数理统计试卷2011(正式)
全国历自学考试概率论与数理统计(二)试题与答案

全国2011年4月自学考试概率论与数理统计(二)课程代码:02197 选择题和填空题详解试题来自百度文库 答案由王馨磊导师提供一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A , B , C , 为随机事件, 则事件“A , B , C 都不发生”可表示为( A ) A .C B A B .C B A C .C B A D .C B A 2.设随机事件A 与B 相互独立, 且P (A )=51, P (B )=53, 则P (A ∪B )=( B ) A .253B .2517C .54D .25233.设随机变量X ~B (3, 0.4), 则P {X ≥1}= ( C ) A .0.352 B .0.432 C .0.784 D .0.936解:P{X ≥1}=1- P{X=0}=1-(1-0.4)3=0.784,故选C. 4.已知随机变量X 的分布律为 , 则P {-2<X ≤4}= ( C ) A .0.2 B .0.35 C .0.55 D .0.8解:P {-2<X ≤4}= P {X =-1}+ P {X =2}=0.2+0.35=0.55,故选C. 5.设随机变量X 的概率密度为4)3(2e2π21)(+-=x x f , 则E (X ), D (X )分别为( ) A .2,3- B .-3, 2 C .2,3 D .3, 2 与已知比较可知:E(X)=-3,D(X)=2,故选B. 6.设二维随机变量 (X , Y )的概率密度为⎩⎨⎧≤≤≤≤=,,0,20,20,),(其他y x c y x f 则常数c =( A ) A .41B .21C .2D .4解:设D 为平面上的有界区域,其面积为S 且S>0,如果二维随机变量 (X ,Y )的概率密度为则称 (X ,Y )服从区域D 上的均匀分布,由0≤x ≤2,0≤y ≤2,知S=4,所以c=1/4,故选A.7.设二维随机变量 (X , Y )~N (-1, -2;22, 32;0), 则X -Y ~ ( ) A .N (-3, -5) B .N (-3,13) C .N (1, 13) D .N (1,13)解:由题设知,X~N(-1,22),Y~N(-2,32),且X 与Y 相互独立, 所以E(X-Y)=E(X)-E(Y)=-1-(-2)=1,D(X-Y)=D(X)+D(Y)=13,故选D. 8.设X , Y 为随机变量, D (X )=4, D (Y )=16, Cov (X ,Y )=2, 则XY ρ=( )A .321 B .161 C .81D .419.设随机变量X ~2χ(2), Y ~2χ(3), 且X 与Y 相互独立, 则3/2/Y X ~ ( )A .2χ (5)B .t (5)C .F (2,3)D .F (3,2)10.在假设检验中, H 0为原假设, 则显着性水平α的意义是 ( ) A .P {拒绝H 0|H 0为真} B .P {接受H 0|H 0为真} C .P {接受H 0|H 0不真} D .P {拒绝H 0|H 0不真}解:在0H 成立的情况下,样本值落入了拒绝域W 因而0H 被拒绝,称这种错误为第一类错误;二、填空题 (本大题共15小题, 每小题2分, 共30分)请在每小题的空格中填上正确答案。
自学考试概率论与数理统计(经管类)

全国2011年4月高等教育自学考试管理系统中计算机应用试题课程代码:00051一、单项选择题(本大题共30小题,每小题1分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.信息可分为固定信息和流动信息,下列属于固定信息的是( )A.工资信息B.财务信息C.定额信息D.市场信息2.二次信息收集的关键问题之一是正确地( )A.解释所得到的信息B.校验所得到的信息C.处理所得到的信息D.存储所得到的信息3.从理论上分析,传统的IP地址(IPv4)最多可以访问的用户数是( )A.255*255*255*255B.8*8*8*8C.32*32*32*32D.256*256*256*2564.目前在因特网中连接各局域网、广域网的主要设备是( )A.网桥B.