Fluctuations and Rheology in Active Bacterial Suspensions
动态血糖监测在妊娠期合并糖尿病患者中的监测情况

论著·临床辅助检查CHINESE COMMUNITY DOCTORS 妊娠期合并糖尿病包括2型糖尿病合并妊娠和妊娠期糖尿病(GDM)。
妊娠期糖尿病定义为在妊娠期首次发生或发现的不同程度的糖代谢异常[1]。
其发病率世界各国的报道大致为1%~14%,我国妊娠期糖尿病的发病率1%~5%,且有明显增高趋势。
妊娠期血糖控制不好,会明显增加不良围产期结局风险,包括巨大儿、分娩创伤、新生儿黄疸、婴儿呼吸窘迫综合征、妊娠期高血压性疾病,以及剖宫产概率升高。
因此,孕期将血糖控制在合理范围内至关重要。
而有效的血糖监测手段对孕妇的血糖管理至关重要。
动态血糖监测系统是一种新兴的技术,能够持续72h 对血糖进行监测,及时发现高血糖、低血糖及血糖的波动,从而为制定合理的方案提供治疗依据。
本文主要应用动态血糖监测系统对31例妊娠合并糖尿病患者进行连续动态血糖监测,了解血糖情况,对其结果进行分析。
资料与方法选取2014年9月-2017年12月收治的妊娠期合并糖尿病孕妇31例,妊娠期糖尿病均符合第8版《妇产科学》制定的妊娠期糖尿病诊断标准,糖尿病合并妊娠诊断标准为妊娠前已诊断为糖尿病,均符合第8版《内科学》制定的糖尿病诊断标准,孕期予胰岛素控制治疗。
将31例患者分为妊娠期糖尿病组(21例)和糖尿病合并妊娠组(10例)。
两组患者年龄、病程等比较差异无统计学意义(P >0.05)。
孕妇年龄23~41岁,平均(33.35±4.85)岁。
方法:受试者给予圣美迪诺公司生产的雷兰回顾式持续性动态血糖监测系统,连续监测72h,期间每天用罗氏血糖仪测4点指端毛细血管血糖,以校正误差,孕妇每天输入进食、运动等事件,所得数据用专门的分析软件进行分析,从而可获得患者连续3d 内血糖动态变化的信息。
分析监测指标:血糖平均值、空腹平均值、早餐后平均值、午餐后平均值、晚餐后平均值、低血糖时间比(动态血糖监测系统软件统计血糖<3.9mmol/L 的时间与总有效时间之比)、血糖>7.8mmol/L 时间比(动态血糖监测系统软件统计血糖>7.8mmol/L 的时间与总有效时间之比)、血糖>11.1mmol/L 时间比(动态血糖监测系统软件统计血糖>11.1mmol/L 的时间与总有效时间之比)、血糖波动系数(由统计标准偏差方法计算,它代表血糖宏观波动程度)。
丹参抑制血小板聚集成分的构效关系及协同作用

