2016年湖南省岳阳市中考数学试卷及答案
2016湖南省岳阳市中考数学试卷(含答案精校解析版)

2016年湖南省岳阳市中考数学试卷一、选择题(本大题8道小题,每小题3分,满分24分)1.(3分)(2016•岳阳)下列各数中为无理数的是()A.﹣1 B.3.14 C.π D.02.(3分)(2016•岳阳)下列运算结果正确的是()A.a235B.(a2)36C.a2•a36D.3a﹣213.(3分)(2016•岳阳)函数中自变量x的取值范围是()A.x≥0 B.x>4 C.x<4 D.x≥44.(3分)(2016•岳阳)某小学校足球队22名队员年龄情况如下:年龄(岁)12 11 10 9 人数 4 10 6 2则这个队队员年龄的众数和中位数分别是()A.11,10 B.11,11 C.10,9 D.10,115.(3分)(2016•岳阳)如图是某几何体的三视图,则该几何体可能是()A.圆柱B.圆锥C.球D.长方体6.(3分)(2016•岳阳)下列长度的三根小木棒能构成三角形的是()A.2,3,5 B.7,4,2 C.3,4,8 D.3,3,47.(3分)(2016•岳阳)下列说法错误的是()A.角平分线上的点到角的两边的距离相等B.直角三角形斜边上的中线等于斜边的一半C.菱形的对角线相等D.平行四边形是中心对称图形8.(3分)(2016•岳阳)对于实数a,b,我们定义符号{a,b}的意义为:当a≥b 时,{a,b};当a<b时,{a,b];如:{4,﹣2}=4,{3,3}=3,若关于x的函数为{3,﹣1},则该函数的最小值是()A.0 B.2 C.3 D.4二、填空题(本大题共8小题,每小题4分,满分32分)9.(4分)(2016•岳阳)如图所示,数轴上点A所表示的数的相反数是.10.(4分)(2016•岳阳)因式分解:6x2﹣3.11.(4分)(2016•岳阳)在半径为6的圆中,120°的圆心角所对的弧长为.12.(4分)(2016•岳阳)为加快“一极三宜”江湖名城建设,总投资124000万元的岳阳三荷机场及交通产业园,预计2016年建好主体工程,将124000万元用科学记数法表示为元.13.(4分)(2016•岳阳)如图,四边形为⊙O的内接四边形,已知∠110°,则∠度.14.(4分)(2016•岳阳)如图,一山坡的坡度为1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了米.15.(4分)(2016•岳阳)如图,一次函数(k、b为常数,且k≠0)和反比例函数(x>0)的图象交于A、B两点,利用函数图象直接写出不等式<的解集是.16.(4分)(2016•岳阳)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为.三、解答题(本大题共8道小题,满分64分)17.(8分)(2016•岳阳)计算:()﹣1﹣+260°﹣(2﹣)0.18.(6分)(2016•岳阳)已知:如图,在矩形中,点E在边上,点F在边上,且,⊥,求证:.19.(6分)(2016•岳阳)已知不等式组(1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率.20.(8分)(2016•岳阳)我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了3.6小时,求学生步行的平均速度是多少千米/小时.21.(8分)(2016•岳阳)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数()数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:指数质量等级天数(天)0﹣50 优m51﹣100 良44101﹣150 轻度污染n151﹣200 中度污染 4201﹣300 重度污染 2300以上严重污染 2(1 )统计表中,.扇形统计图中,空气质量等级为“良”的天数占%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.22.(8分)(2016•岳阳)已知关于x的方程x2﹣(21)(1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为0,求代数式(2m﹣1)2+(3)(3﹣m)+7m﹣5的值(要求先化简再求值).23.(10分)(2016•岳阳)数学活动﹣旋转变换(1)如图①,在△中,∠130°,将△绕点C逆时针旋转50°得到△A′B′C,连接′,求∠A′B′B的大小;(2)如图②,在△中,∠150°,3,5,将△绕点C逆时针旋转60°得到△A′B′C,连接′,以A′为圆心,A′B′长为半径作圆.(Ⅰ)猜想:直线′与⊙A′的位置关系,并证明你的结论;(Ⅱ)连接A′B,求线段A′B的长度;(3)如图③,在△中,∠α(90°<α<180°),,,将△绕点C逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)24.(10分)(2016•岳阳)如图①,直线4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).(1)求抛物线F1所表示的二次函数的表达式;(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形和△的面积分别为S四边形和S△,记四边形﹣S△,求S最大时点M的坐标及S的最大值;(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.2016年湖南省岳阳市中考数学试卷参考答案与试题解析一、选择题(本大题8道小题,每小题3分,满分24分)1.(3分)(2016•岳阳)下列各数中为无理数的是()A.﹣1 B.3.14 C.π D.0【考点】无理数.【分析】π是圆周率,是无限不循环小数,所以π是无理数.【解答】解:∵π是无限不循环小数,∴π是无理数.故选C.【点评】此题是无理数题,主要考查了无理数的定义,了解π,解本题的关键是明白无理意义.数的2.(3分)(2016•岳阳)下列运算结果正确的是()A.a235B.(a2)36C.a2•a36D.3a﹣21【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】利用幂的有关运算性质逐一计算后即可确定正确的选项.【解答】解:A、a2与a3不是同类项,不能合并,故错误;B、(a2)36,正确,符合题意;C、a2•a35,故错误;D、3a﹣2,故错误,故选B.【点评】本题考查了幂的乘方与积的乘方、合并同类项及同底数幂的乘法的知识,解题的关键是牢记有关的幂的运算性质,难度不大.3.(3分)(2016•岳阳)函数中自变量x的取值范围是()A.x≥0 B.x>4 C.x<4 D.x≥4【考点】函数自变量的取值范围;二次根式有意义的条件.【分析】根据二次根式有意义的条件可得出x﹣4≥0,解该不等式即可得出结论.【解答】解:∵x﹣4≥0,∴x≥4.故选D.【点评】本题考查了函数自变量的取值范围以及二次根式有意义的条件,解题的关键是得出不等式x﹣4≥0.本题属于基础题,难度不大,解决该题型题目时,根据二次根式有意义的条件得出不等式是关键.4.(3分)(2016•岳阳)某小学校足球队22名队员年龄情况如下:年龄(岁)12 11 10 9 人数 4 10 6 2则这个队队员年龄的众数和中位数分别是()A.11,10 B.11,11 C.10,9 D.10,11【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:年龄是11岁的人数最多,有10个人,则众数是11;把这些数从小到大排列,中位数是第11,12个数的平均数,则中位数是=11;故选B.【点评】此题考查了中位数和众数,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.(3分)(2016•岳阳)如图是某几何体的三视图,则该几何体可能是()A.圆柱B.圆锥C.球D.长方体【考点】由三视图判断几何体.【分析】根据一个空间几何体的主视图和俯视图都是宽度相等的长方形,可判断该几何体是柱体,进而根据左视图的形状,可判断柱体侧面形状,得到答案.【解答】解:∵几何体的主视图和俯视图都是宽度相等的长方形,∴该几何体是一个柱体,又∵俯视图是一个圆,∴该几何体是一个圆柱.故选A.【点评】本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.6.(3分)(2016•岳阳)下列长度的三根小木棒能构成三角形的是()A.2,3,5 B.7,4,2 C.3,4,8 D.3,3,4【考点】三角形三边关系.【分析】依据三角形任意两边之和大于第三边求解即可.【解答】解:A、因为2+3=5,所以不能构成三角形,故A错误;B、因为2+4<6,所以不能构成三角形,故B错误;C、因为3+4<8,所以不能构成三角形,故C错误;D、因为3+3>4,所以能构成三角形,故D正确.故选:D.【点评】本题主要考查的是三角形的三边关系,掌握三角形的三边关系是解题的关键.7.(3分)(2016•岳阳)下列说法错误的是()A.角平分线上的点到角的两边的距离相等B.直角三角形斜边上的中线等于斜边的一半C.菱形的对角线相等D.平行四边形是中心对称图形【考点】中心对称图形;角平分线的性质;直角三角形斜边上的中线;菱形的性质.【专题】推理填空题.【分析】A:根据角平分线的性质,可得角平分线上的点到角的两边的距离相等.B:根据直角三角形斜边上的中线的性质,可得直角三角形斜边上的中线等于斜边的一半.C:根据菱形的性质,菱形的对角线互相垂直,但是不一定相等.D:根据中心对称图形的性质,可得常见的中心对称图形有:平行四边形、圆形、正方形、长方形,据此判断即可.【解答】解:∵角平分线上的点到角的两边的距离相等,∴选项A正确;∵直角三角形斜边上的中线等于斜边的一半,∴选项B正确;∵菱形的对角线互相垂直,但是不一定相等,∴选项C不正确;∵平行四边形是中心对称图形,∴选项D正确.故选:C.【点评】(1)此题主要考查了角平分线的性质和应用,要熟练掌握,解答此题的关键是要明确:一个角的平分线把这个角分成两个大小相同的角.(2)此题还考查了菱形的性质和应用,要熟练掌握,解答此题的关键是要明确:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.(3)此题还考查了直角三角形斜边上的中线,要熟练掌握,解答此题的关键是要明确:在直角三角形中,斜边上的中线等于斜边的一半.(4)此题还考查了中心对称图形,要熟练掌握,解答此题的关键是要明确:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.8.(3分)(2016•岳阳)对于实数a,b,我们定义符号{a,b}的意义为:当a≥b 时,{a,b};当a<b时,{a,b];如:{4,﹣2}=4,{3,3}=3,若关于x的函数为{3,﹣1},则该函数的最小值是()A.0 B.2 C.3 D.4【考点】分段函数.【专题】新定义.【分析】分x≥﹣1和x<﹣1两种情况进行讨论计算,【解答】解:当3≥﹣1,即:x≥﹣1时,3,∴当﹣1时,2,当3<﹣1,即:x<﹣1时,﹣1,∵x<﹣1,∴﹣x>1,∴﹣1>2,∴y>2,∴2,故选B【点评】此题是分段函数题,主要考查了新定义,解本题的关键是分段.二、填空题(本大题共8小题,每小题4分,满分32分)9.(4分)(2016•岳阳)如图所示,数轴上点A所表示的数的相反数是2.【考点】相反数;数轴.【分析】根据相反数的定义,即可解答.【解答】解:数轴上点A所表示的数是﹣2,﹣2的相反数是2,故答案为:2.【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义.10.(4分)(2016•岳阳)因式分解:6x2﹣33x(2x﹣1).【考点】因式分解-提公因式法.【分析】根据提公因式法因式分解的步骤解答即可.【解答】解:6x2﹣33x(2x﹣1),故答案为:3x(2x﹣1).【点评】本题考查的是提公因式法因式分解,提公因式法基本步骤:找出公因式;提公因式并确定另一个因式:第一步找公因式可按照确定公因式的方法先确定系数再确定字母;第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式.11.(4分)(2016•岳阳)在半径为6的圆中,120°的圆心角所对的弧长为4π.【考点】弧长的计算.【分析】直接利用弧长公式求出即可.【解答】解:半径为6的圆中,120°的圆心角所对的弧长为:=4π().故答案为:4π.【点评】此题主要考查了弧长公式的应用,正确记忆弧长公式是解题关键.12.(4分)(2016•岳阳)为加快“一极三宜”江湖名城建设,总投资124000万元的岳阳三荷机场及交通产业园,预计2016年建好主体工程,将124000万元用科学记数法表示为 1.24×109元.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:124000万=124000 0000=1.24×109,故答案为:1.24×109.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(4分)(2016•岳阳)如图,四边形为⊙O的内接四边形,已知∠110°,则∠70度.【考点】圆内接四边形的性质;圆周角定理.【分析】根据圆内接四边形的对角互补求∠的度数即可.【解答】解:∵四边形为⊙O的内接四边形,∴∠∠180°(圆内接四边形的对角互补);又∵∠110°,∴∠70°.故答案为:70.【点评】本题主要考查了圆内接四边形的性质.解答此题时,利用了圆内接四边形的对角互补的性质来求∠的补角即可.14.(4分)(2016•岳阳)如图,一山坡的坡度为1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了100米.【考点】解直角三角形的应用-坡度坡角问题.【专题】应用题.【分析】根据坡比的定义得到∠,∠30°,然后根据含30度的直角三角形三边的关系求解.【解答】解:根据题意得∠,所以∠30°,所以×200=100(m).故答案为100.【点评】本题考查了解直角三角形的应用:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i 表示,常写成1:m的形式15.(4分)(2016•岳阳)如图,一次函数(k、b为常数,且k≠0)和反比例函数(x>0)的图象交于A、B两点,利用函数图象直接写出不等式<的解集是1<x<4.【考点】反比例函数与一次函数的交点问题.【分析】先根据图形得出A、B的坐标,根据两点的坐标和图形得出不等式的解集即可.【解答】解:∵由图象可知:A(1,4),B(4,1),x>0,∴不等式<的解集为1<x<4,故答案为:1<x<4.【点评】本题考查了反比例函数与一次函数的交点的应用,能读懂图象是解此题的关键,数形结合思想的应用.16.(4分)(2016•岳阳)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为(504,﹣504).【考点】规律型:点的坐标.【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第四象限的角平分线上,被4除余1的点在第三象限的角平分线上,被4除余2的点在第二象限的角平分线上,被4除余3的点在第一象限的角平分线上,点P2016的在第四象限的角平分线上,且横纵坐标的绝对值=2016÷4,再根据第四项象限内点的符号得出答案即可.【解答】解:由规律可得,2016÷4=504,∴点P2016的在第四象限的角平分线上,∵点P4(1,﹣1),点P8(2,﹣2),点P12(3,﹣3),∴点P2016(504,﹣504),故答案为(504,﹣504).【点评】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,所在正方形,然后就可以进一步推得点的坐标.三、解答题(本大题共8道小题,满分64分)17.(8分)(2016•岳阳)计算:()﹣1﹣+260°﹣(2﹣)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用零指数幂、负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=3﹣2+2﹣1=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2016•岳阳)已知:如图,在矩形中,点E在边上,点F在边上,且,⊥,求证:.【考点】矩形的性质;全等三角形的判定与性质.【专题】证明题;图形的全等;矩形菱形正方形.【分析】由四边形为矩形,得到四个角为直角,再由与垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用得到三角形与三角形全等,利用全等三角形对应边相等即可得证.【解答】证明:∵四边形是矩形,∴∠∠90°,∵⊥,∴∠90°,∴∠∠90°,∵∠∠90°,∴∠∠,在△和△中,,∴△≌△(),∴.【点评】此题考查了矩形的性质,以及全等三角形的判定与性质,熟练掌握矩形的性质是解本题的关键.19.(6分)(2016•岳阳)已知不等式组(1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率.【考点】列表法与树状图法;解一元一次不等式组;一元一次不等式组的整数解.【分析】(1)首先分别解不等式①②,然后求得不等式组的解集,继而求得它的所有整数解;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与积为正数的情况,再利用概率公式即可求得答案.【解答】解:(1)由①得:x>﹣2,由②得:x≤2,∴不等式组的解集为:﹣2<x≤2,∴它的所有整数解为:﹣1,0,1,2;(2)画树状图得:∵共有12种等可能的结果,积为正数的有2种情况,∴积为正数的概率为:=.【点评】此题考查了列表法或树状图法求概率以及不等式组的整数解.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)(2016•岳阳)我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了3.6小时,求学生步行的平均速度是多少千米/小时.【考点】分式方程的应用.【分析】设学生步行的平均速度是每小时x千米,服务人员骑自行车的平均速度是每小时2.5x千米,根据学校与君山岛距离为24千米,服务人员所花时间比学生少用了3.6小时,可列方程求解.【解答】解:设学生步行的平均速度是每小时x千米.服务人员骑自行车的平均速度是每小时2.5x千米,根据题意:﹣=3.6,解得:4,经检验,3是所列方程的解,且符合题意.答:学生步行的平均速度是每小时4千米.【点评】本题考查了分式方程的应用,关键设出速度,以时间做为等量关系列方程求解.21.(8分)(2016•岳阳)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数()数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:指数质量等级天数(天)0﹣50 优m51﹣100 良44101﹣150 轻度污染n151﹣200 中度污染 4201﹣300 重度污染 2300以上严重污染 2(1 )统计表中20,8.扇形统计图中,空气质量等级为“良”的天数占55%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由A占25%,即可求得m的值,继而求得n的值,然后求得空气质量等级为“良”的天数占的百分比;(2)首先由(1)补全统计图,然后利用样本估计总体的知识求解即可求得答案;(3)提出合理建议,比如不燃放烟花爆竹或少燃放烟花爆竹等.【解答】解:(1)∵80×2520,80﹣20﹣44﹣4﹣2﹣2=8,∴空气质量等级为“良”的天数占:×10055%.