集线器C.路由器D.中继器5.数字通信信号带宽的含义是( )A.传输速率B.频带宽度C.复用率D.电缆的粗细6.数据库系统由四个部分构成:数据库、计算机软硬件系统、用户和( )A.操作系统B.数据库管理员C.数据集合D.数据库管理系统7.使用电路交换方式可以在数据交换技术中实现( )A.报文交换B.专线连接C.分组交换D.存储转发8.计算机程序设计中的高级语言是( )A.最新开发的语言B.人最容易理解的语言C.功能最强的语言D.机器最容易理解的语言9.MIS开发成功与否取决于该系统是否( )A.操作便利B.采用先进技术C.节约资金D.符合用户需要10.在选择开发方法时,不.适合使用原型法的情况是( )A.用户需求模糊不清B.组织结构不稳定C.用户参与程度不高D.管理体制有变化11.某企业日常信息处理工作已经普遍由计算机完成。
按照诺兰模型,该企业计算机应用属于( )A.控制阶段B.集成阶段C.数据管理阶段D.成熟阶段12.进行现行系统的详细调查应当在( )A.可行性报告已获批准,系统逻辑模型已经确定之后B.可行性报告已获批准,系统逻辑模型有待确定之前C.系统逻辑模型已经确立,可行性报告提交之后D.系统逻辑模型已经确立,可行性研究进行之前13.企业的输入输出报表(日报、月报、年报)等数据( )A.是不需要保存的流动信息B.是不需要保存的固定信息C.是需要保存的流动信息D.是需要保存的固定信息14.“条件成立时重复执行某个处理,直到条件不成立时结束”的处理逻辑是( )A.循环结构B.顺序结构C.判断结构D.重复结构15.系统物理结构设计的主要工具是( )A.控制结构图B.模块调用图C.实体联系图D.数据流程图16.在调用时,只完成一项确定任务的模块是( )A.数据凝聚模块B.逻辑凝聚模块C.功能凝聚模块D.时间凝聚模块17.下述不.符合模块调用规则的是( )A.每个模块只接受上级模块的调用B.非直接上下级模块不能直接调用C.被调用的下级模块不能再次分解D.模块的调用必须遵从白上而下的顺序l8.系统测试、维护等修改的工作量,约占软件生命周期总工作量的( )A.90%B.65%C.50%D.35%19.根据信息系统物理设计的基本要求,系统的物理模型必须( )A.符合E-R模型B.符合逻辑模型C.以业务为中心D.符合代码规则20.系统分析报告批准后,信息系统开发将进行( )A.设备购置B.可行性分析C.系统设计D.确定逻辑模型21.在V isual FoxPro中,可以包含数据环境的对象是( )A.报表B.数据表C.菜单D.数据库22.在V isual FoxPro数据库中,实现数据安全性、完整性、可靠性校验主要依靠( )A.程序语句B.数据字典C.操作员D.界面控制23.需要用热键F操作下拉菜单某选项,创建菜单该选项时应当在相应的“菜单名称”项中输入( )A.(\F)B.(\<F)C.(<F)D.(\F)24.数据库表中字符型字段的默认匹配类是( )A.组合框B.文本框C.列表框D.编辑框25.在面向对象方法中,一组对象的属性和行为特征的抽象描述称为( )A.操作B.事件C.方法D.类26.在系统实施阶段编制应用程序时,最重要的是( )A.贯彻系统分析的结果B.选择熟悉的程序语言C.完善计算机设备功能D.具有系统的观点27.属于系统直接切换方式优点的是( )A.功能完善B.可靠性高C.费用节省D.安全性好28.不.属于系统可靠性技术措施的是( )A.负荷分布技术B.存取控制技术C.设备冗余技术D.系统重组技术29.评价系统运行中,非计划停机所占比例属于( )A.目标评价B.功能评价C.性能评价D.经济效果评价30.下列属于MIS间接经济效果的是( )A.缩短投资回收期B.实现信息集成化C.增加收益增长额D.提高劳动生产率二、名词解释题(本大题共5小题,每小题3分,共15分)31.总线32.(面向对象方法中的)消息33.(U/C矩阵的)无冗余性检验34.处理过程设计35.程序的逻辑错误三、简答题(本大题共5小题,每小题5分,共25分)36.简述企业资源计划(ERP)系统的主要特点。
2011年10月全国自考概率论与数理统计(经管类)试题(真题)和答案

