →+OQ →与AB →垂直?如果存在,求k 值;如果不存在,请说明理由.解析:(1)由已知条件,直线l 的方程为y =kx +2, 代入椭圆方程得x 22+(kx +2)2=1,整理得⎝⎛⎭⎫12+k 2x 2+22kx +1=0.①直线l 与椭圆有两个不同的交点P 和Q 等价于①中 Δ=8k 2-4⎝⎛⎭⎫12+k 2 =4k 2-2>0, 解得k <-22或k >22. 即k 的取值范围为⎝⎛⎭⎫-∞,-22∪⎝⎛⎭⎫22,+∞.(2)不存在,理由如下:设P (x 1,y 1),Q (x 2,y 2), 则OP →+OQ →=(x 1+x 2,y 1+y 2), 由方程①得,x 1+x 2=-42k1+2k 2,y 1+y 2=k (x 1+x 2)+22=-42k 21+2k 2+2 2.因为(OP →+OQ →)⊥AB →,AB →=(-2,1),所以(x 1+x 2)·(-2)+y 1+y 2=0, 即:-42k 1+2k 2·(-2)-42k 21+2k 2+22=0.解得:k =-24, 由(1)知k 2>12,与此相矛盾,所以不存在常数k 使OP →+OQ →与AB →垂直.[考点二](2015·高考全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点(2,2)在C 上.(1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.解析:(1)由题意有a 2-b 2a =22,4a 2+2b 2=1,解得a 2=8,b 2=4. 所以C 的方程为x 28+y 24=1.(2)证明:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).将y =kx +b 代入x 28+y 24=1得(2k 2+1)x 2+4kbx +2b 2-8=0. 故x M =x 1+x 22=-2kb2k 2+1,y M =k ·x M +b =b2k 2+1.于是直线OM 的斜率k OM =y M x M =-12k ,即k OM ·k =-12.所以直线OM 的斜率与直线l 的斜率的乘积为定值.。
圆锥曲线的七种常考题型详解【高考必备】

圆锥曲线的七种常考题型详解【高考必备】圆锥曲线的七种常见题型题型一:定义的应用圆锥曲线的定义包括椭圆、双曲线和抛物线。
在定义的应用中,可以寻找符合条件的等量关系,进行等价转换和数形结合。
适用条件需要注意。
例1:动圆M与圆C1:(x+1)+y=36内切,与圆C2:(x-1)+y=4外切,求圆心M的轨迹方程。
例2:方程表示的曲线是什么?题型二:圆锥曲线焦点位置的判断在判断圆锥曲线焦点位置时,需要将方程化成标准方程,然后判断。
对于椭圆,焦点在分母大的坐标轴上;对于双曲线,焦点在系数为正的坐标轴上;对于抛物线,焦点在一次项的坐标轴上,一次项的符号决定开口方向。
例1:已知方程表示焦点在y轴上的椭圆,则m的取值范围是什么?例2:当k为何值时,方程是椭圆或双曲线?题型三:圆锥曲线焦点三角形问题在圆锥曲线中,可以利用定义和正弦、余弦定理求解焦点三角形问题。
PF,PF2=n,m+n,m-n,mn,m+n四者的关系在圆锥曲线中有应用。
例1:椭圆上一点P与两个焦点F1,F2的张角为α,求△F1PF2的面积。
例2:已知双曲线的离心率为2,F1、F2是左右焦点,P 为双曲线上一点,且∠F1PF2=60,求该双曲线的标准方程。
题型四:圆锥曲线中离心率、渐近线的求法在圆锥曲线中,可以利用a、b、c三者的相等或不等关系式,求解离心率和渐近线的值、最值或范围。
在解题时需要注重数形结合思想和不等式解法。
例1:已知F1、F2是双曲线的两焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是多少?例2:双曲线的两个焦点为F1、F2,渐近线的斜率为±1/2,求双曲线的标准方程。
题型五:圆锥曲线的参数方程在圆锥曲线的参数方程中,需要注意参数的取值范围,可以通过消元或代数运算求解。
例1:求椭圆x^2/4+y^2/9=1的参数方程。
例2:求双曲线x^2/9-y^2/4=1的参数方程。