•化学•丹参抑制血小板聚集成分的构效关系及协同作用霍苏】0,崔鹤蓉10,田学浩】,郑娟2,姜文艳3,戴子琦】,高梦怡】,项嘉伟】,陈可{】,吴倩文】,王鹏龙】,马涛】,雷海民】!(1.北京中医药大学中药学院,北京102488'.广元市中心医院,广元628000'.北京工业大学生命科学与生物技术学院,北京100124)摘要:目的分析丹参中酣酸类和丹参酮类成分对血小板聚集抑制作用的构效关系,并探究两类成分的协同作用°方法基于B3LYP/6-31G*优势构象,采用Gaussian09W软件计算化合物的化学构型,使用QSAR模块及Orange软件计算影响化合物抑制血小板聚集作用的物理化学性质;基于构效关系,采用文献分析法分析两类成分的协同作用,并采用血小板聚集试验,验证丹参中丹酚■酸类和丹参酮类化合物抑制血小板聚集的最佳协同比例"结果在2种主要的生物活性成分中,油水分配系数(lg P)是决定酣酸类化合物有效性的最重要因素,表面积(约)、lg3和水合能是决定丹参酮类化合物有效性的最重要因素;2种活性化合物的最佳协同比例为30(»酸类):1(丹参酮类)结论丹参的抗血小板活性与两类主要生物活性化合物9协同作用有关,lg P等结构参数能影响其抑制血小板聚集活性°关键词:丹参;抗血小板聚集;活性成分;构效关系;协同作用DOI:10.3969/j.issn.1004-2407.2021.01.020中图分类号:R914文献标志码:A文章编号=1004-2407(2021)01-0095-06Structure-activity relationship and synergistic effect of components in Salvia milti-orrhiza on platelet aggregationHUO Su10,CUI Herong10,TIAN Xuehao1,ZHENG Juan2,JIANG Wenyan3,DAI Ziqi1,GAO Mengyi1,XIANG Jiawei1, CHEN Kedian1,WU Qianwen1, WANG Penglong1,MA Tao1*,LEI Haimin1*(1.School of Chinese Pharmacy,Beijing University ofChinese Medicine Beijing102488China'2Guangyuan Central Hospital Guangyuan628000China'3Co l egeofLifeScience andBiotechnology Beijing University of Technology Beijing100124China)Abstract:To analyze the structure-activity relationship between phenolic acids and tanshinones in Salvia miltiorrhiza on the inhibition of platelet aggregation,and to explore the synergistic effects of the2kinds components.Gaussian09W sof--ware was used to calculate the chemical configuration of the compounds based on the dominant conformation of B3LYP/6-31G*, and QSAR module and Orange software were used to calculate the physical and chemical properties of the compounds affecting the inhib i t i o n of pla t e le t aggregation.Based on t h e structure-activity relationship,t h e synergistic effect of the2kinds components was analyzed by literature analysis method,and the optimal synergistic ratio of salvianolic acid and tanshinone in Salvia miltiorrhiza inhibiting platelet aggregation was verified by platelet aggregation test.For the2main bioactive components,oil water dis-"ribuioncoe f icien"(lg3)is"hemos"impor"an"fac"or"ode"ermine"hee f ecivenessofphenoliccompoundsandsurfacearea(a-bou")lg3and hydra ion energy are"he mos"impor"an"fac"ors"o de"ermine"he e f ec iveness of"anshinone compounds.The op"i-mal synergistic ratio of t he2active compounds was30(phenolic acids):1(tanshinones).The antiplatelet activity of Salvia miltiorrhiza is related to the synergistic effect of the2main bioactive compounds,and structural parameters such as lg3 caninfluence"heinhibiionofpla"ele"aggrega"ion.Key words:Salvia miltiorrhiza;anti-platelet aggregation;active compounds;structure-activity relationship;synergistic effect化学成分是药理作用的基础,化合物的协同药理作用是丹参抑制血小板聚集的物质基础。
血糖波动对人脐静脉血管内皮细胞腺苷酸活化蛋白激酶和过氧化物酶增殖物激活受体γ共激活因子1α的影响

doi : 10. 3969/j. issn. 1009-6469.2019. 02. 009 ◊临床医学!血糖波动对人脐静脉血管内皮细胞腺苷酸活化蛋白激酶和过氧化物酶增殖物激活受体7共激活因子9"的影响田翰林!,常柏2,田文静3作者单位:1铜仁市碧江区中医医院,贵州铜仁554300%2国家卫生健康委员会激素与发育重点实验室、天津医科大学代谢病医院内分泌研究所,天津300070;3贵州健康职业学院,贵州铜仁554300通信作者:常柏,男,主任医师,博士生导师,研究方向为糖尿病基础及临床研究,E-mail :493162946@qq. c m基金项目:国家自然科学基金(81473622)81273914);铜仁市科技课题(2018)52号摘要:目的观察血糖波动对人脐静脉血管内皮细胞(HUVEC)腺苷酸活化蛋白激酶(AMPK)和过氧化物酶增殖物激活受体"共激活因子l$(P G C-1$的影响以探讨血糖波动对血管内皮损伤的机制。
方法体外培养HUVEC至第3代,将细胞分为:正常组:用5 mmol/L含葡萄糖和氨基酸的培养液(Glu DMEM)(模拟正常血糖环境);高糖组:25 mmol/L Glu DMEM培养液(模拟高糖环境)&血糖波动组:交替用25 mmol/L和5 mmol/L Glu DMEM培养液,每8 h更换一次(模拟血糖波动环境),三组均培养48 h。
使用流式细胞仪检测细胞凋亡率。
蛋白质印迹法(W etern blot)、反转录-聚合酶链反应(RT-PCR)检测各组AMPK和PGC-1$蛋白与mRNA表达。
结果高糖组与血糖波动组两组早/晚期细胞凋亡率高于正常组(E <0. 001 ),且血糖波动组早/晚期细胞凋亡率高于高糖组(均E <0. 05);高糖组的AMPK和PGC-1$蛋白与mRBA表达分别为(0. 232 ±0. 018)、(0. 401 ±0. 013),血糖波动组AMPK和P G C1$蛋白与mRBA表达分别为(0. 158 ± 0. 027)、(0. 199 ±0. 010),均比正常组的(0. 905 ±0. 032)、(0. 946 ±0. 045)降低(均E <0. 05),且血糖波动组AMPK和PGC-1$蛋白与mRBA表达低于高糖组(均E<0. 05)。
高温流体力学中的剪切变稀现象研究