2011年10月全国自考概率论与数理统计(经管类)试题和解析一、单项选择1.设随机变量A 与B 相互独立,P (A )>0,P (B )>0,则一定有P (A ∪B )=()A .P (A )+P (B ) B .P (A )P (B )C .1-P (A )P (B )D .1+P (A )P (B )答案:C 解析:因为A 和B 相互独立,则A 与B 相互独立,即P (A B )=P (A )P (B ).而P (A ∪B )表示A 和B 至少有一个发生的概率,它等于1减去A 和B都不发生的概率,即P (A ∪B )=1- P (A B )=1- P (A )P (B ).故选C. 2.设A 、B 为两个事件,P (A )≠P (B )>0,且A B ⊃,则一定有()A .P (A |B )=1 B .P (B |A )=1C .P (B |A )=1D .P (A |B )=0答案:A 解析:A ,B 为两个事件,P (A )≠P (B )>0,且A ⊃B ,可得B 发生,A 一定发生,A 不发生,B 就一定不发生,即P (A |B )=1,P (B |A )=1.则P {-1<X ≤1}=()A .0.2B .0.3C .0.7D .0.5 答案:D4.下列函数中,可以作为连续型随机变量的概率密度的是()A . 3sin ,()20,x x f x ππ⎧≤≤⎪=⎨⎪⎩其他B .3sin ,()20,x x f x ππ⎧-≤≤⎪=⎨⎪⎩其他C .3cos ,()20,x x f x ππ⎧≤≤⎪=⎨⎪⎩其他D .31cos ,()20,x x f x ππ⎧-≤≤⎪=⎨⎪⎩其他答案:B 解析:连续型随机变量的概率密度有两条性质:(1)()f x ≥0;(2)0 1 20.2 0.3 0.5X P 3.若随机变量X 的分布为了,()1f x dx +∞-∞=⎰. A选项中,3[,]2x ππ∈时,()f x =sin x ≤0;B选项中,3[,]2x ππ∈时,()f x ≥0,且()1f xd x +∞-∞=⎰;C 选项中,()fx ≤0;D 选项中,()f x ≥0,()f x dx +∞-∞=⎰2π+1.故只有B 是正确的. 5.若()1,()3,E X D X =-=则E (32X -4)=() A .4 B .8 C .3 D .6答案:B 解析:E (2X )=2()[()]D X E X +=4,E (32X -4)=3E (2X )-4=8.6.设二维随机变量(X ,Y )的密度函数⎩⎨⎧≤≤≤≤=,y x y x f 其他,0;10,10,1),(则X 与Y ()A .独立且有相同分布B .不独立但有相同分布C .独立而分布不同D .不独立也不同分布答案:A 解析:分别求出X ,Y 的边缘分布得:()X f x =⎩⎨⎧≤≤,x 其他,0,10,1()Y f y =⎩⎨⎧≤≤,y 其他,0,10,1由于(,)f x y = ()X f x ·()Y f y ,可以得到X 与Y 相互独立且具有相同分布.7.设随机变量X ~B (16,12),Y ~N (4,25),又E (XY )=24,则X 与Y 的相关系数XY ρ=()A .0.16B .-0.16C .-0.8D .0.8答案:C 解析:因为X ~B (16,12),Y ~N (4,25),所以E (X )=16×12=8,E (Y )=4, D(X )=16×12×12=4,D (Y )=25,所以XY ρ=0.8==-.8.设总体X ~N (μ, 2σ),12,,,n x x x 为其样本,则Y =2211()ni i x μσ=-∑服从分布() A .2(1)n χ- B .2()n χ C .(1)t n - D .()t n答案:B 解析:因为12,,,n x x x ~N (μ,2σ),则ix μ-~N (0,2σ),()i x μσ-~N (0,1),故Y =2211()ni i x μσ=-∑=21()ni i x μσ=-∑的分布称为自由度为n 的2χ分布,记为2()n χ.9.设总体X ~N (μ, 2σ),其中2σ已知,12,,,n x x x 为其样本,x =11ni i x n =∑,作为μ的置信区间(0.025x u -0.025x u +),其置信水平为()A .0.95B .0.05C .0.975D .0.025答案:A 解析:本题属于2σ已知的单个正态总体参数的置信区间,故0.025=2α,α=0.05,置信水平为1-α=0.95.10.