题型六:圆锥曲线的对称性圆锥曲线具有对称性,可以通过对称性求解问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线例题讲解51.利用方程组解的状况来确定圆锥曲线与直线的位置关系 例1.已知双曲线x 2-2y 2=2,直线l 过点(0,1),(1) 若直线l 与双曲线只有一个公共点,求直线l 倾斜角的范围; (2) 当直线l 与双曲线的左支交于两个不同点时,求直线l 倾斜角的范围. 解:设直线l :y =kx +1, 解方程组2-2y 2=2,消元,得:(1-2k 2)x 2-4kx -4=0 y =kx +1(1) 当1-2k 2=0时,即22±=k 时,直线l 分别与双曲线的渐近线平行,此时直线l 与双曲线的一支有一个交点,直线l 的倾斜角分别为22arctg或22arctg -π;当⎩⎨⎧=∆≠-00212k 即()1102116160212222±=⇒=⇒⎪⎩⎪⎨⎧=-+≠-k k k k k 时,直线l 与双曲线相切,即直线l 与双曲线只有一个公共点,直线l 的倾斜角为4π或43π.综上,当直线l 的倾斜角为22arctg 或22arctg -π或4π或43π时,直线l 与双曲线只有一个公共点;(2) 当()⎪⎪⎭⎫ ⎝⎛∈⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧>--<->-+=∆≠-12202140214021161602122222,k k kkk k k k ,直线l 与双曲线的左支交于两点,此时直线l 的倾斜角的范围是⎪⎪⎭⎫ ⎝⎛422arctgπ,.2.求直线被圆锥曲线所截的弦长、弦的中点坐标.例2.已知椭圆12222=+by a x (a >b >0)与直线x +y =1交于A 、B 两点,22=AB ,弦AB 的中点M 与椭圆中心连线的斜率为22,求椭圆的方程.分析:题中直线与椭圆相交,所以应该转化为解方程组⎪⎩⎪⎨⎧=+=+112222y x b y a x ,消y ,得(a 2+b 2)x 2-2a 2x +a 2-a 2b 2=0 ①∵ 直线与椭圆交于两点,∴ 方程①应有两个不同的实根, ∴ ①式的判别式△>0,即△=4a 4-4a 2(1-b 2)(a 2+b 2)>0.题中给了两个条件求a 、b ,显然直线OM 的斜率计算比较简单,故先使用这个条件.222212b a a x x +=+,2222121212b a b x x y y +=+-=+, ∴ ⎪⎪⎭⎫ ⎝⎛++222222b a b b a a M ,. 2222222b a ab k OM=⇒==,代入①,化简整理得:()()012221222=-+-+b x x ,()()()()()2222221211224811=+-+-⋅+=b AB解出232=b ,∴ a 2=3,满足△>0,∴ 所求椭圆方程为132322=+y x .例3.已知l 1、l 2是过点()02,-P 的两条互相垂直的直线,且l 1、l 2与双曲线y 2-x 2=1各有两个交点,分别为A 1、B 1和A 2、B 2.(1) 求l 1的斜率k 1的取值范围; (2) 若22115B A B A =,求l 1、l 2的方程.解:根据题意,l 1、l 2的斜率存在.设直线l 1的方程为()21+=x k y ,(k 1≠0),直线l 2的方程为()22+=x k y ,(k 2≠0),且k 1·k 2=-1.解方程组()⎪⎩⎪⎨⎧=-+=12221x y x k y ,消y ,得:()0122212121221=-++-k x k x k解方程组()⎪⎩⎪⎨⎧=-+=12222x y x k y ,消y ,得:()0122212222222=-++-k x k x k (1) l 1、l 2与双曲线各有两个交点,等价于()()⎪⎩⎪⎨⎧<<≠⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧>-=∆>-=∆-=⋅≠-≠-3331013401341010111222211212221k k k k k k k k ∴ ()()31133331131,,,, ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----∈k ; (2) 设A 1(x 1,y 1),B 1(x 2,y 2)()()()()[]212212122121211411x x x xk x x kB A -++=-+=()()()221212111314--+=kk k ,同理()()()()()()22121212222222222131411314k k k kk k B A --+=--+=,∵ 22115B A B A =,∴ |A 1B 1|2=5|A 2B 2|2,∴()()()()()()221212122121211314511314k k k kk k --+⋅=--+,解得21±=k.