故答案为:20,8,55;(2)估计该市城区全年空气质量等级为“优”和“良”的天数共:365×(2555%)=292(天),答:估计该市城区全年空气质量等级为“优”和“良”的天数共292天;补全统计图:(3)建议不要燃放烟花爆竹.【点评】此题考查了条形图与扇形图的知识.读懂统计图,从统计图中得到必要的信息是解决问题的关键.22.(8分)(2016•岳阳)已知关于x的方程x2﹣(21)(1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为0,求代数式(2m﹣1)2+(3)(3﹣m)+7m﹣5的值(要求先化简再求值).【考点】根的判别式;一元二次方程的解.【分析】(1)找出a,b及c,表示出根的判别式,变形后得到其值大于0,即可得证.(2)把0代入方程即可求m的值,然后化简代数式再将m的值代入所求的代数式并求值即可.【解答】解:(1)∵关于x的一元二次方程x2﹣(21)(1)=0.∴△=(21)2﹣4m(1)=1>0,∴方程总有两个不相等的实数根;(2)∵0是此方程的一个根,∴把0代入方程中得到m(1)=0,∴0或﹣1,∵(2m﹣1)2+(3)(3﹣m)+7m﹣5=4m2﹣41+9﹣m2+7m﹣5=3m2+35,把0代入3m2+35得:3m2+35=5;把﹣1代入3m2+35得:3m2+35=3×1﹣3+5=5.【点评】本题考查了根的判别式和一元二次方程的解.解题时,逆用一元二次方程解的定义易得出所求式子的值,在解题时要重视解题思路的逆向分析.23.(10分)(2016•岳阳)数学活动﹣旋转变换(1)如图①,在△中,∠130°,将△绕点C逆时针旋转50°得到△A′B′C,连接′,求∠A′B′B的大小;(2)如图②,在△中,∠150°,3,5,将△绕点C逆时针旋转60°得到△A′B′C,连接′,以A′为圆心,A′B′长为半径作圆.(Ⅰ)猜想:直线′与⊙A′的位置关系,并证明你的结论;(Ⅱ)连接A′B,求线段A′B的长度;(3)如图③,在△中,∠α(90°<α<180°),,,将△绕点C逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)【考点】圆的综合题.【分析】(1)根据∠A′B′∠A′B′C﹣∠′C,只要求出∠A′B′B即可.(2)(Ⅰ)结论:直线′与⊙A′相切.只要证明∠A′B′90°即可.(Ⅱ)在△′中,利用勾股定理计算即可.(3)如图③中,当α+β=180°时,直线′与⊙A′相切.只要证明∠A′B′90°即可解决问题.在△′中求出′,再在△A′B′B中利用勾股定理即可.【解答】解;(1)如图①中,∵△A′B′C是由△旋转得到,∴∠A′B′∠130°,′,∴∠′=∠′B,∵∠′=50°,∴∠′=∠′65°,∴∠A′B′∠A′B′C﹣∠′65°.(2)(Ⅰ)结论:直线′与⊙A′相切.理由:如图②中,∵∠A′B′∠150°,′,∴∠′=∠′B,∵∠′=60°,∴∠′=∠′60°,∴∠A′B′∠A′B′C﹣∠′90°.∴′⊥′,∴直线′与⊙A′相切.(Ⅱ)∵在△′中,∵∠′90°,′5,′3,∴A′.(3)如图③中,当α+β=180°时,直线′与⊙A′相切.理由:∵∠A′B′∠α,′,∴∠′=∠′B,∵∠′=2β,∴∠′=∠′,∴∠A′B′∠A′B′C﹣∠′α﹣90°+β=180°﹣90°=90°.∴′⊥′,∴直线′与⊙A′相切.在△′中,∵′,∠′=2β,∴′=2•β,在△A′′中,A′.【点评】本题考查圆的综合题、旋转不变性、勾股定理、切线的判定、等腰三角形的性质等知识,解题的关键是熟练运用这些知识解决问题,充分利用旋转不变性,属于中考压轴题.24.(10分)(2016•岳阳)如图①,直线4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).(1)求抛物线F1所表示的二次函数的表达式;(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形和△的面积分别为S四边形和S△,记四边形﹣S△,求S最大时点M的坐标及S的最大值;(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)利用一次函数的解析式求出点A、C的坐标,然后再利用B点坐标即可求出二次函数的解析式;(2)由于M在抛物线F1上,所以可设M(a,﹣a2﹣4),然后分别计算S四边形和S△,过点M作⊥x轴于点P,则S四边形的值等于△的面积与梯形的面积之和.(3)由于没有说明点P的具体位置,所以需要将点P的位置进行分类讨论,当点P在A′的右边时,此情况是不存在;当点P在A′的左边时,此时∠′∠′,若以A′、D、P为顶点的三角形与△′C相似,则分为以下两种情况进行讨论:①=;②=.【解答】解:(1)令0代入4,∴﹣3,A(﹣3,0),令0,代入4,∴4,∴C(0,4),设抛物线F1的解析式为:(3)(x﹣1),把C(0,4)代入上式得,﹣,∴﹣x2﹣4,(2)如图①,设点M(a,﹣a2﹣4)其中﹣3<a<0∵B(1,0),C(0,4),∴1,4∴S△•2,过点M作⊥x轴于点P,∴﹣a2﹣4,3,﹣a,∴S四边形•()••••=×3(﹣a2﹣4)+×4×(﹣a)=﹣2a2﹣66∴四边形﹣S△=(﹣2a2﹣66)﹣2=﹣2a2﹣64=﹣2()2+∴当﹣时,S有最大值,最大值为此时,M(﹣,5);(3)如图②,由题意知:M′(),B′(﹣1,0),A′(3,0)∴′=2,设直线A′C的解析式为:,把A′(3,0)和C(0,4)代入,得:,∴∴﹣4,令代入﹣4,∴2∴由勾股定理分别可求得:5,′=设P(m,0)当m<3时,此时点P在A′的左边,∴∠′∠′,当=时,△′P∽△′,此时,=(3﹣m),解得:2,∴P(2,0)当=时,△′P∽△B′,此时,=(3﹣m)﹣,∴P(﹣,0)当m>3时,此时,点P在A′右边,由于∠′O≠∠′E,∴∠′C≠∠′P∴此情况,△′P与△B′不能相似,综上所述,当以A′、D、P为顶点的三角形与△′C相似时,点P的坐标为(2,0)或(﹣,0).【点评】本题是二次函数的综合问题,涉及待定系数法求解析式,二次函数最值问题,相似三角形的判定与性质等知识内容,综合程度较大,需要学生灵活运用所学知识解决问题.另外对于动点问题,通常可以用一参数m来表示该动点.。
湖南岳阳市中考数学考试及答案

湖南岳阳市中考数学考试及答案————————————————————————————————作者:————————————————————————————————日期:ﻩ岳阳市2016年初中毕业学业考试数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.( )1.下列各数中为无理数的是A.﹣1 B.3.14 C.π D.0( )2.下列运算结果正确的是A.a2+a3=a5B.(a2)3=a6C.a2•a3=a6D.3a﹣2a=1()3.函数y=中自变量x的取值范围是A.x≥0B.x>4C.x<4 D.x≥4( )4.某小学校足球队22名队员年龄情况如下:年龄(岁) 12 11 109人数 4 10 6 2则这个队队员年龄的众数和中位数分别是A.11,10 B.11,11 C.10,9 D.10,11()5.如图是某几何体的三视图,则该几何体可能是A.圆柱 B.圆锥C.球D.长方体()6.下列长度的三根小木棒能构成三角形的是A.2cm,3cm,5cmB.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm( )7.下列说法错误的是A.角平分线上的点到角的两边的距离相等B.直角三角形斜边上的中线等于斜边的一半C.菱形的对角线相等D.平行四边形是中心对称图形( )8.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是A.0B.2 C.3D.4二、填空题(本大题共8小题,每小题4分,共32分)9.如图所示,数轴上点A所表示的数的相反数是.10.因式分解:6x2﹣3x=.11.在半径为6cm的圆中,120°的圆心角所对的弧长为cm.12.为加快“一极三宜”江湖名城建设,总投资124000万元的岳阳三荷机场及交通产业园,预计2016年建好主体工程,将124000万元用科学记数法表示为元.13.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=110°,则∠BAD=度.14.如图,一山坡的坡度为i=1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了米.15.如图,一次函数y=kx+b(k、b为常数,且k≠0)和反比例函数y=(x>0)的图象交于A、B两点,利用函数图象直接写出不等式<kx+b的解集是.16.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为.三、解答题(本大题共8小题,共64分)17.(6分)计算:()﹣1﹣+2tan60°﹣(2﹣)0.18.(6分)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.19.(8分)已知不等式组ﻩ(1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率.20.(8分)我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了 3.6小时,求学生步行的平均速度是多少千米/小时.21.(8分)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:AQI指数质量等级天数(天)0﹣50优m51﹣100 良44101﹣150轻度污染n151﹣200中度污染 4201﹣300 重度污染 2300以上严重污染 2(1)统计表中m=,n=.扇形统计图中,空气质量等级为“良”的天数占%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.22.(8分)已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).23.(10分)数学活动﹣旋转变换(1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°得到△A′B′C,连接BB′,求∠A′B′B的大小;(2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆.(Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;(Ⅱ)连接A′B,求线段A′B的长度;(3)如图③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,将△ABC绕点C逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和BB′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)ﻬ24.(10分)如图①,直线y=x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).(1)求抛物线F1所表示的二次函数的表达式;(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC 的面积分别为S四边形M A O C和S△BOC,记S=S四边形M A O C﹣S△B O C,求S最大时点M的坐标及S的最大值;(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.ﻬ参考答案一、选择题(共8个小题,每小题3分,共24分)1 2 3 4 5 6 7 8C B D B AD C B二、填空题(共8个小题,每小题4分,共32分)题号9116答案 2 3x(2x﹣1)4π1.24×109701001<x<4(504,﹣504)三、解答题(共6道小题,每小题5分,共30分)17. 解:原式=3﹣2+2﹣1=218.证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,∵EF⊥DF,∴∠EFD=90°,∴∠EFB+∠CFD=90°,∵∠EFB+∠BEF=90°,∴∠BEF=∠CFD,在△BEF和△CFD中,,∴△BEF≌△CFD(ASA),∴BF=CD.19.解:(1)由①得:x>﹣2,由②得:x≤2,∴不等式组的解集为:﹣2<x≤2,∴它的所有整数解为:﹣1,0,1,2;(2)画树状图得:∵共有12种等可能的结果,积为正数的有2种情况,∴积为正数的概率为:=.20. 解:设学生步行的平均速度是每小时x千米.服务人员骑自行车的平均速度是每小时2.5x千米,根据题意:﹣=3.6,解得:x=4,经检验,x=3是所列方程的解,且符合题意.答:学生步行的平均速度是每小时4千米.21. 解:(1)20,8,55;(2)估计该市城区全年空气质量等级为“优”和“良”的天数共:365×(25%+55%)=292(天)(3)建议不要燃放烟花爆竹.22.解:(1)∵关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.∴△=(2m+1)2﹣4m(m+1)=1>0,∴方程总有两个不相等的实数根;(2)∵x=0是此方程的一个根,∴把x=0代入方程中得到m(m+1)=0,∴m=0或m=﹣1,∵(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=4m2﹣4m+1+9﹣m2+7m﹣5=3m2+3m+5,把m=0代入3m2+3m+5得:3m2+3m+5=5;把m=﹣1代入3m2+3m+5得:3m2+3m+5=3×1﹣3+5=5.23. 解:(1)如图①中,∵△A′B′C是由△ABC旋转得到,∴∠A′B′C=∠ABC=130°,CB=CB′,∴∠CBB′=∠CB′B,∵∠BCB′=50°,∴∠CBB′=∠CB′B=65°,∴∠A′B′B=∠A′B′C﹣∠BB′C=65°.(2)(Ⅰ)结论:直线BB′与⊙A′相切.理由:如图②中,∵∠A′B′C=∠ABC=150°,CB=CB′,∴∠CBB′=∠CB′B,∵∠BCB′=60°,∴∠CBB′=∠CB′B=60°,∴∠A′B′B=∠A′B′C﹣∠BB′C=90°.∴AB′⊥BB′,∴直线BB′与⊙A′相切.(Ⅱ)∵在Rt△ABB′中,∵∠AB′B=90°,BB′=BC=5,AB′=AB=3,∴A′B==.(3)如图③中,当α+β=180°时,直线BB′与⊙A′相切.理由:∵∠A′B′C=∠ABC=α,CB=CB′,∴∠CBB′=∠CB′B,∵∠BCB′=2β,∴∠CBB′=∠CB′B=,∴∠A′B′B=∠A′B′C﹣∠BB′C=α﹣90°+β=180°﹣90°=90°.∴AB′⊥BB′,∴直线BB′与⊙A′相切.在△CBB′中,∵CB=CB′=n,∠BCB′=2β,∴BB′=2•nsinβ,在Rt△A′BB′中,A′B==.24. 解:(1)令y=0代入y=x+4,∴x=﹣3,A(﹣3,0),令x=0,代入y=x+4,∴y=4,∴C(0,4),设抛物线F1的解析式为:y=a(x+3)(x﹣1),把C(0,4)代入上式得,a=﹣,∴y=﹣x2﹣x+4,(2)如图①,设点M(a,﹣a2﹣a+4)其中﹣3<a<0∵B(1,0),C(0,4),∴OB=1,OC=4 ∴S△BOC=OB•OC=2,过点M作MP⊥x轴于点P,∴MP=﹣a2﹣a+4,AP=a+3,OP=﹣a,∴S四边形M A O C=AP•MP+(MP+OC)•OP=AP•MP+OP•MP+OP•OC=+=+=×3(﹣a2﹣a+4)+×4×(﹣a)=﹣2a2﹣6a+6∴S=S四边形M A O C﹣S△B O C=(﹣2a2﹣6a+6)﹣2=﹣2a2﹣6a+4=﹣2(a+)2+此时,M(﹣,5);∴当a=﹣时,S有最大值,最大值为,(3)如图②,由题意知:M′(),B′(﹣1,0),A′(3,0)∴AB′=2,设直线A′C的解析式为:y=kx+b,把A′(3,0)和C(0,4)代入y=kx+b,得:,∴∴y=﹣x+4,令x=代入y=﹣x+4,∴y=2 ∴由勾股定理分别可求得:AC=5,DA′=设P(m,0)当m<3时,此时点P在A′的左边,∴∠DA′P=∠CAB′,当=时,△DA′P∽△CAB′,此时,=(3﹣m),解得:m=2,∴P(2,0)当=时,△DA′P∽△B′AC,此时,=(3﹣m)m=﹣,∴P(﹣,0)当m>3时,此时,点P在A′右边,由于∠CB′O≠∠DA′E,∴∠AB′C≠∠DA′P∴此情况,△DA′P与△B′AC不能相似,综上所述,当以A′、D、P为顶点的三角形与△AB′C相似时,点P的坐标为(2,0)或(﹣,0).。
历年中考数学模拟试题(含答案) (150)

2016年湖南省岳阳市中考数学试卷一、选择题(本大题8道小题,每小题3分,满分24分)1.(3分)(2016•岳阳)下列各数中为无理数的是()A.﹣1 B.3.14 C.πD.02.(3分)(2016•岳阳)下列运算结果正确的是()A.a2+a3=a5B.(a2)3=a6 C.a2•a3=a6D.3a﹣2a=13.(3分)(2016•岳阳)函数y=中自变量x的取值范围是()A.x≥0 B.x>4 C.x<4 D.x≥44.(3分)(2016•岳阳)某小学校足球队22名队员年龄情况如下:年龄(岁)12 11 10 9人数 4 10 6 2则这个队队员年龄的众数和中位数分别是()A.11,10 B.11,11 C.10,9 D.10,115.(3分)(2016•岳阳)如图是某几何体的三视图,则该几何体可能是()A.圆柱 B.圆锥 C.球D.长方体6.(3分)(2016•岳阳)下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 7.(3分)(2016•岳阳)下列说法错误的是()A.角平分线上的点到角的两边的距离相等B.直角三角形斜边上的中线等于斜边的一半C.菱形的对角线相等D.平行四边形是中心对称图形8.(3分)(2016•岳阳)对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x 的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0 B.2 C.3 D.4二、填空题(本大题共8小题,每小题4分,满分32分)9.(4分)(2016•岳阳)如图所示,数轴上点A所表示的数的相反数是.10.(4分)(2016•岳阳)因式分解:6x2﹣3x=.11.(4分)(2016•岳阳)在半径为6cm的圆中,120°的圆心角所对的弧长为cm.12.(4分)(2016•岳阳)为加快“一极三宜”江湖名城建设,总投资124000万元的岳阳三荷机场及交通产业园,预计2016年建好主体工程,将124000万元用科学记数法表示为元.13.(4分)(2016•岳阳)如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=110°,则∠BAD=度.14.(4分)(2016•岳阳)如图,一山坡的坡度为i=1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了米.15.(4分)(2016•岳阳)如图,一次函数y=kx+b(k、b为常数,且k≠0)和反比例函数y=(x>0)的图象交于A、B两点,利用函数图象直接写出不等式<kx+b的解集是.16.(4分)(2016•岳阳)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为.三、解答题(本大题共8道小题,满分64分)17.(8分)(2016•岳阳)计算:()﹣1﹣+2tan60°﹣(2﹣)0.18.(6分)(2016•岳阳)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC 上,且BE=CF,EF⊥DF,求证:BF=CD.19.