总体X ~N (μ, 2σ),12,,,n x x x 为其样本,x 和2s 分别为样本均值与样本方差,在2σ已知时,对假设检验0010::H H μμμμ=↔≠应选用的统计量是() ABCD答案:A 解析:对假设检验0010::H H μμμμ=↔≠,由于2σ已知,应选用统计量u=x 的标准化随机变量,具有的特点是:(1)u 中包含所要估计的未知参数μ;(2) u 的分布为N (0,1),它与参数μ无关.二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
(完整)高等数理统计2011

南昌大学研究生2010~2011学年第 2 学期期末考试试卷试卷编号: ( A )卷课程名称: 高等数理统计 适用专业: 数学 姓名: 学号: 专业: 学院: 考试日期: 2011年6月19日 考试占用时间: 150分钟 考试形式(开卷或闭卷):题号 一 二 三 四 五 六七八九十总分 累分人 签名题分 1515202525100 得分考生注意事项:1、本试卷共 页,请查看试卷中是否有缺页或破损。
如有立即举手报告以便更换。
2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。
一、证明题: (15分)得分 评阅人设1(0,1):X N ,2(0,4):X N ,且1X 与2X 独立,求112=+Y X X 与212=-Y X X 的联合分布。
二、计算题:(15分)得分 评阅人设总体X 有密度函数201()0<<⎧=⎨⎩其它x x p x ,从该总体随机抽取一个容量为4的样本,计算概率(3)(0.5)>P X 。
三、综合题:(20分)得分 评阅人(1) 检查Poisson 布族的完备性;(2) 判断分布族{(1),0,1,2,;0}θθθθ=-=>L x p x 是否为指数族;四、应用题:(25分)得分 评阅人设1,,L n X X 为独立同分布变量,01θ<<,11Pr(1)2θ-=-=X , 11Pr(0)2==X , 1Pr(1)2θ==X , (1) 求θ的1ˆθMLE 并问1ˆθ是否是无偏的; (2) 求θ的矩估计2ˆθ; (3) 计算θ的无偏估计的方差的C-R 下界。
五、综合题:(25分)得分 评阅人设1X ,2X 独立同分布,其共同的密度函数为:23(;)3, 0,0θθθθ=<<>p x x x(1) 证明1122()3=+T x x 和2127max(,)6=T x x 都是θ的无偏估计;(2) 计算1T 和2T 的均方误差并进行比较; (3) 证明:在均方误差意义下,在形如12max(,)=c T c x x 的估计中,87T 最优。
2011年下学期数理统计Ⅱ考试试卷

---○---○------○---○---………… 评卷密封线 ……………… 密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按0分处理 ……………… 评卷密封线 ………… 中南大学考试试卷2011~2012学年 一 学期 数理统计Ⅱ 课程(09级)(时间:12年1月5日,星期四,10:00—11:40,共计:100分钟)645.105.0=z ,96.1025.0=z ,()9525.067.1=Φ,()86.391,110.0=F ,()3060.28025.0=t ,()8595.1805.0=t ,()7531.11505.0=t ,()1315.215025.0=t ,()180.282975.0=χ,()535.1782025.0=χ,()2515205.0=χ,()6.3015201.0=χ()951.9202975.0=χ,()17.34202025.0=χ一、填空题(本题16分,每小题4分)1、设n X X X ,,,21 是来自总体X 的一个样本,若n X X X ,,,21 满足 条件,则称n X X X ,,,21 为简单随机样本;2、设10021,,,X X X 为取自总体()400,80~N X 的一个样本,则{}=>-2μX P ;3、设921,,,X X X 为取自总体()2,~σμN X 的一个样本,测得5.1,100==s x ,则μ的置信水平为0.95的置信区间为 ;4、设1,,,21n X X X 取自总体()221,~σμN X ,2,,,21n Y Y Y 取自总体()222,~σμN Y ,其中21,μμ均未知,样本方差分别为2221,S S ,检验假设2221122210:,:σσσσ≠=H H 采用的是 检验法;在显著性水平α下,拒绝域为 。