当21=k 时,l 1:()22+=x y ,l 2:()222+-=x y ; 当2-=k 时,l 1:()22+-=x y ,l 2:()222+=x y . 3.直线与圆锥曲线相交的应用例4.已知双曲线方程12422=-y x , (1) 过M (1,1)的直线交双曲线于A 、B 两点,若M 为弦AB 的中点,求直线AB 的方程;(2) 是否存在直线l ,使⎪⎭⎫ ⎝⎛211,N 为l 截双曲线所得弦的中点,若存在,求出直线l 的方程,若不存在,请说明理由.解:(1) 依题意,直线AB 的斜率存在. 设直线AB 的方程为y -1=k (x -1),① ② 解方程组()⎪⎩⎪⎨⎧=--=-1241122y x x k y ,消y ,得: (1-2k 2)x 2+(4k 2-4k )x -2k 2+4k -6=0 ① 设A (x 1,y 1),B (x 2,y 2),则AB 中点的横坐标211212222221=⇒=--=+k k k k x x , 将21=k 代入①,判别式△>0, ∴ 直线AB 的方程为()1211-=-x y ,即x -2y +1=0; (2) 设直线l 的方程()121-=-x k y 解方程组()⎪⎪⎩⎪⎪⎨⎧=--=-12412122y x x k y ,消y ,得: ()()0292224212222=-+--+-k k x k kx k ② 弦CD 中点横坐标为1121222221=⇒=--=+k k k k x x , 将k =1代入②中,得:2x 2-4x +9=0,△=16-72<0,∴ k =1舍去. ∴ 满足条件的直线不存在. 下面从另一个角度分析这个问题. (1) 设A (x 1,y 1),B (x 2,y 2),⎪⎭⎫⎝⎛++222121y y x x M ,, 则x 1+ x 2=2,y 1+ y 2=2,且⎪⎪⎩⎪⎪⎨⎧=-=-12412422222121y x y x ①-②,得(x 1-x 2)(x 1+ x 2)-2(y 1-y 2)(y 1+ y 2)=0当x 1=x 2时,直线AB 与双曲线没有公共点, ∴ x 1≠x 2,① ② ∴ 21022*********=--⇒=--⋅⋅-x x y y x x y y∴ 直线AB 的方程为()1211-=-x y ,即x -2y +1=0. 但是这样求出直线方程后,还需要判定所求的直线是否符合条件. ∵ 双曲线一条渐近线方程为x y 22=, 而2221<=AB k ,∴ 所求直线与双曲线的两支各有一个交点, ∴ 直线x -2y +1=0为所求.(2) 设过N 的直线l 交双曲线于,C (x 1,y 1),D (x 2,y 2)点,⎪⎭⎫⎝⎛++222121y y x x N ,,则x 1+x 2=2,y 1+ y 2=1.⎪⎪⎩⎪⎪⎨⎧=-=-12412422222121y x y x ①-②,得CD k x x y y ==--12121.∵ 双曲线一条渐近线方程为x y 22=, 而221>, ∴ 直线l 与双曲线无公共点, ∴ 使N 为弦中点的直线不存在. 从上面的分析可以看出①这种方法计算比较简单,但必须判定满足条件的直线是否存在. ②这种方法适用于直线和圆锥曲线相交时,有关弦的中点的问题.从例4的分析可以得出,若某一点为圆锥曲线一条弦的中点,那么,弦所在的直线或者不存在,或者存在只有一条.因此,圆锥曲线上任意四点顺序连接,所得四边形不是平行四边形.例5.已知抛物线方程y 2=2x .在y 轴上截距为2的直线又与抛物线交于A 、B 两点,以AB 为直径的圆过原点,求直线l 的方程.解:依题意,直线l 的斜率存在. 设直线l 的方程为y =kx +2. 解方程组⎩⎨⎧=+=xy kx y 222,消y ,得k 2x 2+(4k -2)x +4=0.()()414141624022<⇒⎩⎨⎧>-=--=∆≠k k k k k 且k ≠0. AB 中点的横坐标221212kk x x -=+,纵坐标k k k k y 12212=+-=, ()()()()()k k k kkk x xk AB 41124114122422212-+=-⋅+=-+=,∴ 以AB 为直径的圆的方程为:()()k k k k y k k x 411112124222-+=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--, 将O (0,0)代入圆的方程, 解出k =0 (舍)或k =-1(满足条件). ∴ 直线l 的方程为y =-x +2. 下面研究另一种解法.由上面的解法得:k 2x 2+(4k -2)x +4=0.