(6分)(2016•岳阳)已知不等式组(1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率.20.(8分)(2016•岳阳)我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了3.6小时,求学生步行的平均速度是多少千米/小时.21.(8分)(2016•岳阳)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:AQI指数质量等级天数(天)0﹣50 优m51﹣100 良44101﹣150 轻度污染n151﹣200 中度污染 4201﹣300 重度污染 2300以上严重污染 2(1 )统计表中m=,n=.扇形统计图中,空气质量等级为“良”的天数占%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.22.(8分)(2016•岳阳)已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).23.(10分)(2016•岳阳)数学活动﹣旋转变换(1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°得到△A′B′C,连接BB′,求∠A′B′B的大小;(2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆.(Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;(Ⅱ)连接A′B,求线段A′B的长度;(3)如图③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,将△ABC绕点C 逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和BB′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)24.(10分)(2016•岳阳)如图①,直线y=x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).(1)求抛物线F1所表示的二次函数的表达式;(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC的面积分别为S四边形MAOC和S△BOC,记S=S四边形MAOC﹣S△BOC,求S最大时点M的坐标及S的最大值;(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x 轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P 的坐标;若不存在,请说明理由.2016年湖南省岳阳市中考数学试卷参考答案与试题解析一、选择题(本大题8道小题,每小题3分,满分24分)1.(3分)(2016•岳阳)下列各数中为无理数的是()A.﹣1 B.3.14 C.πD.0【分析】π是圆周率,是无限不循环小数,所以π是无理数.【解答】解:∵π是无限不循环小数,∴π是无理数.故选C.【点评】此题是无理数题,主要考查了无理数的定义,了解π,解本题的关键是明白无理意义.数的2.(3分)(2016•岳阳)下列运算结果正确的是()A.a2+a3=a5B.(a2)3=a6 C.a2•a3=a6D.3a﹣2a=1【分析】利用幂的有关运算性质逐一计算后即可确定正确的选项.【解答】解:A、a2与a3不是同类项,不能合并,故错误;B、(a2)3=a6,正确,符合题意;C、a2•a3=a5,故错误;D、3a﹣2a=a,故错误,故选B.【点评】本题考查了幂的乘方与积的乘方、合并同类项及同底数幂的乘法的知识,解题的关键是牢记有关的幂的运算性质,难度不大.3.(3分)(2016•岳阳)函数y=中自变量x的取值范围是()A.x≥0 B.x>4 C.x<4 D.x≥4【分析】根据二次根式有意义的条件可得出x﹣4≥0,解该不等式即可得出结论.【解答】解:∵x﹣4≥0,∴x≥4.故选D.【点评】本题考查了函数自变量的取值范围以及二次根式有意义的条件,解题的关键是得出不等式x﹣4≥0.本题属于基础题,难度不大,解决该题型题目时,根据二次根式有意义的条件得出不等式是关键.4.(3分)(2016•岳阳)某小学校足球队22名队员年龄情况如下:年龄(岁)12 11 10 9人数 4 10 6 2则这个队队员年龄的众数和中位数分别是()A.11,10 B.11,11 C.10,9 D.10,11【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:年龄是11岁的人数最多,有10个人,则众数是11;把这些数从小到大排列,中位数是第11,12个数的平均数,则中位数是=11;故选B.【点评】此题考查了中位数和众数,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.(3分)(2016•岳阳)如图是某几何体的三视图,则该几何体可能是()A.圆柱 B.圆锥 C.球D.长方体【分析】根据一个空间几何体的主视图和俯视图都是宽度相等的长方形,可判断该几何体是柱体,进而根据左视图的形状,可判断柱体侧面形状,得到答案.【解答】解:∵几何体的主视图和俯视图都是宽度相等的长方形,∴该几何体是一个柱体,又∵俯视图是一个圆,∴该几何体是一个圆柱.故选A.【点评】本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.6.(3分)(2016•岳阳)下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 【分析】依据三角形任意两边之和大于第三边求解即可.【解答】解:A、因为2+3=5,所以不能构成三角形,故A错误;B、因为2+4<6,所以不能构成三角形,故B错误;C、因为3+4<8,所以不能构成三角形,故C错误;D、因为3+3>4,所以能构成三角形,故D正确.故选:D.【点评】本题主要考查的是三角形的三边关系,掌握三角形的三边关系是解题的关键.7.(3分)(2016•岳阳)下列说法错误的是()A.角平分线上的点到角的两边的距离相等B.直角三角形斜边上的中线等于斜边的一半C.菱形的对角线相等D.平行四边形是中心对称图形【分析】A:根据角平分线的性质,可得角平分线上的点到角的两边的距离相等.B:根据直角三角形斜边上的中线的性质,可得直角三角形斜边上的中线等于斜边的一半.C:根据菱形的性质,菱形的对角线互相垂直,但是不一定相等.D:根据中心对称图形的性质,可得常见的中心对称图形有:平行四边形、圆形、正方形、长方形,据此判断即可.【解答】解:∵角平分线上的点到角的两边的距离相等,∴选项A正确;∵直角三角形斜边上的中线等于斜边的一半,∴选项B正确;∵菱形的对角线互相垂直,但是不一定相等,∴选项C不正确;∵平行四边形是中心对称图形,∴选项D正确.故选:C.【点评】(1)此题主要考查了角平分线的性质和应用,要熟练掌握,解答此题的关键是要明确:一个角的平分线把这个角分成两个大小相同的角.(2)此题还考查了菱形的性质和应用,要熟练掌握,解答此题的关键是要明确:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.(3)此题还考查了直角三角形斜边上的中线,要熟练掌握,解答此题的关键是要明确:在直角三角形中,斜边上的中线等于斜边的一半.(4)此题还考查了中心对称图形,要熟练掌握,解答此题的关键是要明确:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.8.(3分)(2016•岳阳)对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x 的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0 B.2 C.3 D.4【分析】分x≥﹣1和x<﹣1两种情况进行讨论计算,【解答】解:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,故选B【点评】此题是分段函数题,主要考查了新定义,解本题的关键是分段.二、填空题(本大题共8小题,每小题4分,满分32分)9.(4分)(2016•岳阳)如图所示,数轴上点A所表示的数的相反数是2.【分析】根据相反数的定义,即可解答.【解答】解:数轴上点A所表示的数是﹣2,﹣2的相反数是2,故答案为:2.【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义.10.(4分)(2016•岳阳)因式分解:6x2﹣3x=3x(2x﹣1).【分析】根据提公因式法因式分解的步骤解答即可.【解答】解:6x2﹣3x=3x(2x﹣1),故答案为:3x(2x﹣1).【点评】本题考查的是提公因式法因式分解,提公因式法基本步骤:找出公因式;提公因式并确定另一个因式:第一步找公因式可按照确定公因式的方法先确定系数再确定字母;第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式.11.(4分)(2016•岳阳)在半径为6cm的圆中,120°的圆心角所对的弧长为4πcm.【分析】直接利用弧长公式求出即可.【解答】解:半径为6cm的圆中,120°的圆心角所对的弧长为:=4π(cm).故答案为:4π.【点评】此题主要考查了弧长公式的应用,正确记忆弧长公式是解题关键.12.(4分)(2016•岳阳)为加快“一极三宜”江湖名城建设,总投资124000万元的岳阳三荷机场及交通产业园,预计2016年建好主体工程,将124000万元用科学记数法表示为1.24×109元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:124000万=124000 0000=1.24×109,故答案为:1.24×109.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(4分)(2016•岳阳)如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=110°,则∠BAD=70度.【分析】根据圆内接四边形的对角互补求∠BAD的度数即可.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠BCD+∠BAD=180°(圆内接四边形的对角互补);又∵∠BCD=110°,∴∠BAD=70°.故答案为:70.【点评】本题主要考查了圆内接四边形的性质.解答此题时,利用了圆内接四边形的对角互补的性质来求∠BCD的补角即可.14.(4分)(2016•岳阳)如图,一山坡的坡度为i=1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了100米.【分析】根据坡比的定义得到tan∠A=,∠A=30°,然后根据含30度的直角三角形三边的关系求解.【解答】解:根据题意得tan∠A===,所以∠A=30°,所以BC=AB=×200=100(m).故答案为100.【点评】本题考查了解直角三角形的应用:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式15.(4分)(2016•岳阳)如图,一次函数y=kx+b(k、b为常数,且k≠0)和反比例函数y=(x>0)的图象交于A、B两点,利用函数图象直接写出不等式<kx+b的解集是1<x<4.【分析】先根据图形得出A、B的坐标,根据两点的坐标和图形得出不等式的解集即可.【解答】解:∵由图象可知:A(1,4),B(4,1),x>0,∴不等式<kx+b的解集为1<x<4,故答案为:1<x<4.【点评】本题考查了反比例函数与一次函数的交点的应用,能读懂图象是解此题的关键,数形结合思想的应用.16.(4分)(2016•岳阳)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为(504,﹣504).【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第四象限的角平分线上,被4除余1的点在第三象限的角平分线上,被4除余2的点在第二象限的角平分线上,被4除余3的点在第一象限的角平分线上,点P2016的在第四象限的角平分线上,且横纵坐标的绝对值=2016÷4,再根据第四项象限内点的符号得出答案即可.【解答】解:由规律可得,2016÷4=504,∴点P2016的在第四象限的角平分线上,∵点P4(1,﹣1),点P8(2,﹣2),点P12(3,﹣3),∴点P2016(504,﹣504),故答案为(504,﹣504).【点评】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,所在正方形,然后就可以进一步推得点的坐标.三、解答题(本大题共8道小题,满分64分)17.(8分)(2016•岳阳)计算:()﹣1﹣+2tan60°﹣(2﹣)0.【分析】原式利用零指数幂、负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=3﹣2+2﹣1=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2016•岳阳)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC 上,且BE=CF,EF⊥DF,求证:BF=CD.【分析】由四边形ABCD为矩形,得到四个角为直角,再由EF与FD垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用ASA得到三角形BEF与三角形CFD全等,利用全等三角形对应边相等即可得证.【解答】证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,∵EF⊥DF,∴∠EFD=90°,∴∠EFB+∠CFD=90°,∵∠EFB+∠BEF=90°,∴∠BEF=∠CFD,在△BEF和△CFD中,,∴△BEF≌△CFD(ASA),∴BF=CD.【点评】此题考查了矩形的性质,以及全等三角形的判定与性质,熟练掌握矩形的性质是解本题的关键.19.(6分)(2016•岳阳)已知不等式组(1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率.【分析】(1)首先分别解不等式①②,然后求得不等式组的解集,继而求得它的所有整数解;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与积为正数的情况,再利用概率公式即可求得答案.【解答】解:(1)由①得:x>﹣2,由②得:x≤2,∴不等式组的解集为:﹣2<x≤2,∴它的所有整数解为:﹣1,0,1,2;(2)画树状图得:∵共有12种等可能的结果,积为正数的有2种情况,∴积为正数的概率为:=.【点评】此题考查了列表法或树状图法求概率以及不等式组的整数解.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)(2016•岳阳)我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了3.6小时,求学生步行的平均速度是多少千米/小时.【分析】设学生步行的平均速度是每小时x千米,服务人员骑自行车的平均速度是每小时2.5x千米,根据学校与君山岛距离为24千米,服务人员所花时间比学生少用了3.6小时,可列方程求解.【解答】解:设学生步行的平均速度是每小时x千米.服务人员骑自行车的平均速度是每小时2.5x千米,根据题意:﹣=3.6,解得:x=4,经检验,x=4是所列方程的解,且符合题意.答:学生步行的平均速度是每小时4千米.【点评】本题考查了分式方程的应用,关键设出速度,以时间做为等量关系列方程求解.21.(8分)(2016•岳阳)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:AQI指数质量等级天数(天)0﹣50 优m51﹣100 良44101﹣150 轻度污染n151﹣200 中度污染 4201﹣300 重度污染 2300以上严重污染 2(1 )统计表中m=20,n=8.扇形统计图中,空气质量等级为“良”的天数占55%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.【分析】(1)由A占25%,即可求得m的值,继而求得n的值,然后求得空气质量等级为“良”的天数占的百分比;(2)首先由(1)补全统计图,然后利用样本估计总体的知识求解即可求得答案;(3)提出合理建议,比如不燃放烟花爆竹或少燃放烟花爆竹等.【解答】解:(1)∵m=80×25%=20,n=80﹣20﹣44﹣4﹣2﹣2=8,∴空气质量等级为“良”的天数占:×100%=55%.故答案为:20,8,55;(2)估计该市城区全年空气质量等级为“优”和“良”的天数共:365×(25%+55%)=292(天),答:估计该市城区全年空气质量等级为“优”和“良”的天数共292天;补全统计图:(3)建议不要燃放烟花爆竹.【点评】此题考查了条形图与扇形图的知识.读懂统计图,从统计图中得到必要的信息是解决问题的关键.22.(8分)(2016•岳阳)已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).【分析】(1)找出a,b及c,表示出根的判别式,变形后得到其值大于0,即可得证.(2)把x=0代入方程即可求m的值,然后化简代数式再将m的值代入所求的代数式并求值即可.【解答】解:(1)∵关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.∴△=(2m+1)2﹣4m(m+1)=1>0,∴方程总有两个不相等的实数根;(2)∵x=0是此方程的一个根,∴把x=0代入方程中得到m(m+1)=0,∴m=0或m=﹣1,∵(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=4m2﹣4m+1+9﹣m2+7m﹣5=3m2+3m+5,把m=0代入3m2+3m+5得:3m2+3m+5=5;把m=﹣1代入3m2+3m+5得:3m2+3m+5=3×1﹣3+5=5.【点评】本题考查了根的判别式和一元二次方程的解.解题时,逆用一元二次方程解的定义易得出所求式子的值,在解题时要重视解题思路的逆向分析.23.(10分)(2016•岳阳)数学活动﹣旋转变换(1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°得到△A′B′C,连接BB′,求∠A′B′B的大小;(2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆.(Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;(Ⅱ)连接A′B,求线段A′B的长度;(3)如图③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,将△ABC绕点C 逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和BB′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)【分析】(1)根据∠A′B′B=∠A′B′C﹣∠BB′C,只要求出∠A′B′B即可.(2)(Ⅰ)结论:直线BB′与⊙A′相切.只要证明∠A′B′B=90°即可.(Ⅱ)在Rt△ABB′中,利用勾股定理计算即可.(3)如图③中,当α+β=180°时,直线BB′与⊙A′相切.只要证明∠A′B′B=90°即可解决问题.在△CBB′中求出BB′,再在Rt△A′B′B中利用勾股定理即可.【解答】解;(1)如图①中,∵△A′B′C是由△ABC旋转得到,∴∠A′B′C=∠ABC=130°,CB=CB′,∴∠CBB′=∠CB′B,∵∠BC B′=50°,∴∠CBB′=∠CB′B=65°,∴∠A′B′B=∠A′B′C﹣∠BB′C=65°.