二、选择题(本题16分,每小题4分)1、设n X X X ,,,21 取自总体()1,0~N X ,2,S X 分别表示样本均值和样本方差,则( )(A )()1,0~N X (B )()1,0~N X n (C )()∑=ni i n X 122~χ(D )()1~-n t SX2、在假设检验中,显著水平α是指( )(A ){}α=为假接受00|H H P (B ){}α=为假接受11|H H P (C ){}α=为真拒绝00|H H P (D ){}α=为真拒绝11|H H P3、设()2,~σμN X ,若μ和2σ未知,总体均值μ的置信水平为α-1的置信区间为()λλ+-x x ,,则λ的值为( ) (A )()nS n t a (B )()nS n t a 1- (C )()nS n t a 2(D )()nS n t a 12-4、设2421,,,X X X 为取自总体()4,~μN X 的样本,测得10=x ,以0.05的显著性水平进行假设检验,则以下假设中将被拒绝的0H 是( )。
概率论考题(答案)

2010~2011第一学期《概率论与数理统计》答案经管类本科一、选择题(每小题3分,共18分)1.对于事件B A ,,下列命题正确的是( D ))(A 如果B A ,互不相容,则B A ,也互不相容 )(B 如果B A ⊂,则B A ⊂ )(C 如果B A ⊃,则B A ⊃ )(D 如果B A ,对立,则B A ,也对立2.设B A ,为随机事件,且()()0,1P B P A B >=,则必有( A )()()()A P A B P A ⋃= ()()()B P A B P B ⋃=()()()C P A B P A ⋃> ()()()D P A B P B ⋃>3.若随机变量X 的分布函数为)(x F ,则=≤≤)(b X a P ( B ))()()(a F b F A - )()()()(a X P a F b F B =+- )()()()(a X P a F b F C =-- )()()()(b X P a F b F D =+-4.设随机变量X 服从参数为3的泊松分布,)31,8(~B Y ,且X ,Y 相互独立, 则=--)43(Y X D ( C )13)(-A 15)(B 19)(C 23)(D5. 总体2~(,)X N μσ, 123,,X X X 为取自总体X 的简单随机样本,在以下总体均值μ的四个无偏估计量中,最有效的是( D )1123111()236A X X X μ∧=++ 21311()22B X X μ∧=+3123131()555C X X X μ∧=++ 4123111()424D X X X μ∧=++6. 设12,,,n X X X ()2n ≥为来自总体()0,1N 的简单随机样本,2S 为样本方差,则下面结论正确的是( A )()22()(1)~1A n S n χ-- ()22()(1)~B n S n χ- ()22()~1C nS n χ- ()22()~D nS n χ 二、填空题(每题3分,共30分)1.设B A ,相互独立且都不发生的概率为91,又A 发生而B 不发生的概率与B 发生而A 不发生的概 率相等,则()=P A 32. 2.在时间],0[T 内通过某交通路口的汽车数X 服从泊松分布,且已知3(3)(4)P X P X ===,则 参数=λ 12 .3.设随机变量X 的概率分布为)(x F 为其分布函数,则)3(F = 53/56 .4. 设随机变量),2(~p B X ,),3(~p B Y ,若(1)≥P X =95,则(1)≥P Y = 19/27 5. 设随机变量X 的概率密度为)(x f =⎩⎨⎧≤≤,,0,0,242其他c x x ,则常数c = 1/26.设随机变量()~1,4,X N )(x Φ为标准正态分布函数,已知Φ(1)=0.8413,Φ(2)=0.9772, 则(3)P X ≤= 0.8185 .7.