()⎪⎭⎫ ⎝⎛∞-∈4100,, k . 设A (x 1,y 1),B (x 2,y 2),以AB 为直径的圆过原点等价于OA ⊥OB ,OA ⊥OB 等价于x 1x 2+ y 1y 2=0,⇒x 1x 2+(kx 1+2)(kx 2+2)=0 ⇒(1+k 2)(x 1x 2)+2k (x 1+x 2)+4=0∴ ()0442241222=+-⋅++k kk k k解出k =-1,∴ 直线l 的方程为y =-x +2.例6.已知点P (2,2)在抛物线c :y 2=mx 上,直线l 的方程为x -y -2=0.是否存在矩形ABCD ,它的一条对角线AC 在l 上,顶点B 、D 在抛物线C 上,且AC 与BD 的夹角为arctg3,若存在,求出这个矩形的面积,若不存在,说明理由.分析:将P (2,2)代入y 2=mx ,可求出抛物线方程为y 2=2x .矩形ABCD 存在等价于存在直线l ',l '与l 的夹角为arctg3,且截抛物线所得弦的中点在l 上.解:∵ P 在抛物线y 2=mx 上,将x =2,y =2代入,22=⇒=m mx y . ∴ 抛物线方程为y 2=2x .假设矩形ABCD 存在,设直线BD 所在的直线l '的斜率为k ,由夹角公式得:2311-=⇒=+-k kk 或21-=k .当k =-2时,设l '的方程为y =-2x +a ,解方程组⎩⎨⎧+-==ax y xy 222,消y ,得:4x 2-2(2a +1)x +a 2=0, ①∵ l '与抛物线交于两点, ∴ △=4(2a +1)2-16a 2>041->⇒a . 弦BD 的中点⎪⎭⎫⎝⎛-+21412,a M ,则M 在l 上⎪⎭⎫ ⎝⎛∞+-∈=⇒=-⎪⎭⎫ ⎝⎛--+⇒,41250221412a a , 代入①式,得04251242=+-x x ,255=BD . 1016334sin 2212=⋅∠⋅⎪⎪⎭⎫ ⎝⎛=AMB BD S ABCD. 当21-=k 时,设l '的方程为b x y +-=21, 解方程组⎪⎩⎪⎨⎧+-==bx y xy 2122,消y ,得:()024122=++-b x b x , △=(b +2)2-b 2>0⇒b >-1,BD 的中点M (2b +4,-2),M 在l 上⇒2b +4-(-2)-2=0⇒b =-2∉(-1,+∞), ∴ 当21-=k 时,矩形ABCD 不存在. 4.圆锥曲线中的对称问题例7.已知椭圆13422=+y x ,试确定m 的范围,使得对于直线l :y =4x +m,椭圆上有不同的两点关于直线l 对称.分析:设椭圆上A 、B 两点关于直线l 对称. 则它等价于: ①AB ⊥l ;②弦AB 的中点M 在直线l 上; ③A 、B 在椭圆上.解法1.设A 、B 两点在椭圆上,且关于直线l 对称,直线AB 与l 交于M . ∵ AB ⊥l ,∴ 设直线AB 的方程为n xy +-=4, 解方程组⎪⎩⎪⎨⎧+-=+=n xy m x y 44 ⇒M 点横坐标()m n x -=174, 解方程组⎪⎪⎩⎪⎪⎨⎧=++-=134422y x n x y ,消y ,得:13x 2-8nx +16n 2-48=0 ① ∴ M 点横坐标为134n∴()m n n m n 413134174-=⇒=-; ∵ A 、B 是椭圆上的两点,∴ ①式的△=64 n 2-4·16·13(n 2-3)>0,即4132<n , 将m n 413-=代入,得1344131616922<⇒<m m ⎪⎭⎫ ⎝⎛-∈⇒1313213132,m . 解法2.同解法1,得m n 413-=, m m n M x -=⎪⎭⎫⎝⎛-==413134134,代入y =4x +m 中, 得M y =-3m ,∴ M (-m ,-3m ), ∵ A 、B 为椭圆上两点, ∴ M 在椭圆内部,∴()()133422<-+-m m ⎪⎭⎫⎝⎛-∈⇒1313213132,m .解法3.设A (x 1,y 1),B (x 2,y 2),AB 与l 的交点M (x 0,y 0),则 1342121=+y x ① 1342222=+y x ② ①-②,得3(x 1-x 2)( x 1+ x 2)+4(y 1-y 2)( y 1+ y 2)=0,即3·2x 0(x 1-x 2)+4·2y 0(y 1-y 2)=0 ∵ AB ⊥l , ∴4143002121-=-=--y x x x y y ,即y 0=3x 0,为M 点的轨迹方程,又M 在l 上,∴ y 0=4x 0+m ,解出⎩⎨⎧-=-=m y m x 300,即M (-m ,-3m ),以下同解法2.。