(2)(Ⅰ)结论:直线BB′与⊙A′相切.理由:如图②中,∵∠A′B′C=∠ABC=150°,CB=CB′,∴∠CBB′=∠CB′B,∵∠BCB′=60°,∴∠CBB′=∠CB′B=60°,∴∠A′B′B=∠A′B′C﹣∠BB′C=90°.∴AB′⊥BB′,∴直线BB′与⊙A′相切.(Ⅱ)∵在Rt△ABB′中,∵∠AB′B=90°,BB′=BC=5,AB′=AB=3,∴A′B==.(3)如图③中,当α+β=180°时,直线BB′与⊙A′相切.理由:∵∠A′B′C=∠ABC=α,CB=CB′,∴∠CBB′=∠CB′B,∵∠BCB′=2β,∴∠CBB′=∠CB′B=,∴∠A′B′B=∠A′B′C﹣∠BB′C=α﹣90°+β=180°﹣90°=90°.∴AB′⊥BB′,∴直线BB′与⊙A′相切.在△CBB′中,∵CB=CB′=n,∠BCB′=2β,∴BB′=2•nsinβ,在Rt△A′BB′中,A′B==.【点评】本题考查圆的综合题、旋转不变性、勾股定理、切线的判定、等腰三角形的性质等知识,解题的关键是熟练运用这些知识解决问题,充分利用旋转不变性,属于中考压轴题.24.(10分)(2016•岳阳)如图①,直线y=x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).(1)求抛物线F1所表示的二次函数的表达式;(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC的面积分别为S四边形MAOC和S△BOC,记S=S四边形MAOC﹣S△BOC,求S最大时点M的坐标及S的最大值;(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x 轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P 的坐标;若不存在,请说明理由.【分析】(1)利用一次函数的解析式求出点A、C的坐标,然后再利用B点坐标即可求出二次函数的解析式;(2)由于M在抛物线F1上,所以可设M(a,﹣a2﹣a+4),然后分别计算S四边形MAOC 和S△BOC,过点M作MP⊥x轴于点P,则S四边形MAOC的值等于△APM的面积与梯形POCM 的面积之和.(3)由于没有说明点P的具体位置,所以需要将点P的位置进行分类讨论,当点P在A′的右边时,此情况是不存在;当点P在A′的左边时,此时∠DA′P=∠CAB′,若以A′、D、P为顶点的三角形与△AB′C相似,则分为以下两种情况进行讨论:①=;②=.【解答】解:(1)令y=0代入y=x+4,∴x=﹣3,A(﹣3,0),令x=0,代入y=x+4,∴y=4,∴C(0,4),设抛物线F1的解析式为:y=a(x+3)(x﹣1),把C(0,4)代入上式得,a=﹣,∴y=﹣x2﹣x+4,(2)如图①,设点M(a,﹣a2﹣a+4)其中﹣3<a<0∵B(1,0),C(0,4),∴OB=1,OC=4∴S△BOC=OB•OC=2,过点M作MP⊥x轴于点P,∴MP=﹣a2﹣a+4,AP=a+3,OP=﹣a,∴S四边形MAOC=AP•MP+(MP+OC)•OP=AP•MP+OP•MP+OP•OC=+=+=×3(﹣a2﹣a+4)+×4×(﹣a)=﹣2a2﹣6a+6∴S=S四边形MAOC﹣S△BOC=(﹣2a2﹣6a+6)﹣2=﹣2a2﹣6a+4=﹣2(a+)2+∴当a=﹣时,S有最大值,最大值为此时,M(﹣,5);(3)如图②,由题意知:M′(),B′(﹣1,0),A′(3,0)∴AB′=2,设直线A′C的解析式为:y=kx+b,把A′(3,0)和C(0,4)代入y=kx+b,得:,∴∴y=﹣x+4,令x=代入y=﹣x+4,∴y=2∴由勾股定理分别可求得:AC=5,DA′=设P(m,0)当m<3时,此时点P在A′的左边,∴∠DA′P=∠CAB′,当=时,△DA′P∽△CAB′,此时,=(3﹣m),解得:m=2,∴P(2,0)当=时,△DA′P∽△B′AC,此时,=(3﹣m)m=﹣,∴P(﹣,0)当m>3时,此时,点P在A′右边,由于∠CB′O≠∠DA′E,∴∠AB′C≠∠DA′P∴此情况,△DA′P与△B′AC不能相似,综上所述,当以A′、D、P为顶点的三角形与△AB′C相似时,点P的坐标为(2,0)或(﹣,0).【点评】本题是二次函数的综合问题,涉及待定系数法求解析式,二次函数最值问题,相似三角形的判定与性质等知识内容,综合程度较大,需要学生灵活运用所学知识解决问题.另外对于动点问题,通常可以用一参数m来表示该动点.。
2016年湖南省岳阳市中考数学试卷及答案

岳阳市2016年初中毕业学业考试数学试卷一、选择题(本题共 分,每小题 分)下面各题均有四个选项,其中只有一个..是符合题意的.( ) .下列各数中为无理数的是.﹣ . . .( ) .下列运算结果正确的是. .( ) . . ﹣ ( ) .函数 中自变量 的取值范围是. . > . < . ( ) .某小学校足球队 名队员年龄情况如下:年龄(岁)人数则这个队队员年龄的众数和中位数分别是. , . , . , . ,( ) .如图是某几何体的三视图,则该几何体可能是.圆柱 .圆锥 .球 .长方体 ( ) .下列长度的三根小木棒能构成三角形的是. , , . , ,. , , . , ,( ) .下列说法错误的是.角平分线上的点到角的两边的距离相等.直角三角形斜边上的中线等于斜边的一半.菱形的对角线相等.平行四边形是中心对称图形( ) .对于实数 , ,我们定义符号 , 的意义为:当 时, , ;当 < 时, , ;如: ,﹣ , , ,若关于 的函数为 ,﹣ ,则该函数的最小值是. . . .二、填空题(本大题共 小题,每小题 分,共 分).如图所示,数轴上点 所表示的数的相反数是..因式分解: ﹣ ..在半径为 的圆中, 的圆心角所对的弧长为..为加快 一极三宜 江湖名城建设,总投资 万元的岳阳三荷机场及交通产业园,预计 年建好主体工程,将 万元用科学记数法表示为元..如图,四边形 为 的内接四边形,已知 ,则 度..如图,一山坡的坡度为 :,小辰从山脚 出发,沿山坡向上走了 米到达点 ,则小辰上升了米..如图,一次函数 ( 、 为常数,且 )和反比例函数 ( > )的图象交于 、 两点,利用函数图象直接写出不等式< 的解集是..如图,在平面直角坐标系中,每个最小方格的边长均为 个单位长, , , , ,均在格点上,其顺序按图中 方向排列,如: ( , ), ( , ), ( , ), ( ,﹣ ), (﹣ ,﹣ ), (﹣ , ) 根据这个规律,点 的坐标为 .三、解答题(本大题共 小题,共 分).( 分)计算:()﹣ ﹣ ﹣( ﹣) ..( 分)已知:如图,在矩形 中,点 在边 上,点 在边 上,且 , ,求证: ..( 分)已知不等式组( )求不等式组的解集,并写出它的所有整数解;( )在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率..( 分)我市某学校开展 远是君山,磨砺意志,保护江豚,爱鸟护鸟 为主题的远足活动.已知学校与君山岛相距 千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的 倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了 小时,求学生步行的平均速度是多少千米 小时..( 分)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年 天中随机抽取了 天的空气质量指数( )数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:指质量等级天数(天)数﹣ 优﹣良﹣轻度污染﹣中度污染﹣重度污染以严重污染上( )统计表中 , .扇形统计图中,空气质量等级为 良 的天数占 ;( )补全条形统计图,并通过计算估计该市城区全年空气质量等级为 优 和 良 的天数共多少天?( )据调查,严重污染的 天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议..( 分)已知关于 的方程 ﹣( ) ( ) .( )求证:方程总有两个不相等的实数根;( )已知方程的一个根为 ,求代数式( ﹣ ) ( )( ﹣ ) ﹣ 的值(要求先化简再求值)..( 分)数学活动﹣旋转变换( )如图 ,在 中, ,将 绕点 逆时针旋转 得到 ,连接 ,求 的大小;( )如图 ,在 中, , , ,将 绕点 逆时针旋转 得到 ,连接 ,以 为圆心, 长为半径作圆.( )猜想:直线 与 的位置关系,并证明你的结论;( )连接 ,求线段 的长度;( )如图 ,在 中, ( < < ), , ,将 绕点 逆时针旋转 角度( < < )得到,连接 和 ,以 为圆心, 长为半径作圆,问:角 与角 满足什么条件时,直线 与 相切,请说明理由,并求此条件下线段 的长度(结果用角 或角 的三角函数及字母 、 所组成的式子表示).( 分)如图 ,直线 交于 轴于点 ,交 轴于点 ,过 、 两点的抛物线 交 轴于另一点 ( , ).( )求抛物线 所表示的二次函数的表达式;( )若点 是抛物线 位于第二象限图象上的一点,设四边形 和的面积分别为 四边形 和 ,记 四边形 ﹣ ,求 最大时点 的坐标及 的最大值;( )如图 ,将抛物线 沿 轴翻折并 复制 得到抛物线 ,点 、 与( )中所求的点 的对应点分别为 、 、 ,过点 作 轴于点 ,交直线 于点 ,在 轴上是否存在点 ,使得以 、 、 为顶点的三角形与相似?若存在,请求出点 的坐标;若不存在,请说明理由.参考答案一、选择题(共 个小题,每小题 分,共 分)二、填空题(共 个小题,每小题 分,共 分)题 号答 案(﹣ )<<( ,﹣)三、解答题(共 道小题,每小题 分,共 分)解:原式 ﹣ ﹣证明: 四边形 是矩形,,, ,,,,在 和 中,,( ), . 解:( ) 由 得: >﹣ ,由 得: ,不等式组的解集为:﹣ < ,它的所有整数解为:﹣ , , , ;( )画树状图得:共有 种等可能的结果,积为正数的有 种情况,积为正数的概率为: .解: 设学生步行的平均速度是每小时 千米.服务人员骑自行车的平均速度是每小时 千米,根据题意:﹣ ,解得: ,经检验, 是所列方程的解,且符合题意.答:学生步行的平均速度是每小时 千米.解:( ) , , ;( )估计该市城区全年空气质量等级为 优 和 良 的天数共:( ) (天)( )建议不要燃放烟花爆竹.解:( ) 关于 的一元二次方程 ﹣( ) ( ) . ( ) ﹣ ( ) > ,方程总有两个不相等的实数根;( ) 是此方程的一个根,把 代入方程中得到 ( ) , 或 ﹣ ,( ﹣ ) ( )( ﹣ ) ﹣ ﹣ ﹣ ﹣ ,把 代入 得: ;把 ﹣ 代入 得: ﹣ .解:( )如图 中, 是由 旋转得到,, ,, ,,﹣ .( )( )结论:直线 与 相切.理由:如图 中, , , , ,,﹣ ., 直线 与 相切.( ) 在 中, , ,,.( )如图 中,当 时,直线 与 相切. 理由: , ,, ,,﹣ ﹣ ﹣ ., 直线 与 相切.在 中, , ,,在 中, . 解:( )令 代入 , ﹣ , (﹣ , ),令 ,代入 , , ( , ),设抛物线 的解析式为: ( )( ﹣ ),把 ( , )代入上式得, ﹣, ﹣ ﹣ ,( )如图 ,设点 ( ,﹣ ﹣ )其中﹣ < <( , ), ( , ), ,,过点 作 轴于点 ,﹣ ﹣ , , ﹣ ,四边形 ( )(﹣ ﹣ ) (﹣ ) ﹣ ﹣ 四边形 ﹣ (﹣ ﹣ )﹣ ﹣ ﹣﹣ ( )此时, (﹣, );当 ﹣时, 有最大值,最大值为,( )如图 ,由题意知: (), (﹣ , ), ( , ) , 设直线 的解析式为: ,把 ( , )和 ( , )代入 ,﹣ ,得:,令 代入 ﹣ ,由勾股定理分别可求得: ,设 ( , )当 < 时,此时点 在 的左边, , 当 时, ,此时, ( ﹣ ),解得: , ( , )当 时, ,此时, ( ﹣ ) ﹣, (﹣, )当 > 时,此时,点 在 右边,由于 ,此情况, 与 不能相似,综上所述,当以 、 、 为顶点的三角形与相似时,点 的坐标为( , )或(﹣, ).。
历年中考数学模拟试题(含答案) (150)

2016年湖南省岳阳市中考数学试卷一、选择题(本大题8道小题,每小题3分,满分24分)1.(3分)(2016•岳阳)下列各数中为无理数的是()A.﹣1 B.3.14 C.πD.02.(3分)(2016•岳阳)下列运算结果正确的是()A.a2+a3=a5B.(a2)3=a6 C.a2•a3=a6D.3a﹣2a=13.(3分)(2016•岳阳)函数y=中自变量x的取值范围是()A.x≥0 B.x>4 C.x<4 D.x≥44.(3分)(2016•岳阳)某小学校足球队22名队员年龄情况如下:年龄(岁)12 11 10 9人数 4 10 6 2则这个队队员年龄的众数和中位数分别是()A.11,10 B.11,11 C.10,9 D.10,115.(3分)(2016•岳阳)如图是某几何体的三视图,则该几何体可能是()A.圆柱 B.圆锥 C.球D.长方体6.(3分)(2016•岳阳)下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 7.(3分)(2016•岳阳)下列说法错误的是()A.角平分线上的点到角的两边的距离相等B.直角三角形斜边上的中线等于斜边的一半C.菱形的对角线相等D.平行四边形是中心对称图形8.(3分)(2016•岳阳)对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x 的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0 B.2 C.3 D.4二、填空题(本大题共8小题,每小题4分,满分32分)9.(4分)(2016•岳阳)如图所示,数轴上点A所表示的数的相反数是.10.(4分)(2016•岳阳)因式分解:6x2﹣3x=.11.(4分)(2016•岳阳)在半径为6cm的圆中,120°的圆心角所对的弧长为cm.12.(4分)(2016•岳阳)为加快“一极三宜”江湖名城建设,总投资124000万元的岳阳三荷机场及交通产业园,预计2016年建好主体工程,将124000万元用科学记数法表示为元.13.(4分)(2016•岳阳)如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=110°,则∠BAD=度.14.(4分)(2016•岳阳)如图,一山坡的坡度为i=1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了米.15.(4分)(2016•岳阳)如图,一次函数y=kx+b(k、b为常数,且k≠0)和反比例函数y=(x>0)的图象交于A、B两点,利用函数图象直接写出不等式<kx+b的解集是.16.(4分)(2016•岳阳)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为.三、解答题(本大题共8道小题,满分64分)17.(8分)(2016•岳阳)计算:()﹣1﹣+2tan60°﹣(2﹣)0.18.(6分)(2016•岳阳)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC 上,且BE=CF,EF⊥DF,求证:BF=CD.19.(6分)(2016•岳阳)已知不等式组(1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率.20.(8分)(2016•岳阳)我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了3.6小时,求学生步行的平均速度是多少千米/小时.21.(8分)(2016•岳阳)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:AQI指数质量等级天数(天)0﹣50 优m51﹣100 良44101﹣150 轻度污染n151﹣200 中度污染 4201﹣300 重度污染 2300以上严重污染 2(1 )统计表中m=,n=.扇形统计图中,空气质量等级为“良”的天数占%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.22.(8分)(2016•岳阳)已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).23.(10分)(2016•岳阳)数学活动﹣旋转变换(1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°得到△A′B′C,连接BB′,求∠A′B′B的大小;(2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆.(Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;(Ⅱ)连接A′B,求线段A′B的长度;(3)如图③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,将△ABC绕点C 逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和BB′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)24.(10分)(2016•岳阳)如图①,直线y=x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).(1)求抛物线F1所表示的二次函数的表达式;(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC的面积分别为S四边形MAOC和S△BOC,记S=S四边形MAOC﹣S△BOC,求S最大时点M的坐标及S的最大值;(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x 轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P 的坐标;若不存在,请说明理由.2016年湖南省岳阳市中考数学试卷参考答案与试题解析一、选择题(本大题8道小题,每小题3分,满分24分)1.(3分)(2016•岳阳)下列各数中为无理数的是()A.﹣1 B.3.14 C.πD.0【分析】π是圆周率,是无限不循环小数,所以π是无理数.【解答】解:∵π是无限不循环小数,∴π是无理数.故选C.【点评】此题是无理数题,主要考查了无理数的定义,了解π,解本题的关键是明白无理意义.数的2.(3分)(2016•岳阳)下列运算结果正确的是()A.a2+a3=a5B.(a2)3=a6 C.a2•a3=a6D.3a﹣2a=1【分析】利用幂的有关运算性质逐一计算后即可确定正确的选项.【解答】解:A、a2与a3不是同类项,不能合并,故错误;B、(a2)3=a6,正确,符合题意;C、a2•a3=a5,故错误;D、3a﹣2a=a,故错误,故选B.【点评】本题考查了幂的乘方与积的乘方、合并同类项及同底数幂的乘法的知识,解题的关键是牢记有关的幂的运算性质,难度不大.3.(3分)(2016•岳阳)函数y=中自变量x的取值范围是()A.x≥0 B.x>4 C.x<4 D.x≥4【分析】根据二次根式有意义的条件可得出x﹣4≥0,解该不等式即可得出结论.【解答】解:∵x﹣4≥0,∴x≥4.故选D.【点评】本题考查了函数自变量的取值范围以及二次根式有意义的条件,解题的关键是得出不等式x﹣4≥0.本题属于基础题,难度不大,解决该题型题目时,根据二次根式有意义的条件得出不等式是关键.4.