高温流体力学中的剪切变稀现象研究引言高温流体力学是一门研究在高温条件下流体行为的学科,它在许多领域具有重要应用,如航空航天、能源等。
在高温下,流体的性质可能会发生变化,其中剪切变稀现象是一个重要的研究方向。
本文将探讨高温流体力学中剪切变稀现象的研究结果和应用。
背景在高温条件下,流体的分子运动更加剧烈,分子之间的相互作用也更加复杂。
这导致高温下的流体行为可能会与常温下有所不同。
剪切变稀是指在剪切应力作用下,高温流体的粘度会减小的现象。
这种现象在某些流体中特别显著,如聚合物溶液和液晶等。
实验方法为了研究剪切变稀现象,研究人员采用了多种实验方法。
其中一种常用的方法是旋转流变仪实验。
在实验中,将高温流体置于旋转流变仪中,通过施加剪切应力,观察流体的粘度随时间的变化。
另一种方法是采用激光流变仪实验,通过激光光束对流体进行非侵入性测量,获得流体的剪切变稀行为。
研究结果通过实验研究,发现高温流体中的剪切变稀现象并非普遍存在,它受到许多因素的影响,如温度、压力、流动速度和流体组分等。
研究人员发现,在某些条件下,流体的粘度可能会随着剪切应力的增加而减小,这被称为剪切变稀现象。
然而,还有一些情况下,剪切变稀现象可能会受到限制,流体的粘度可能会保持稳定或者增加。
剪切变稀机制研究人员对剪切变稀现象的机制进行了深入研究。
他们发现,剪切变稀现象与流体分子的有序排列和流体内部结构的变化密切相关。
在剪切应力作用下,流体分子的排列会发生改变,导致流体内部存在不同的结构状态。
这些结构状态的改变可能会导致流体的粘度减小,从而出现剪切变稀现象。
应用剪切变稀现象在许多领域具有重要的应用价值。
在航空航天领域,剪切变稀现象可以用于设计高温油液的传动系统,提高系统的效率和耐久性。
在能源领域,剪切变稀现象可以用于改进石油开采过程中的油井注水技术,减少能源的浪费。
此外,剪切变稀现象还可以应用于液晶显示技术和生物医学领域等。
结论高温流体力学中的剪切变稀现象是一门重要的研究方向。
211091475_β-葡寡糖的制备及其结构鉴定和生物活性研究进展