设Y X ,为随机变量,已知协方差3),(=Y X Cov ,则=)3,2(Y X Cov 18 8.设随机变量()~0.5,X E ,用切比雪夫不等式估计(23)P X -≥ > 4/9 .9. 设123,,X X X 为总体X 的样本,3216121kX X X T ++=,已知T 是EX 的无偏估计, 则k = 1/310.设n X X X ,,,21 是来自正态总体()3,4,N 的样本,则∑=-n i i X 12)3(41~_)(2n χ_.三、计算题(共52分)1.(10分)某商店有100台相同型号的冰箱待售,其中60台是甲厂生产的,25台是乙厂生产的,15台是丙厂生产的,已知这三个厂生产的冰箱质量不同,它们的不合格率依次为0.1、0.4、0.2,现有一位顾客从这批冰箱中随机地取了一台,试求: (1)该顾客取到一台合格冰箱的概率;(2)顾客开箱测试后发现冰箱不合格,试问这台冰箱来自甲厂的概率是多大? 解:设事件 A1, A2, A3 分别为甲、乙、丙三厂生产的产品,事件 B 为次品。
数理统计试题及答案

数理统计考试试卷一、填空题(本题15分,每题3分)1、总体的容量分别为10,15的两独立样本均值差________;2、设为取自总体的一个样本,若已知,则=________;3、设总体,若和均未知,为样本容量,总体均值的置信水平为的置信区间为,则的值为________;4、设为取自总体的一个样本,对于给定的显著性水平,已知关于检验的拒绝域为2≤,则相应的备择假设为________;5、设总体,已知,在显著性水平0.05下,检验假设,,拒绝域是________。
1、;2、0.01;3、;4、;5、.二、选择题(本题15分,每题3分)1、设是取自总体的一个样本,是未知参数,以下函数是统计量的为()。
(A)(B) (C)(D)2、设为取自总体的样本,为样本均值,,则服从自由度为的分布的统计量为()。
(A)(B) (C)(D)3、设是来自总体的样本,存在, ,则( )。
(A)是的矩估计(B)是的极大似然估计(C)是的无偏估计和相合估计(D)作为的估计其优良性与分布有关4、设总体相互独立,样本容量分别为,样本方差分别为,在显著性水平下,检验的拒绝域为()。
(A) (B)(C)(D)5、设总体,已知,未知,是来自总体的样本观察值,已知的置信水平为0.95的置信区间为(4.71,5。
69),则取显著性水平时,检验假设的结果是()。
(A)不能确定(B)接受(C)拒绝(D)条件不足无法检验1、B;2、D;3、C;4、A;5、B。
三、(本题14分)设随机变量X的概率密度为:,其中未知参数,是来自的样本,求(1)的矩估计;(2)的极大似然估计。
解:(1) ,令,得为参数的矩估计量。
(2)似然函数为:,而是的单调减少函数,所以的极大似然估计量为.四、(本题14分)设总体,且是样本观察值,样本方差,(1)求的置信水平为0.95的置信区间;(2)已知,求的置信水平为0。
95的置信区间;(,)。
解:(1)的置信水平为0。
95的置信区间为,即为(0。
概率论与数理统计期中试卷(1-4章)附答案及详解

X,23π+=X Y5.设随机变量1X ,2X ,3X 相互独立,1X 在)5,1(-服从均匀分布,)2,0(~22N X,)2(~3Exp X (指数分布),记32132X X X Y +-=,则)(Y E )(Y D6. 设二维正态分布的随机变量)0,3,4,2,1( ),(22-N ~Y X ,且知8413.0)1(=Φ,则-<+)4(Y X P7. 已知随机变量X 的概率密度201()0 a bx x f x⎧+<<=⎨⎩其他, 且41)(=X E ,则a b )(X D 8. 设4.0,36)(,25)(===XY Y D X D ρ,则=+)(Y X D =-)(Y X D 二. (10分) 某车间有甲乙两台机床加工同一种零件,甲机床加工的零件数量比乙机床多一倍,甲乙机床加工零件的废品率分别为0.03,0.02. 两机床加工出的零件放在一起. 试求 (1)任取一个零件是合格品的概率;(2)任取一个零件经检验是废品,试求它是由乙机床生产的概率.