(3分)(2016•岳阳)某小学校足球队22名队员年龄情况如下:年龄(岁)12 11 10 9人数 4 10 6 2则这个队队员年龄的众数和中位数分别是()A.11,10 B.11,11 C.10,9 D.10,11【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:年龄是11岁的人数最多,有10个人,则众数是11;把这些数从小到大排列,中位数是第11,12个数的平均数,则中位数是=11;故选B.【点评】此题考查了中位数和众数,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.(3分)(2016•岳阳)如图是某几何体的三视图,则该几何体可能是()A.圆柱 B.圆锥 C.球D.长方体【分析】根据一个空间几何体的主视图和俯视图都是宽度相等的长方形,可判断该几何体是柱体,进而根据左视图的形状,可判断柱体侧面形状,得到答案.【解答】解:∵几何体的主视图和俯视图都是宽度相等的长方形,∴该几何体是一个柱体,又∵俯视图是一个圆,∴该几何体是一个圆柱.故选A.【点评】本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.6.(3分)(2016•岳阳)下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 【分析】依据三角形任意两边之和大于第三边求解即可.【解答】解:A、因为2+3=5,所以不能构成三角形,故A错误;B、因为2+4<6,所以不能构成三角形,故B错误;C、因为3+4<8,所以不能构成三角形,故C错误;D、因为3+3>4,所以能构成三角形,故D正确.故选:D.【点评】本题主要考查的是三角形的三边关系,掌握三角形的三边关系是解题的关键.7.(3分)(2016•岳阳)下列说法错误的是()A.角平分线上的点到角的两边的距离相等B.直角三角形斜边上的中线等于斜边的一半C.菱形的对角线相等D.平行四边形是中心对称图形【分析】A:根据角平分线的性质,可得角平分线上的点到角的两边的距离相等.B:根据直角三角形斜边上的中线的性质,可得直角三角形斜边上的中线等于斜边的一半.C:根据菱形的性质,菱形的对角线互相垂直,但是不一定相等.D:根据中心对称图形的性质,可得常见的中心对称图形有:平行四边形、圆形、正方形、长方形,据此判断即可.【解答】解:∵角平分线上的点到角的两边的距离相等,∴选项A正确;∵直角三角形斜边上的中线等于斜边的一半,∴选项B正确;∵菱形的对角线互相垂直,但是不一定相等,∴选项C不正确;∵平行四边形是中心对称图形,∴选项D正确.故选:C.【点评】(1)此题主要考查了角平分线的性质和应用,要熟练掌握,解答此题的关键是要明确:一个角的平分线把这个角分成两个大小相同的角.(2)此题还考查了菱形的性质和应用,要熟练掌握,解答此题的关键是要明确:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.(3)此题还考查了直角三角形斜边上的中线,要熟练掌握,解答此题的关键是要明确:在直角三角形中,斜边上的中线等于斜边的一半.(4)此题还考查了中心对称图形,要熟练掌握,解答此题的关键是要明确:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.8.(3分)(2016•岳阳)对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x 的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0 B.2 C.3 D.4【分析】分x≥﹣1和x<﹣1两种情况进行讨论计算,【解答】解:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,故选B【点评】此题是分段函数题,主要考查了新定义,解本题的关键是分段.二、填空题(本大题共8小题,每小题4分,满分32分)9.(4分)(2016•岳阳)如图所示,数轴上点A所表示的数的相反数是2.【分析】根据相反数的定义,即可解答.【解答】解:数轴上点A所表示的数是﹣2,﹣2的相反数是2,故答案为:2.【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义.10.(4分)(2016•岳阳)因式分解:6x2﹣3x=3x(2x﹣1).【分析】根据提公因式法因式分解的步骤解答即可.【解答】解:6x2﹣3x=3x(2x﹣1),故答案为:3x(2x﹣1).【点评】本题考查的是提公因式法因式分解,提公因式法基本步骤:找出公因式;提公因式并确定另一个因式:第一步找公因式可按照确定公因式的方法先确定系数再确定字母;第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式.11.(4分)(2016•岳阳)在半径为6cm的圆中,120°的圆心角所对的弧长为4πcm.【分析】直接利用弧长公式求出即可.【解答】解:半径为6cm的圆中,120°的圆心角所对的弧长为:=4π(cm).故答案为:4π.【点评】此题主要考查了弧长公式的应用,正确记忆弧长公式是解题关键.12.(4分)(2016•岳阳)为加快“一极三宜”江湖名城建设,总投资124000万元的岳阳三荷机场及交通产业园,预计2016年建好主体工程,将124000万元用科学记数法表示为1.24×109元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:124000万=124000 0000=1.24×109,故答案为:1.24×109.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(4分)(2016•岳阳)如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=110°,则∠BAD=70度.【分析】根据圆内接四边形的对角互补求∠BAD的度数即可.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠BCD+∠BAD=180°(圆内接四边形的对角互补);又∵∠BCD=110°,∴∠BAD=70°.故答案为:70.【点评】本题主要考查了圆内接四边形的性质.解答此题时,利用了圆内接四边形的对角互补的性质来求∠BCD的补角即可.14.(4分)(2016•岳阳)如图,一山坡的坡度为i=1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了100米.【分析】根据坡比的定义得到tan∠A=,∠A=30°,然后根据含30度的直角三角形三边的关系求解.【解答】解:根据题意得tan∠A===,所以∠A=30°,所以BC=AB=×200=100(m).故答案为100.【点评】本题考查了解直角三角形的应用:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式15.(4分)(2016•岳阳)如图,一次函数y=kx+b(k、b为常数,且k≠0)和反比例函数y=(x>0)的图象交于A、B两点,利用函数图象直接写出不等式<kx+b的解集是1<x<4.【分析】先根据图形得出A、B的坐标,根据两点的坐标和图形得出不等式的解集即可.【解答】解:∵由图象可知:A(1,4),B(4,1),x>0,∴不等式<kx+b的解集为1<x<4,故答案为:1<x<4.【点评】本题考查了反比例函数与一次函数的交点的应用,能读懂图象是解此题的关键,数形结合思想的应用.16.(4分)(2016•岳阳)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为(504,﹣504).【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第四象限的角平分线上,被4除余1的点在第三象限的角平分线上,被4除余2的点在第二象限的角平分线上,被4除余3的点在第一象限的角平分线上,点P2016的在第四象限的角平分线上,且横纵坐标的绝对值=2016÷4,再根据第四项象限内点的符号得出答案即可.【解答】解:由规律可得,2016÷4=504,∴点P2016的在第四象限的角平分线上,∵点P4(1,﹣1),点P8(2,﹣2),点P12(3,﹣3),∴点P2016(504,﹣504),故答案为(504,﹣504).【点评】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,所在正方形,然后就可以进一步推得点的坐标.三、解答题(本大题共8道小题,满分64分)17.(8分)(2016•岳阳)计算:()﹣1﹣+2tan60°﹣(2﹣)0.【分析】原式利用零指数幂、负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=3﹣2+2﹣1=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2016•岳阳)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC 上,且BE=CF,EF⊥DF,求证:BF=CD.【分析】由四边形ABCD为矩形,得到四个角为直角,再由EF与FD垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用ASA得到三角形BEF与三角形CFD全等,利用全等三角形对应边相等即可得证.【解答】证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,∵EF⊥DF,∴∠EFD=90°,∴∠EFB+∠CFD=90°,∵∠EFB+∠BEF=90°,∴∠BEF=∠CFD,在△BEF和△CFD中,,∴△BEF≌△CFD(ASA),∴BF=CD.【点评】此题考查了矩形的性质,以及全等三角形的判定与性质,熟练掌握矩形的性质是解本题的关键.19.(6分)(2016•岳阳)已知不等式组(1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率.【分析】(1)首先分别解不等式①②,然后求得不等式组的解集,继而求得它的所有整数解;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与积为正数的情况,再利用概率公式即可求得答案.【解答】解:(1)由①得:x>﹣2,由②得:x≤2,∴不等式组的解集为:﹣2<x≤2,∴它的所有整数解为:﹣1,0,1,2;(2)画树状图得:∵共有12种等可能的结果,积为正数的有2种情况,∴积为正数的概率为:=.【点评】此题考查了列表法或树状图法求概率以及不等式组的整数解.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)(2016•岳阳)我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了3.6小时,求学生步行的平均速度是多少千米/小时.【分析】设学生步行的平均速度是每小时x千米,服务人员骑自行车的平均速度是每小时2.5x千米,根据学校与君山岛距离为24千米,服务人员所花时间比学生少用了3.6小时,可列方程求解.【解答】解:设学生步行的平均速度是每小时x千米.服务人员骑自行车的平均速度是每小时2.5x千米,根据题意:﹣=3.6,解得:x=4,经检验,x=4是所列方程的解,且符合题意.答:学生步行的平均速度是每小时4千米.【点评】本题考查了分式方程的应用,关键设出速度,以时间做为等量关系列方程求解.21.(8分)(2016•岳阳)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:AQI指数质量等级天数(天)0﹣50 优m51﹣100 良44101﹣150 轻度污染n151﹣200 中度污染 4201﹣300 重度污染 2300以上严重污染 2(1 )统计表中m=20,n=8.扇形统计图中,空气质量等级为“良”的天数占55%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.【分析】(1)由A占25%,即可求得m的值,继而求得n的值,然后求得空气质量等级为“良”的天数占的百分比;(2)首先由(1)补全统计图,然后利用样本估计总体的知识求解即可求得答案;(3)提出合理建议,比如不燃放烟花爆竹或少燃放烟花爆竹等.【解答】解:(1)∵m=80×25%=20,n=80﹣20﹣44﹣4﹣2﹣2=8,∴空气质量等级为“良”的天数占:×100%=55%.故答案为:20,8,55;(2)估计该市城区全年空气质量等级为“优”和“良”的天数共:365×(25%+55%)=292(天),答:估计该市城区全年空气质量等级为“优”和“良”的天数共292天;补全统计图:(3)建议不要燃放烟花爆竹.【点评】此题考查了条形图与扇形图的知识.读懂统计图,从统计图中得到必要的信息是解决问题的关键.22.(8分)(2016•岳阳)已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).【分析】(1)找出a,b及c,表示出根的判别式,变形后得到其值大于0,即可得证.(2)把x=0代入方程即可求m的值,然后化简代数式再将m的值代入所求的代数式并求值即可.【解答】解:(1)∵关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.∴△=(2m+1)2﹣4m(m+1)=1>0,∴方程总有两个不相等的实数根;(2)∵x=0是此方程的一个根,∴把x=0代入方程中得到m(m+1)=0,∴m=0或m=﹣1,∵(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=4m2﹣4m+1+9﹣m2+7m﹣5=3m2+3m+5,把m=0代入3m2+3m+5得:3m2+3m+5=5;把m=﹣1代入3m2+3m+5得:3m2+3m+5=3×1﹣3+5=5.【点评】本题考查了根的判别式和一元二次方程的解.解题时,逆用一元二次方程解的定义易得出所求式子的值,在解题时要重视解题思路的逆向分析.23.(10分)(2016•岳阳)数学活动﹣旋转变换(1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°得到△A′B′C,连接BB′,求∠A′B′B的大小;(2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆.(Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;(Ⅱ)连接A′B,求线段A′B的长度;(3)如图③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,将△ABC绕点C 逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和BB′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)【分析】(1)根据∠A′B′B=∠A′B′C﹣∠BB′C,只要求出∠A′B′B即可.(2)(Ⅰ)结论:直线BB′与⊙A′相切.只要证明∠A′B′B=90°即可.(Ⅱ)在Rt△ABB′中,利用勾股定理计算即可.(3)如图③中,当α+β=180°时,直线BB′与⊙A′相切.只要证明∠A′B′B=90°即可解决问题.在△CBB′中求出BB′,再在Rt△A′B′B中利用勾股定理即可.【解答】解;(1)如图①中,∵△A′B′C是由△ABC旋转得到,∴∠A′B′C=∠ABC=130°,CB=CB′,∴∠CBB′=∠CB′B,∵∠BC B′=50°,∴∠CBB′=∠CB′B=65°,∴∠A′B′B=∠A′B′C﹣∠BB′C=65°.(2)(Ⅰ)结论:直线BB′与⊙A′相切.理由:如图②中,∵∠A′B′C=∠ABC=150°,CB=CB′,∴∠CBB′=∠CB′B,∵∠BCB′=60°,∴∠CBB′=∠CB′B=60°,∴∠A′B′B=∠A′B′C﹣∠BB′C=90°.∴AB′⊥BB′,∴直线BB′与⊙A′相切.(Ⅱ)∵在Rt△ABB′中,∵∠AB′B=90°,BB′=BC=5,AB′=AB=3,∴A′B==.(3)如图③中,当α+β=180°时,直线BB′与⊙A′相切.理由:∵∠A′B′C=∠ABC=α,CB=CB′,∴∠CBB′=∠CB′B,∵∠BCB′=2β,∴∠CBB′=∠CB′B=,∴∠A′B′B=∠A′B′C﹣∠BB′C=α﹣90°+β=180°﹣90°=90°.∴AB′⊥BB′,∴直线BB′与⊙A′相切.在△CBB′中,∵CB=CB′=n,∠BCB′=2β,∴BB′=2•nsinβ,在Rt△A′BB′中,A′B==.【点评】本题考查圆的综合题、旋转不变性、勾股定理、切线的判定、等腰三角形的性质等知识,解题的关键是熟练运用这些知识解决问题,充分利用旋转不变性,属于中考压轴题.24.(10分)(2016•岳阳)如图①,直线y=x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).(1)求抛物线F1所表示的二次函数的表达式;(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC的面积分别为S四边形MAOC和S△BOC,记S=S四边形MAOC﹣S△BOC,求S最大时点M的坐标及S的最大值;(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x 轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P 的坐标;若不存在,请说明理由.【分析】(1)利用一次函数的解析式求出点A、C的坐标,然后再利用B点坐标即可求出二次函数的解析式;(2)由于M在抛物线F1上,所以可设M(a,﹣a2﹣a+4),然后分别计算S四边形MAOC 和S△BOC,过点M作MP⊥x轴于点P,则S四边形MAOC的值等于△APM的面积与梯形POCM 的面积之和.(3)由于没有说明点P的具体位置,所以需要将点P的位置进行分类讨论,当点P在A′的右边时,此情况是不存在;当点P在A′的左边时,此时∠DA′P=∠CAB′,若以A′、D、P为顶点的三角形与△AB′C相似,则分为以下两种情况进行讨论:①=;②=.【解答】解:(1)令y=0代入y=x+4,∴x=﹣3,A(﹣3,0),令x=0,代入y=x+4,∴y=4,∴C(0,4),设抛物线F1的解析式为:y=a(x+3)(x﹣1),把C(0,4)代入上式得,a=﹣,∴y=﹣x2﹣x+4,(2)如图①,设点M(a,﹣a2﹣a+4)其中﹣3<a<0∵B(1,0),C(0,4),∴OB=1,OC=4∴S△BOC=OB•OC=2,过点M作MP⊥x轴于点P,∴MP=﹣a2﹣a+4,AP=a+3,OP=﹣a,∴S四边形MAOC=AP•MP+(MP+OC)•OP=AP•MP+OP•MP+OP•OC=+=+=×3(﹣a2﹣a+4)+×4×(﹣a)=﹣2a2﹣6a+6∴S=S四边形MAOC﹣S△BOC=(﹣2a2﹣6a+6)﹣2=﹣2a2﹣6a+4=﹣2(a+)2+∴当a=﹣时,S有最大值,最大值为此时,M(﹣,5);(3)如图②,由题意知:M′(),B′(﹣1,0),A′(3,0)∴AB′=2,设直线A′C的解析式为:y=kx+b,把A′(3,0)和C(0,4)代入y=kx+b,得:,∴∴y=﹣x+4,令x=代入y=﹣x+4,∴y=2∴由勾股定理分别可求得:AC=5,DA′=设P(m,0)当m<3时,此时点P在A′的左边,∴∠DA′P=∠CAB′,当=时,△DA′P∽△CAB′,此时,=(3﹣m),解得:m=2,∴P(2,0)当=时,△DA′P∽△B′AC,此时,=(3﹣m)m=﹣,∴P(﹣,0)当m>3时,此时,点P在A′右边,由于∠CB′O≠∠DA′E,∴∠AB′C≠∠DA′P∴此情况,△DA′P与△B′AC不能相似,综上所述,当以A′、D、P为顶点的三角形与△AB′C相似时,点P的坐标为(2,0)或(﹣,0).【点评】本题是二次函数的综合问题,涉及待定系数法求解析式,二次函数最值问题,相似三角形的判定与性质等知识内容,综合程度较大,需要学生灵活运用所学知识解决问题.另外对于动点问题,通常可以用一参数m来表示该动点.。
2016年湖南省岳阳市中考数学试卷(1)

2016年湖南省岳阳市中考数学试卷一、选择题(本大题8道小题,每小题3分,满分24分)1.(3分)下列各数中为无理数的是()A.﹣1 B.3.14 C.πD.02.(3分)下列运算结果正确的是()A.a2+a3=a5 B.(a2)3=a6C.a2•a3=a6 D.3a﹣2a=13.(3分)函数y=中自变量x的取值范围是()A.x≥0 B.x>4 C.x<4 D.x≥44.(3分)某小学校足球队22名队员年龄情况如下:则这个队队员年龄的众数和中位数分别是()A.11,10 B.11,11 C.10,9 D.10,115.(3分)如图是某几何体的三视图,则该几何体可能是()A.圆柱B.圆锥C.球D.长方体6.(3分)下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm7.(3分)下列说法错误的是()A.角平分线上的点到角的两边的距离相等B.直角三角形斜边上的中线等于斜边的一半C.菱形的对角线相等D.平行四边形是中心对称图形8.(3分)对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0 B.2 C.3 D.4二、填空题(本大题共8小题,每小题4分,满分32分)9.(4分)如图所示,数轴上点A所表示的数的相反数是.10.(4分)因式分解:6x2﹣3x=.11.(4分)在半径为6cm的圆中,120°的圆心角所对的弧长为cm.12.(4分)为加快“一极三宜”江湖名城建设,总投资124000万元的岳阳三荷机场及交通产业园,预计2016年建好主体工程,将124000万元用科学记数法表示为元.13.(4分)如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=110°,则∠BAD=度.14.(4分)如图,一山坡的坡度为i=1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了米.15.(4分)如图,一次函数y=kx+b(k、b为常数,且k≠0)和反比例函数y=(x>0)的图象交于A、B两点,利用函数图象直接写出不等式<kx+b的解集是.16.(4分)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为.三、解答题(本大题共8道小题,满分64分)17.(8分)计算:()﹣1﹣+2tan60°﹣(2﹣)0.18.(6分)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.19.(6分)已知不等式组(1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率.20.(8分)我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了3.6小时,求学生步行的平均速度是多少千米/小时.21.(8分)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:(1 )统计表中m=,n=.扇形统计图中,空气质量等级为“良”的天数占%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.22.(8分)已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).23.(10分)数学活动﹣旋转变换(1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°得到△A′B′C,连接BB′,求∠A′B′B的大小;(2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆.(Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;(Ⅱ)连接A′B,求线段A′B的长度;(3)如图③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,将△ABC 绕点C逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和BB′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)24.(10分)如图①,直线y=x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).(1)求抛物线F1所表示的二次函数的表达式;(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC的面积分别为S四边形MAOC 和S△BOC,记S=S四边形MAOC﹣S△BOC,求S最大时点M的坐标及S的最大值;(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C 相似?若存在,请求出点P的坐标;若不存在,请说明理由.2016年湖南省岳阳市中考数学试卷参考答案与试题解析一、选择题(本大题8道小题,每小题3分,满分24分)1.(3分)(2016•岳阳)下列各数中为无理数的是()A.﹣1 B.3.14 C.πD.0【解答】解:∵π是无限不循环小数,∴π是无理数.故选C.2.(3分)(2016•岳阳)下列运算结果正确的是()A.a2+a3=a5 B.(a2)3=a6C.a2•a3=a6 D.3a﹣2a=1【解答】解:A、a2与a3不是同类项,不能合并,故错误;B、(a2)3=a6,正确,符合题意;C、a2•a3=a5,故错误;D、3a﹣2a=a,故错误,故选B.3.(3分)(2016•岳阳)函数y=中自变量x的取值范围是()A.x≥0 B.x>4 C.x<4 D.x≥4【解答】解:∵x﹣4≥0,∴x≥4.故选D.4.(3分)(2016•岳阳)某小学校足球队22名队员年龄情况如下:则这个队队员年龄的众数和中位数分别是()A.11,10 B.11,11 C.10,9 D.10,11【解答】解:年龄是11岁的人数最多,有10个人,则众数是11;把这些数从小到大排列,中位数是第11,12个数的平均数,则中位数是=11;故选B.5.(3分)(2016•岳阳)如图是某几何体的三视图,则该几何体可能是()A.圆柱B.圆锥C.球D.长方体【解答】解:∵几何体的主视图和俯视图都是宽度相等的长方形,∴该几何体是一个柱体,又∵俯视图是一个圆,∴该几何体是一个圆柱.故选A.6.(3分)(2016•岳阳)下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm【解答】解:A、因为2+3=5,所以不能构成三角形,故A错误;B、因为2+4<6,所以不能构成三角形,故B错误;C、因为3+4<8,所以不能构成三角形,故C错误;D、因为3+3>4,所以能构成三角形,故D正确.故选:D.7.(3分)(2016•岳阳)下列说法错误的是()A.角平分线上的点到角的两边的距离相等B.直角三角形斜边上的中线等于斜边的一半C.菱形的对角线相等D.平行四边形是中心对称图形【解答】解:∵角平分线上的点到角的两边的距离相等,∴选项A正确;∵直角三角形斜边上的中线等于斜边的一半,∴选项B正确;∵菱形的对角线互相垂直,但是不一定相等,∴选项C不正确;∵平行四边形是中心对称图形,∴选项D正确.故选:C.8.(3分)(2016•岳阳)对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0 B.2 C.3 D.4【解答】解:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,故选B二、填空题(本大题共8小题,每小题4分,满分32分)9.(4分)(2016•岳阳)如图所示,数轴上点A所表示的数的相反数是2.【解答】解:数轴上点A所表示的数是﹣2,﹣2的相反数是2,故答案为:2.10.(4分)(2016•岳阳)因式分解:6x2﹣3x=3x(2x﹣1).【解答】解:6x2﹣3x=3x(2x﹣1),故答案为:3x(2x﹣1).11.(4分)(2016•岳阳)在半径为6cm的圆中,120°的圆心角所对的弧长为4πcm.【解答】解:半径为6cm的圆中,120°的圆心角所对的弧长为:=4π(cm).故答案为:4π.12.(4分)(2016•岳阳)为加快“一极三宜”江湖名城建设,总投资124000万元的岳阳三荷机场及交通产业园,预计2016年建好主体工程,将124000万元用科学记数法表示为 1.24×109元.【解答】解:124000万=124000 0000=1.24×109,故答案为:1.24×109.13.(4分)(2016•岳阳)如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=110°,则∠BAD=70度.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠BCD+∠BAD=180°(圆内接四边形的对角互补);又∵∠BCD=110°,∴∠BAD=70°.故答案为:70.14.(4分)(2016•岳阳)如图,一山坡的坡度为i=1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了100米.【解答】解:根据题意得tan∠A===,所以∠A=30°,所以BC=AB=×200=100(m).故答案为100.15.(4分)(2016•岳阳)如图,一次函数y=kx+b(k、b为常数,且k≠0)和反比例函数y=(x>0)的图象交于A、B两点,利用函数图象直接写出不等式<kx+b的解集是1<x<4.【解答】解:∵由图象可知:A(1,4),B(4,1),x>0,∴不等式<kx+b的解集为1<x<4,故答案为:1<x<4.16.(4分)(2016•岳阳)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为(504,﹣504).【解答】解:由规律可得,2016÷4=504,∴点P2016的在第四象限的角平分线上,∵点P4(1,﹣1),点P8(2,﹣2),点P12(3,﹣3),∴点P2016(504,﹣504),故答案为(504,﹣504).三、解答题(本大题共8道小题,满分64分)17.(8分)(2016•岳阳)计算:()﹣1﹣+2tan60°﹣(2﹣)0.【解答】解:原式=3﹣2+2﹣1=2.18.(6分)(2016•岳阳)已知:如图,在矩形ABCD中,点E在边AB上,点F 在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.【解答】证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,∵EF⊥DF,∴∠EFD=90°,∴∠EFB+∠CFD=90°,∵∠EFB+∠BEF=90°,∴∠BEF=∠CFD,在△BEF和△CFD中,,∴△BEF≌△CFD(ASA),∴BF=CD.19.(6分)(2016•岳阳)已知不等式组(1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率.【解答】解:(1)由①得:x>﹣2,由②得:x≤2,∴不等式组的解集为:﹣2<x≤2,∴它的所有整数解为:﹣1,0,1,2;(2)画树状图得:∵共有12种等可能的结果,积为正数的有2种情况,∴积为正数的概率为:=.20.(8分)(2016•岳阳)我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了3.6小时,求学生步行的平均速度是多少千米/小时.【解答】解:设学生步行的平均速度是每小时x千米.服务人员骑自行车的平均速度是每小时2.5x千米,根据题意:﹣=3.6,解得:x=4,经检验,x=4是所列方程的解,且符合题意.答:学生步行的平均速度是每小时4千米.21.(8分)(2016•岳阳)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:(1 )统计表中m=20,n=8.扇形统计图中,空气质量等级为“良”的天数占55%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.【解答】解:(1)∵m=80×25%=20,n=80﹣20﹣44﹣4﹣2﹣2=8,∴空气质量等级为“良”的天数占:×100%=55%.故答案为:20,8,55;(2)估计该市城区全年空气质量等级为“优”和“良”的天数共:365×(25%+55%)=292(天),答:估计该市城区全年空气质量等级为“优”和“良”的天数共292天;补全统计图:(3)建议不要燃放烟花爆竹.22.(8分)(2016•岳阳)已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).【解答】解:(1)∵关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.∴△=(2m+1)2﹣4m(m+1)=1>0,∴方程总有两个不相等的实数根;(2)∵x=0是此方程的一个根,∴把x=0代入方程中得到m(m+1)=0,∴m=0或m=﹣1,∵(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=4m2﹣4m+1+9﹣m2+7m﹣5=3m2+3m+5,把m=0代入3m2+3m+5得:3m2+3m+5=5;把m=﹣1代入3m2+3m+5得:3m2+3m+5=3×1﹣3+5=5.23.(10分)(2016•岳阳)数学活动﹣旋转变换(1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°得到△A′B′C,连接BB′,求∠A′B′B的大小;(2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆.(Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;(Ⅱ)连接A′B,求线段A′B的长度;(3)如图③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,将△ABC 绕点C逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和BB′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)【解答】解;(1)如图①中,∵△A′B′C是由△ABC旋转得到,∴∠A′B′C=∠ABC=130°,CB=CB′,∴∠CBB′=∠CB′B,∵∠BCB′=50°,∴∠CBB′=∠CB′B=65°,∴∠A′B′B=∠A′B′C﹣∠BB′C=65°.(2)(Ⅰ)结论:直线BB′与⊙A′相切.理由:如图②中,∵∠A′B′C=∠ABC=150°,CB=CB′,∴∠CBB′=∠CB′B,∵∠BCB′=60°,∴∠CBB′=∠CB′B=60°,∴∠A′B′B=∠A′B′C﹣∠BB′C=90°.∴AB′⊥BB′,∴直线BB′与⊙A′相切.(Ⅱ)∵在Rt△ABB′中,∵∠AB′B=90°,BB′=BC=5,AB′=AB=3,∴A′B==.(3)如图③中,当α+β=180°时,直线BB′与⊙A′相切.理由:∵∠A′B′C=∠ABC=α,CB=CB′,∴∠CBB′=∠CB′B,∵∠BCB′=2β,∴∠CBB′=∠CB′B=,∴∠A′B′B=∠A′B′C﹣∠BB′C=α﹣90°+β=180°﹣90°=90°.∴AB′⊥BB′,∴直线BB′与⊙A′相切.在△CBB′中,∵CB=CB′=n,∠BCB′=2β,∴BB′=2•nsinβ,在Rt△A′BB′中,A′B==.24.(10分)(2016•岳阳)如图①,直线y=x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).(1)求抛物线F1所表示的二次函数的表达式;(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC的面积分别为S四边形MAOC 和S△BOC,记S=S四边形MAOC﹣S△BOC,求S最大时点M的坐标及S的最大值;(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C 相似?若存在,请求出点P的坐标;若不存在,请说明理由.【解答】解:(1)令y=0代入y=x+4,∴x=﹣3,A(﹣3,0),令x=0,代入y=x+4,∴y=4,∴C(0,4),设抛物线F1的解析式为:y=a(x+3)(x﹣1),把C(0,4)代入上式得,a=﹣,∴y=﹣x2﹣x+4,(2)如图①,设点M(a,﹣a2﹣a+4)其中﹣3<a<0∵B(1,0),C(0,4),∴OB=1,OC=4∴S△BOC=OB•OC=2,过点M作MP⊥x轴于点P,∴MP=﹣a2﹣a+4,AP=a+3,OP=﹣a,∴S四边形MAOC=AP•MP+(MP+OC)•OP=AP•MP+OP•MP+OP•OC=+=+=×3(﹣a2﹣a+4)+×4×(﹣a)=﹣2a2﹣6a+6∴S=S四边形MAOC ﹣S△BOC=(﹣2a2﹣6a+6)﹣2=﹣2a2﹣6a+4=﹣2(a+)2+∴当a=﹣时,S有最大值,最大值为此时,M(﹣,5);(3)如图②,由题意知:M′(),B′(﹣1,0),A′(3,0)∴AB′=2,设直线A′C的解析式为:y=kx+b,把A′(3,0)和C(0,4)代入y=kx+b,得:,∴∴y=﹣x+4,令x=代入y=﹣x+4,∴y=2∴由勾股定理分别可求得:AC=5,DA′=设P(m,0)当m<3时,此时点P在A′的左边,∴∠DA′P=∠CAB′,当=时,△DA′P∽△CAB′,此时,=(3﹣m),解得:m=2,∴P(2,0)当=时,△DA′P∽△B′AC,此时,=(3﹣m)m=﹣,∴P(﹣,0)当m>3时,此时,点P在A′右边,由于∠CB′O≠∠DA′E,∴∠AB′C≠∠DA′P∴此情况,△DA′P与△B′AC不能相似,综上所述,当以A′、D、P为顶点的三角形与△AB′C相似时,点P的坐标为(2,0)或(﹣,0).参与本试卷答题和审题的老师有:星月相随;sjzx;曹先生;lantin;王学峰;梁宝华;放飞梦想;sdwdmahongye;知足长乐;gbl210;sd2011;gsls;zjx111;张其铎;sks;zcx;1987483819;弯弯的小河;神龙杉(排名不分先后)菁优网2017年2月16日考点卡片1.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向.(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大.2.相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正.(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.3.科学记数法—表示较大的数(1)科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.【科学记数法形式:a ×10n,其中1≤a<10,n为正整数.】(2)规律方法总结:①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n.②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号.4.无理数(1)、定义:无限不循环小数叫做无理数.说明:无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数.如圆周率、2的平方根等.(2)、无理数与有理数的区别:①把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数,比如4=4.0,13=0.33333…而无理数只能写成无限不循环小数,比如2=1.414213562.