解:设“从放在一起的零件中任取一件发现是甲/乙机床加工的”分别记为事件,A .A再记“从放在一起的零件中任取一件发现是废品”为事件.B 由已知得.02.0)(,03.0)(;31)(,32)(====A B P A B P A P A P …… 3’(1)由全概率公式知027.075202.03103.032)()()()()(≈=⨯+⨯=+=A B P A P A B P A P B P . …… 3’ 故任取一个零件是合格品的概率73()1()0.973.75P B P B =-=≈ …… 1’ (2)由贝叶斯公式知.4102.03103.03202.031)()()()()()()(=⨯+⨯⨯=+=A B P A P A B P A P A B P A P B A P …… 3’三. (10分)设某型号的电子元件的寿命X (单位: 小时)的分布密度为⎪⎩⎪⎨⎧>=其它,01000,1000)(2x x x f各元件在使用中损坏与否相互独立,现在从一大批这种元件中任取5只,求其中至少有一只元件的寿命大于1500小时的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国矿业大学
2011 级硕士研究生课程考试试卷
考试科目数理统计
考试时间2011.12
研究生姓名
学号
所在学院
任课教师
中国矿业大学研究生院培养管理处印制
一、(15分)设区域{(,)|01,0}G x y x y x =<≤<≤,随机变量),(Y X 在G 上服从均
匀分布,求(|)E X Y .
二、(15分)将一颗骰子随机抛掷120次,观察其出现的点数,结果如下:
试问这颗骰子的六个面是否均匀?)05.0(=α
三、(15分)设某元件寿命X 的概率密度为2()2,()
(;)0,()x e x f x x θθθθ--⎧≥=⎨<⎩
,求θ的极大似
然估计量,并判别是否为优效估计量.
四、(15 分)甲乙两个砖厂各生产一批机制红砖, 抽样检查测量砖的抗折强度(千克), 得到结果如下: 甲厂 1110,27.3, 6.4n x S ===
乙厂 228,30.5, 3.8n y S ===
已知甲乙两厂生产的砖的抗折强度分别服从22
1122(,),(,)N N μσμσ正态分布, 试求两厂红砖
抗折强度均值差12μμ-的置信区间? )05.0(=α
五、(20分,每小题10分)
1、考虑过原点的线性回归模型 1,1,2,,i i i Y X i n βε=+=
误差i ε仍满足回归模型基本假设,求1β的最小二乘估计1ˆβ,并推导出1
ˆβ的分布.
2、在10块地中,测得某农作物的每亩穗数1x (单位:万),每穗实际粒数2x 和每亩产量y (单位:公斤),数据见表一:
利用软件,对y 关于1x ,2x 做多元线性回归分析,结果如表二:
表二
(1)写出回归方程并计算误差方差的估计2
ˆσ
的值; (2)根据表二数据,分析回归效果(显著性水平0.05α=).
六、(10分)车间里有5名工人,有3台不同型号的车床生产同一品种的产品,现在让每个人轮流在3台车床上操作,记录某日产量结果如下表(设各观测值总体服从同方差的正态分布、无交互作用)
根据上述统计结果解答下面两个问题.)05.0(=α (1)将下面的方差分析表补充完整
(2)试问这5个人技术之间和不同车床型号之间对产量有无显著影响.
七、(10分)设12,,n X X X 是来自总体X 的简单的随机样本,X 服从参数为λ的指数分布,已知2
2(2) n X n λχ,试在以下三种假设下对λ做假设检验,推导其拒绝域,
0010(1):;:H H λλλλ≥<; 0010(2):;:H H λλλλ≤>;
0010(3):;:H H λλλλ=≠,0λ是一个给定的常数。
0.05(2,8) 4.46F =,0.05(4,8) 3.84F =,0.05(2,7)44.7F =,0.05(4,7)42.1F =,0.025(2,7)64.5F =,0.025(2,8)66.0F =,0.05(9) 1.8331t =,0.025(9)2622.2t =,
0.025(8) 2.3060t =,0.025(7) 2.3646t =
0.0250.025(9,7) 4.82,(7,9) 4.2F F ==,0.025(16) 2.1199,t =2
0.05
(5)11.071χ=。