②所有的有理数都可以写成两个整数之比;而无理数不能.(3)学习要求:会判断无理数,了解它的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,如分数π2是无理数,因为π是无理数.无理数常见的三种类型(1)开不尽的方根,如等.(2)特定结构的无限不循环小数,如0.303 003 000 300 003…(两个3之间依次多一个0).(3)含有π的绝大部分数,如2π.注意:判断一个数是否为无理数,不能只看形式,要看化简结果.如是有理数,而不是无理数.5.实数的运算(1)实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.(2)在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.【规律方法】实数运算的“三个关键”1.运算法则:乘方和开方运算、幂的运算、指数(特别是负整数指数,0指数)运算、根式运算、特殊三角函数值的计算以及绝对值的化简等.2.运算顺序:先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.3.运算律的使用:使用运算律可以简化运算,提高运算速度和准确度.6.合并同类项(1)定义:把多项式中同类项合成一项,叫做合并同类项.(2)合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.(3)合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.7.同底数幂的乘法(1)同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.a m•a n=a m+n(m,n是正整数)(2)推广:a m•a n•a p=a m+n+p(m,n,p都是正整数)在应用同底数幂的乘法法则时,应注意:①底数必须相同,如23与25,(a2b2)3与(a2b2)4,(x﹣y)2与(x﹣y)3等;②a可以是单项式,也可以是多项式;③按照运算性质,只有相乘时才是底数不变,指数相加.(3)概括整合:同底数幂的乘法,是学习整式乘除运算的基础,是学好整式运算的关键.在运用时要抓住“同底数”这一关键点,同时注意,有的底数可能并不相同,这时可以适当变形为同底数幂.8.幂的乘方与积的乘方(1)幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数)注意:①幂的乘方的底数指的是幂的底数;②性质中“指数相乘”指的是幂的指数与乘方的指数相乘,这里注意与同底数幂的乘法中“指数相加”的区别.(2)积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.(ab)n=a n b n(n是正整数)注意:①因式是三个或三个以上积的乘方,法则仍适用;②运用时数字因数的乘方应根据乘方的意义,计算出最后的结果.9.因式分解-提公因式法1、提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.2、具体方法:(1)当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.(2)如果多项式的第一项是负的,一般要提出“﹣”号,使括号内的第一项的系数成为正数.提出“﹣”号时,多项式的各项都要变号.3、口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.4、提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数再确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同.10.零指数幂零指数幂:a0=1(a≠0)由a m÷a m=1,a m÷a m=a m﹣m=a0可推出a0=1(a≠0)注意:00≠1.11.负整数指数幂负整数指数幂:a﹣p=1ap(a≠0,p为正整数)注意:①a≠0;②计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(﹣3)﹣2=(﹣3)×(﹣2)的错误.③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.④在混合运算中,始终要注意运算的顺序.12.二次根式有意义的条件判断二次根式有意义的条件:(1)二次根式的概念.形如a(a≥0)的式子叫做二次根式.(2)二次根式中被开方数的取值范围.二次根式中的被开方数是非负数.(3)二次根式具有非负性.a(a≥0)是一个非负数.学习要求:能根据二次根式中的被开方数是非负数来确定二次根式被开方数中字母的取值范围,并能利用二次根式的非负性解决相关问题.【规律方法】二次根式有无意义的条件1.如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是非负数.2.如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.13.一元二次方程的解(1)一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.(2)一元二次方程一定有两个解,但不一定有两个实数解.这x1,x2是一元二次方程ax 2+bx+c=0(a≠0)的两实数根,则下列两等式成立,并可利用这两个等式求解未知量.ax12+bx1+c=0(a≠0),ax22+bx2+c=0(a≠0).14.根的判别式利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.15.分式方程的应用1、列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.2、要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间等等.列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.16.解一元一次不等式组(1)一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.(2)解不等式组:求不等式组的解集的过程叫解不等式组.(3)一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.17.一元一次不等式组的整数解(1)利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.(2)已知解集(整数解)求字母的取值.一般思路为:先把题目中除未知数外的字母当做常数看待解不等式组或方程组等,然后再根据题目中对结果的限制的条件得到有关字母的代数式,最后解代数式即可得到答案.18.规律型:点的坐标规律型:点的坐标.19.函数自变量的取值范围自变量的取值范围必须使含有自变量的表达式都有意义.①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=x+2x ﹣1.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要。
2016年湖南省岳阳市中考数学试卷及答案

岳阳市2016年初中毕业学业考试数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.()1.下列各数中为无理数的是A.﹣1 B.3.14 C.π D.0()2.下列运算结果正确的是A.a2+a3=a5B.(a2)3=a6C.a2•a3=a6D.3a﹣2a=1()3.函数y=中自变量x的取值范围是A.x≥0 B.x>4 C.x<4 D.x≥4()4.某小学校足球队22名队员年龄情况如下:年龄1211109(岁)人数41062则这个队队员年龄的众数和中位数分别是A.11,10 B.11,11 C.10,9 D.10,11()5.如图是某几何体的三视图,则该几何体可能是A.圆柱B.圆锥C.球D.长方体()6.下列长度的三根小木棒能构成三角形的是A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm()7.下列说法错误的是A.角平分线上的点到角的两边的距离相等B.直角三角形斜边上的中线等于斜边的一半C.菱形的对角线相等D.平行四边形是中心对称图形()8.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是A.0 B.2 C.3 D.4二、填空题(本大题共8小题,每小题4分,共32分)9.如图所示,数轴上点A所表示的数的相反数是.10.因式分解:6x2﹣3x=.11.在半径为6cm的圆中,120°的圆心角所对的弧长为cm.12.为加快“一极三宜”江湖名城建设,总投资124000万元的岳阳三荷机场及交通产业园,预计2016年建好主体工程,将124000万元用科学记数法表示为元.13.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=110°,则∠BAD=度.14.如图,一山坡的坡度为i=1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了米.15.如图,一次函数y=kx+b(k、b为常数,且k≠0)和反比例函数y=(x >0)的图象交于A、B两点,利用函数图象直接写出不等式<kx+b的解集是.16.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为.三、解答题(本大题共8小题,共64分)17.(6分)计算:()﹣1﹣+2tan60°﹣(2﹣)0.18.(6分)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.19.(8分)已知不等式组(1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率.20.(8分)我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的 2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了 3.6小时,求学生步行的平均速度是多少千米/小时.21.(8分)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:AQI指数质量等级天数(天)0﹣50优m51﹣100良44101﹣150轻度污染n151﹣200中度污染4201﹣300重度污染2300以上严重污染2(1)统计表中m=,n=.扇形统计图中,空气质量等级为“良”的天数占%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.22.(8分)已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).23.(10分)数学活动﹣旋转变换(1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°得到△A′B′C,连接BB′,求∠A′B′B的大小;(2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆.(Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;(Ⅱ)连接A′B,求线段A′B的长度;(3)如图③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,将△ABC 绕点C逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和BB′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)24.(10分)如图①,直线y=x+4交于x轴于点A,交y轴于点C,过A、C 两点的抛物线F1交x轴于另一点B(1,0).(1)求抛物线F1所表示的二次函数的表达式;(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC 的面积分别为S四边形M A O C和S△B O C,记S=S四边形M A O C﹣S△B O C,求S最大时点M的坐标及S 的最大值;(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C 相似?若存在,请求出点P的坐标;若不存在,请说明理由.参考答案一、选择题(共8个小题,每小题3分,共24分)12345678C BD B A D C B二、填空题(共8个小题,每小题4分,共32分)题号910111213141516答案23x(2x﹣1)4π1.24×10971001<x<4(504,﹣504)三、解答题(共6道小题,每小题5分,共30分)17. 解:原式=3﹣2+2﹣1=218.证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,∵EF⊥DF,∴∠EFD=90°,∴∠EFB+∠CFD=90°,∵∠EFB+∠BEF=90°,∴∠BEF=∠CFD,在△BEF和△CFD中,,∴△BEF≌△CFD(ASA),∴BF=CD.19. 解:(1)由①得:x>﹣2,由②得:x≤2,∴不等式组的解集为:﹣2<x≤2,∴它的所有整数解为:﹣1,0,1,2;(2)画树状图得:∵共有12种等可能的结果,积为正数的有2种情况,∴积为正数的概率为:=.20. 解:设学生步行的平均速度是每小时x千米.服务人员骑自行车的平均速度是每小时2.5x千米,根据题意:﹣=3.6,解得:x=4,经检验,x=3是所列方程的解,且符合题意.答:学生步行的平均速度是每小时4千米.21. 解:(1)20,8,55;(2)估计该市城区全年空气质量等级为“优”和“良”的天数共:365×(25%+55%)=292(天)(3)建议不要燃放烟花爆竹.22. 解:(1)∵关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.∴△=(2m+1)2﹣4m(m+1)=1>0,∴方程总有两个不相等的实数根;(2)∵x=0是此方程的一个根,∴把x=0代入方程中得到m(m+1)=0,∴m=0或m=﹣1,∵(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=4m2﹣4m+1+9﹣m2+7m﹣5=3m2+3m+5,把m=0代入3m2+3m+5得:3m2+3m+5=5;把m=﹣1代入3m2+3m+5得:3m2+3m+5=3×1﹣3+5=5.23. 解:(1)如图①中,∵△A′B′C是由△ABC旋转得到,∴∠A′B′C=∠ABC=130°,CB=CB′,∴∠CBB′=∠CB′B,∵∠BCB′=50°,∴∠CBB′=∠CB′B=65°,∴∠A′B′B=∠A′B′C﹣∠BB′C=65°.(2)(Ⅰ)结论:直线BB′与⊙A′相切.理由:如图②中,∵∠A′B′C=∠ABC=150°,CB=CB′,∴∠CBB′=∠CB′B,∵∠BCB′=60°,∴∠CBB′=∠CB′B=60°,∴∠A′B′B=∠A′B′C﹣∠BB′C=90°.∴AB′⊥BB′,∴直线BB′与⊙A′相切.(Ⅱ)∵在Rt△ABB′中,∵∠AB′B=90°,BB′=BC=5,AB′=AB=3,∴A′B==.(3)如图③中,当α+β=180°时,直线BB′与⊙A′相切.理由:∵∠A′B′C=∠ABC=α,CB=CB′,∴∠CBB′=∠CB′B,∵∠BCB′=2β,∴∠CBB′=∠CB′B=,∴∠A′B′B=∠A′B′C﹣∠BB′C=α﹣90°+β=180°﹣90°=90°.∴AB′⊥BB′,∴直线BB′与⊙A′相切.在△CBB′中,∵CB=CB′=n,∠BCB′=2β,∴BB′=2•nsinβ,在Rt△A′BB′中,A′B==.24. 解:(1)令y=0代入y=x+4,∴x=﹣3,A(﹣3,0),令x=0,代入y=x+4,∴y=4,∴C(0,4),设抛物线F1的解析式为:y=a(x+3)(x﹣1),把C(0,4)代入上式得,a=﹣,∴y=﹣x2﹣x+4,(2)如图①,设点M(a,﹣a2﹣a+4)其中﹣3<a<0∵B(1,0),C(0,4),∴OB=1,OC=4 ∴S△B O C=Ob•OC=2,过点M作MP⊥x轴于点P,∴MP=﹣a2﹣a+4,AP=a+3,OP=﹣a,∴S四边形M A O C=aP•MP+(MP+OC)•OP=aP•MP+OP•MP+OP•OC=+=+=×3(﹣a2﹣a+4)+×4×(﹣a)=﹣2a2﹣6a+6∴S=S四边形M A O C﹣S△B O C=(﹣2a2﹣6a+6)﹣2=﹣2a2﹣6a+4=﹣2(a+)2+∴当a=﹣时,S有最大值,最大值为此时,M(﹣,5);,(3)如图②,由题意知:M′(),B′(﹣1,0),A′(3,0)∴AB′=2,设直线A′C的解析式为:y=kx+b,把A′(3,0)和C(0,4)代入y=kx+b,得:,∴∴y=﹣x+4,令x=代入y=﹣x+4,∴y=2 ∴由勾股定理分别可求得:AC=5,DA′=设P(m,0)当m<3时,此时点P在A′的左边,∴∠DA′P=∠CAB′,当=时,△DA′P∽△CAB′,此时,=(3﹣m),解得:m=2,∴P(2,0)当=时,△DA′P∽△B′AC,此时,=(3﹣m)m=﹣,∴P(﹣,0)当m>3时,此时,点P在A′右边,由于∠CB′O≠∠DA′E,∴∠AB′C≠∠DA′P∴此情况,△DA′P与△B′AC不能相似,2016年湖北省黄冈市中考数学试卷.11 综上所述,当以A ′、D 、P 为顶点的三角形与△AB ′C 相似时,点P 的坐标为(2,0)或(﹣,0).。
2016年湖南省岳阳市中考数学试卷及答案

岳阳市2016年初中毕业学业考试数学试卷一、选择题(本题共 分,每小题 分)下面各题均有四个选项,其中只有一个..是符合题意的.( ) .下列各数中为无理数的是.﹣ . . .( ) .下列运算结果正确的是. .( ) . . ﹣( ) .函数 中自变量 的取值范围是 . . > . < .( ) .某小学校足球队 名队员年龄情况如下:年龄(岁)人数 则这个队队员年龄的众数和中位数分别是. , . , . , . ,( ) .如图是某几何体的三视图,则该几何体可能是.圆柱 .圆锥 .球 .长方体( ) .下列长度的三根小木棒能构成三角形的是. , , . , ,. , , . , ,( ) .下列说法错误的是.角平分线上的点到角的两边的距离相等.直角三角形斜边上的中线等于斜边的一半.菱形的对角线相等.平行四边形是中心对称图形( ) .对于实数 , ,我们定义符号 , 的意义为:当 时, , ;当 < 时, , ;如:,﹣ , , ,若关于 的函数为,﹣ ,则该函数的最小值是. . . .二、填空题(本大题共 小题,每小题 分,共 分).如图所示,数轴上点 所表示的数的相反数是..因式分解: ﹣ ..在半径为 的圆中, 的圆心角所对的弧长为 ..为加快 一极三宜 江湖名城建设,总投资 万元的岳阳三荷机场及交通产业园,预计 年建好主体工程,将 万元用科学记数法表示为元..如图,四边形 为 的内接四边形,已知 ,则 度..如图,一山坡的坡度为 :,小辰从山脚 出发,沿山坡向上走了 米到达点 ,则小辰上升了米..如图,一次函数 ( 、 为常数,且 )和反比例函数 ( > )的图象交于 、 两点,利用函数图象直接写出不等式< 的解集是..如图,在平面直角坐标系中,每个最小方格的边长均为 个单位长, , , , ,均在格点上,其顺序按图中 方向排列,如: ( , ),( , ),( , ),( ,﹣ ),(﹣ ,﹣ ),(﹣ , )根据这个规律,点的坐标为 .三、解答题(本大题共 小题,共 分).( 分)计算:()﹣ ﹣ ﹣( ﹣) ..( 分)已知:如图,在矩形 中,点 在边 上,点 在边 上,且 , ,求证: ..( 分)已知不等式组( )求不等式组的解集,并写出它的所有整数解;( )在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率..( 分)我市某学校开展 远是君山,磨砺意志,保护江豚,爱鸟护鸟 为主题的远足活动.已知学校与君山岛相距 千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的 倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了 小时,求学生步行的平均速度是多少千米 小时..( 分)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年 天中随机抽取了 天的空气质量指数( )数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:指数质量等级天数(天)﹣ 优﹣良﹣轻度污染﹣中度污染﹣重度污染以严重污染上( )统计表中 , .扇形统计图中,空气质量等级为 良 的天数占 ;( )补全条形统计图,并通过计算估计该市城区全年空气质量等级为 优 和 良 的天数共多少天?( )据调查,严重污染的 天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议..( 分)已知关于 的方程 ﹣( ) ( ) .( )求证:方程总有两个不相等的实数根;( )已知方程的一个根为 ,求代数式( ﹣ ) ( )( ﹣ ) ﹣ 的值(要求先化简再求值)..( 分)数学活动﹣旋转变换( )如图 ,在 中, ,将 绕点 逆时针旋转 得到 ,连接 ,求 的大小;( )如图 ,在 中, , , ,将 绕点 逆时针旋转 得到 ,连接 ,以 为圆心, 长为半径作圆.( )猜想:直线 与 的位置关系,并证明你的结论;( )连接 ,求线段 的长度;( )如图 ,在 中, ( < < ), , ,将 绕点 逆时针旋转 角度( < < )得到 ,连接 和 ,以 为圆心, 长为半径作圆,问:角 与角 满足什么条件时,直线 与 相切,请说明理由,并求此条件下线段 的长度(结果用角 或角 的三角函数及字母 、 所组成的式子表示).( 分)如图 ,直线 交于 轴于点 ,交 轴于点 ,过 、 两点的抛物线交 轴于另一点 ( , ).( )求抛物线所表示的二次函数的表达式;( )若点 是抛物线位于第二象限图象上的一点,设四边形 和 的面积分别为 四边形和,记 四边形﹣,求 最大时点 的坐标及的最大值;( )如图 ,将抛物线沿 轴翻折并 复制 得到抛物线,点 、 与( )中所求的点 的对应点分别为 、 、 ,过点 作 轴于点 ,交直线 于点 ,在 轴上是否存在点 ,使得以 、 、 为顶点的三角形与 相似?若存在,请求出点 的坐标;若不存在,请说明理由.参考答案一、选择题(共 个小题,每小题 分,共 分)二、填空题(共 个小题,每小题 分,共 分)题号答案( ﹣)<<( ,﹣ )三、解答题(共 道小题,每小题 分,共 分)解:原式 ﹣ ﹣证明: 四边形 是矩形,,, ,,,,在 和 中,,( ), .解:( ) 由 得: >﹣ ,由 得: ,不等式组的解集为:﹣ < ,它的所有整数解为:﹣ , , , ;( )画树状图得:共有 种等可能的结果,积为正数的有 种情况,积为正数的概率为: .解: 设学生步行的平均速度是每小时 千米.服务人员骑自行车的平均速度是每小时 千米,根据题意:﹣ ,解得: ,经检验, 是所列方程的解,且符合题意.答:学生步行的平均速度是每小时 千米.解:( ) , , ;( )估计该市城区全年空气质量等级为 优 和 良 的天数共:( ) (天)( )建议不要燃放烟花爆竹.解:( ) 关于 的一元二次方程 ﹣( ) ( ) .( ) ﹣ ( ) > ,方程总有两个不相等的实数根;( ) 是此方程的一个根,把 代入方程中得到 ( ) , 或 ﹣ ,( ﹣ ) ( )( ﹣ ) ﹣ ﹣ ﹣ ﹣,把 代入 得: ;把 ﹣ 代入 得: ﹣ .解:( )如图 中, 是由 旋转得到,, ,, ,,﹣ .( )( )结论:直线 与 相切.理由:如图 中, , ,, , ,﹣ ., 直线 与 相切.( ) 在 中, , , ,.( )如图 中,当 时,直线 与 相切.理由: , ,, ,,﹣ ﹣ ﹣ . , 直线 与 相切.在 中, , , , 在 中, .解:( )令 代入 , ﹣ , (﹣ , ),令 ,代入 , , ( , ),设抛物线 的解析式为: ( )( ﹣ ),把 ( , )代入上式得, ﹣, ﹣ ﹣ ,( )如图 ,设点 ( ,﹣ ﹣ )其中﹣ < <( , ), ( , ), , , 过点 作 轴于点 ,﹣ ﹣ , , ﹣ ,四边形 ( )(﹣ ﹣ ) (﹣ ) ﹣ ﹣四边形 ﹣ (﹣ ﹣ )﹣ ﹣ ﹣ ﹣ ( )当 ﹣时, 有最大值,最大值为此时, (﹣, );,( )如图 ,由题意知: (), (﹣ , ), ( , ) , 设直线 的解析式为: ,把 ( , )和 ( , )代入 ,﹣ ,得:,令 代入 ﹣ ,由勾股定理分别可求得: ,设 ( , )当 < 时,此时点 在 的左边, ,当 时, ,此时, ( ﹣ ),解得: , ( , )当 时, ,此时, ( ﹣ )﹣, (﹣, )当 > 时,此时,点 在 右边,由于 , 此情况, 与 不能相似,综上所述,当以 、 、 为顶点的三角形与相似时,点 的坐标为( , )或(﹣, ).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年湖南省岳阳市中考数学试卷及答案一、选择题(本大题8道小题,每小题3分,满分24分)1.下列各数中为无理数的是()A.﹣1 B.3.14 C.πD.0【解析】π是圆周率,是无限不循环小数,所以π是无理数.∵π是无限不循环小数,∴π是无理数.故选C.2.下列运算结果正确的是()A.a2+a3=a5B.(a2)3=a6C.a2•a3=a6D.3a﹣2a=1【解析】利用幂的有关运算性质逐一计算后即可确定正确的选项.A、a2与a3不是同类项,不能合并,故错误;B、(a2)3=a6,正确,符合题意;C、a2•a3=a5,故错误;D、3a﹣2a=a,故错误.故选B.3.函数y=中自变量x的取值范围是()A.x≥0 B.x>4 C.x<4 D.x≥4【解析】根据二次根式有意义的条件可得出x﹣4≥0,解该不等式即可得出结论.∵x﹣4≥0,∴x≥4.故选D.4.某小学校足球队22名队员年龄情况如下:年龄(岁)12 11 10 9人数 4 10 6 2则这个队队员年龄的众数和中位数分别是()A.11,10 B.11,11 C.10,9 D.10,11【解析】根据中位数和众数的定义分别进行解答即可.年龄是11岁的人数最多,有10个人,则众数是11;把这些数从小到大排列,中位数是第11,12个数的平均数,则中位数是=11.故选B.5.如图是某几何体的三视图,则该几何体可能是()A.圆柱B.圆锥C.球D.长方体【解析】根据一个空间几何体的主视图和左视图是全等的长方形,可判断该几何体是柱体,进而根据俯视图的形状,可判断柱体形状,得到答案.∵几何体的主视图和左视图是全等的长方形,∴该几何体是一个柱体,又∵俯视图是一个圆,∴该几何体是一个圆柱.故选A.6.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm【解析】依据三角形任意两边之和大于第三边求解即可.A、因为2+3=5,所以不能构成三角形,故A错误;B、因为2+4<6,所以不能构成三角形,故B错误;C、因为3+4<8,所以不能构成三角形,故C错误;D、因为3+3>4,所以能构成三角形,故D正确.故选D.7.下列说法错误的是()A.角平分线上的点到角的两边的距离相等B.直角三角形斜边上的中线等于斜边的一半C.菱形的对角线相等D.平行四边形是中心对称图形【解析】A.根据角平分线的性质,可得角平分线上的点到角的两边的距离相等,正确;B:根据直角三角形斜边上的中线的性质,可得直角三角形斜边上的中线等于斜边的一半,正确;C.根据菱形的性质,菱形的对角线互相垂直,但是不一定相等,错误;D:根据中心对称图形的性质,可得常见的中心对称图形有:平行四边形、圆形、正方形、长方形,正确.故选C.8.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b 时,max{a,b}=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0 B.2 C.3 D.4【解析】分x≥﹣1和x<﹣1两种情况进行讨论计算,当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2.故选B.二、填空题(本大题共8小题,每小题4分,满分32分)9.如图所示,数轴上点A所表示的数的相反数是.【解析】根据相反数的定义,即可解答.数轴上点A所表示的数是﹣2,﹣2的相反数是2,故填2.10.因式分解:6x2﹣3x=.【解析】根据提公因式法因式分解的步骤解答即可.6x2﹣3x=3x(2x﹣1).故填3x(2x﹣1).11.在半径为6cm的圆中,120°的圆心角所对的弧长为cm.【解析】直接利用弧长公式求出即可.半径为6cm的圆中,120°的圆心角所对的弧长为:=4π(cm).故填4π.12.为加快“一极三宜”江湖名城建设,总投资124000万元的岳阳三荷机场及交通产业园预计2016年建好主体工程,将124000万元用科学记数法表示为元.【解析】科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.124000万=124000 0000=1.24×109.故填1.24×109.13.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=110°,则∠BAD=°.【解析】根据圆内接四边形的对角互补求∠BAD的度数即可.∵四边形ABCD为⊙O的内接四边形,∴∠BCD+∠BAD=180°(圆内接四边形的对角互补),又∵∠BCD=110°,∴∠BAD=70°.故填70.14.如图,一山坡的坡度为i=1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了米.【解析】根据坡度的定义得到tan A==,∠A=30°,然后根据含30度的直角三角形三边的关系求解.根据题意,得tan A===,所以∠A=30°,所以BC=AB=×200=100(米).故填100.15.如图,一次函数y=kx+b(k、b为常数,且k≠0)和反比例函数y=(x>0)的图象交于A、B两点,利用函数图象直接写出不等式<kx+b的解集是.【解析】先根据图形得出A、B的坐标,根据两点的坐标和图形得出不等式的解集即可.∵由图象可知:A(1,4),B(4,1),x>0,∴不等式<kx+b的解集为1<x<4,故填1<x<4.16.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位,P1,P2,P3,…均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2),…,根据这个规律,点P2016的坐标为.【解析】根据各个点的位置关系,可得出下标为4的倍数的点在第四象限的角平分线上,被4除余1的点在第三象限的角平分线上,被4除余2的点在第二象限的角平分线上,被4除余3的点在第一象限的角平分线上,故点P2016应在第四象限的角平分线上,且横纵坐标的绝对值=2016÷4,再根据第四象限内点的符号得出答案即可.由规律可得,2016÷4=504,∴点P2016在第四象限的角平分线上,∵点P4(1,﹣1),点P8(2,﹣2),点P12(3,﹣3),∴点P2016 (504,-504),故填(504,-504).三、解答题(本大题共8道小题,满分64分)17.计算:()﹣1﹣+2tan60°﹣(2﹣)0.【解】原式=3﹣2+2﹣1=2.18.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.【证明】∵四边形ABCD是矩形,∴∠B=∠C=90°,∵EF⊥DF,∴∠EFD=90°,∴∠EFB+∠CFD=90°,∵∠EFB+∠BEF=90°,∴∠BEF=∠CFD,在△BEF和△CFD中,∴△BEF≌△CFD(ASA),∴BF=CD.19.已知不等式组(1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率.【解】(1)由①得:x>﹣2,由②得:x≤2,∴不等式组的解集为:﹣2<x≤2,∴它的所有整数解为:﹣1,0,1,2.(2)画树状图得:∵共有12种等可能的结果,积为正数的有2种情况,∴积为正数的概率为:=.20.我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了3.6小时,求学生步行的平均速度是多少千米/小时.【解】设学生步行的平均速度是每小时x千米,则服务人员骑自行车的平均速度是每小时2.5x千米,根据题意,得﹣=3.6,解得x=4,经检验,x=4是所列方程的解,且符合题意.答:学生步行的平均速度是每小时4千米.21.某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:AQI指数质量等级天数(天)0~50 优m51~100 良44101~150 轻度污染n151~200 中度污染 4201~300 重度污染 2300以上严重污染 2(1)统计表中m=,n=.扇形统计图中,空气质量等级为“良”的天数占%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天;(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.【解】(1)m=80×25%=20,n=80﹣20﹣44﹣4﹣2﹣2=8,空气质量等级为“良”的天数占:×100%=55%.(2)估计该市城区全年空气质量等级为“优”和“良”的天数共:365×(25%+55%)=292(天). 答:估计该市城区全年空气质量等级为“优”和“良”的天数共292天.补全统计图:(3)建议不要燃放烟花爆竹.22.已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).【证明】(1)∵关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0,Δ=(2m+1)2﹣4m(m+1)=1>0,∴方程总有两个不相等的实数根.【解】(2)∵x=0是此方程的一个根,∴把x=0代入方程中得到m(m+1)=0,∴m=0或m=﹣1,把m=0或m=﹣1代入(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=4m2﹣4m+1+9﹣m2+7m﹣5=3m2+3m+5,可得:(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=5,或(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=3﹣3+5=5.23.数学活动﹣旋转变换.(1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°得到△A′B′C,连接BB′,求∠A′B′B的大小.(2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆.(Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;(Ⅱ)连接A′B,求线段A′B的长度.(3)如图③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,将△ABC绕点C 逆时针旋转2β(0°<2β<180°)得到△A′B′C,连接A′B和BB′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示).【解】(1)如图①中,∵△A′B′C是由△ABC旋转得到的,∴∠A′B′C=∠ABC=130°,CB=CB′,∴∠CBB′=∠CB′B,∵∠BCB′=50°,∴∠CBB′=∠CB′B=65°,∴∠A′B′B=∠A′B′C﹣∠BB′C=65°.(2)(Ⅰ)结论:直线BB′是⊙A′的切线.证明如下:如图②中,∵∠A′B′C=∠ABC=150°,CB=CB′,∴∠CBB′=∠CB′B,∵∠BCB′=60°,∴∠CBB′=∠CB′B=60°,∴∠A′B′B=∠A′B′C﹣∠BB′C=90°.∴AB′⊥BB′,∴直线BB′是⊙A′的切线.(Ⅱ)∵在Rt△A′BB′中,∵∠A′B′B=90°,BB′=BC=5,A′B′=AB=3,∴A′B=.(3)如图③中,当α+β=180°时,直线BB′是⊙A′的切线.理由:∵∠A′B′C=∠ABC=α,CB=CB′,∴∠CBB′=∠CB′B,∵∠BCB′=2β,∴∠CBB′=∠CB′B=,∴∠A′B′B=∠A′B′C﹣∠BB′C=α﹣90°+β=180°﹣90°=90°.∴A′B′⊥BB′,∴直线BB′是⊙A′的切线.在△CBB′中,∵CB=CB′=n,∠BCB′=2β,∴BB′=2•nsinβ,在Rt△A′BB′中,A′B==.24.如图①,直线y=x+4交x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).(1)求抛物线F1所表示的二次函数的表达式;(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC的面积分别为S四边形MAOC 和S△BOC,记S=S四边形MAOC﹣S△BOC,求S最大时点M的坐标及S的最大值;(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x 轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P 的坐标;若不存在,请说明理由.【解】(1)令y=0,则x+4=0,∴x=﹣3,故A(﹣3,0),令x=0,则y=x+4=4,∴C(0,4),设抛物线F1的解析式为:y=a(x+3)(x﹣1),把C(0,4)代入上式得a=﹣,∴y=﹣x2﹣x+4.(2)如图①,设点M (a ,﹣a 2﹣a+4),其中﹣3<a <0,∵B (1,0),C (0,4),∴OB=1,OC=4,∴S △BOC =OB •OC=2,过点M 作MD ⊥x 轴于点D ,∴MD=﹣a 2﹣a+4,AD=a+3,OD=﹣a ,∴S 四边形MAOC =AD •MD+(MD+OC )•OD=AD •MD+OD •MD+OD •OC=+=+=×3(﹣a 2﹣a+4)+×4×(﹣a ) =﹣2a 2﹣6a+6,∴S=S 四边形MAOC ﹣S △BOC =(﹣2a 2﹣6a+6)﹣2=﹣2a 2﹣6a+4=﹣2(a+)2+,∴当a=﹣时,S 有最大值,最大值为, 此时,M (﹣,5).(3)如图②,由题意知:M ′(),B ′(﹣1,0),A ′(3,0), ∴AB ′=2,设直线A ′C 的解析式为y=kx+b ,把A ′(3,0)和C (0,4)代入y=kx+b ,∴y=﹣x+4,令x=,则y=﹣x+4=﹣×+4=2,∴.由勾股定理分别可求得AC=5,DA ′=,设P (m ,0),当m <3时,此时点P 在A ′的左边,∴∠DA ′P=∠CAB ′,11当=时,△DA ′P ∽△CAB ′,此时, =(3﹣m ),解得m=2,∴P (2,0).当=时,△DA ′P ∽△B ′AC ,此时, =(3﹣m ),m=﹣, ∴P (﹣,0).当m >3时,此时,点P 在A ′右边,由于∠CB ′O ≠∠DA ′E ,∴∠AB ′C ≠∠DA ′P.∴此情况,△DA ′P 与△B ′AC 不能相似,综上所述,当以A ′、D 、P 为顶点的三角形与△AB ′C 相似时,点P 的坐标为(2,0)或(﹣,0).。