马冠骅,姜斯琪,张劲松,等. β-葡寡糖的制备及其结构鉴定和生物活性研究进展[J]. 食品工业科技,2023,44(8):429−436. doi:10.13386/j.issn1002-0306.2022050169MA Guanhua, JIANG Siqi, ZHANG Jingsong, et al. Research Progress on Preparation, Structure Identification and Bioactivity of β-Glucooligosaccharides[J]. Science and Technology of Food Industry, 2023, 44(8): 429−436. (in Chinese with English abstract). doi:10.13386/j.issn1002-0306.2022050169· 专题综述 ·β-葡寡糖的制备及其结构鉴定和生物活性研究进展马冠骅1,2,姜斯琪1,2,张劲松1,秦 秀1,冯 杰1,刘艳芳1,2,*(1.上海市农业科学院食用菌研究所,农业农村部南方食用菌资源利用重点实验室,国家食用菌工程技术研究中心,上海 201403;2.上海理工大学健康科学与工程学院,上海 200093)摘 要:低聚糖是一种新型功能性糖原,在食品领域应用广泛。
β-葡寡糖是一类由2~20个葡萄糖通过β-糖苷键连接而成的低聚糖,主要由葡聚糖经不同方法降解制备得到,因其分子量低、水溶性好、结构独特、吸收效率高等特点,在调节肠道菌群、增强免疫、抗肿瘤等方面表现出较好的生物活性,在食品、保健品和药品等领域具有广阔的应用前景。
为促进β-葡寡糖的研究与开发,本文就近年有关β-葡寡糖的降解制备、分离纯化、结构表征方法及其生物活性方面的研究进行系统综述,以期为β-葡寡糖的深度研究与利用提供一定的参考。
219316079_冷等离子体技术对食品组分的影响及其作用机制

颜心怡,李锦晶,李赤翎,等. 冷等离子体技术对食品组分的影响及其作用机制[J]. 食品工业科技,2023,44(12):445−454. doi:10.13386/j.issn1002-0306.2022070119YAN Xinyi, LI Jinjing, LI Chiling, et al. Effect and Action Mechanism of Cold Plasma Technology on Food Components[J]. Science and Technology of Food Industry, 2023, 44(12): 445−454. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070119· 专题综述 ·冷等离子体技术对食品组分的影响及其作用机制颜心怡1,李锦晶2,李赤翎1,吴金鸿3,俞 健1,王发祥1,4,刘永乐1,4,李向红1,4,*(1.长沙理工大学食品与生物工程学院,湖南长沙 410114;2.湖南康宝莱蕾硕天然产物有限公司,湖南长沙 410100;3.上海交通大学农业与生物学院,上海 200240;4.湖南省水生资源食品加工工程技术研究中心,湖南长沙 410114)摘 要:冷等离子体作为一种新型的非热加工技术,因其具有安全、绿色、能耗低等优点,在食品加工领域受到广泛关注。
冷等离子体使用的气体在电离过程中产生的紫外线、活性物质(如活性氧、活性氮、羟自由基和离子)等会通过辐射/修饰作用使生物大分子发生刻蚀及交联,或对食品组分(脂质、蛋白质、淀粉等)的表面结构和官能团进行修饰,使组分结构发生变化,从而影响食品的品质、功能特性等。
本文综述了冷等离子体作用对食品主要组分(蛋白质、脂质、淀粉)、维生素和多酚的影响及其可能的作用机制,并讨论了该技术存在的问题和未来发展的方向,以期为冷等离子体在食品工业的应用提供参考。
植物多酚与淀粉的分子相互作用研究

陈南,高浩祥,何强,等. 植物多酚与淀粉的分子相互作用研究进展[J]. 食品工业科技,2023,44(2):497−505. doi:10.13386/j.issn1002-0306.2022040140CHEN Nan, GAO Haoxiang, HE Qiang, et al. A Review of the Molecular Interaction between Plant Polyphenols and Starch[J]. Science and Technology of Food Industry, 2023, 44(2): 497−505. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040140· 专题综述 ·植物多酚与淀粉的分子相互作用研究进展陈 南1,高浩祥1,何 强2, *,曾维才1,2,*(1.四川大学食品工程系,四川成都 610065;2.食品科学与技术四川省高校重点实验室,四川成都 610065)摘 要:淀粉是食品工业的重要原料之一,同时也是人体主要的供能物质。
植物多酚是一类广泛存在于植物中且对人体健康有益的活性物质。
植物多酚与淀粉的分子相互作用会影响淀粉基食品在加工和贮藏过程中的品质(如质构、风味及色泽等)及营养特性。
本文在查阅和整理国内外有关文献和研究的基础上,对植物多酚与淀粉的分子相互作用及其对淀粉和植物多酚相关性质的影响进行综述,包括植物多酚与淀粉的复合物形成方式(以疏水作用力为主的V 型复合物和以氢键为主的非V 型复合物),其相互作用对淀粉理化性质(糊化性质、回生性质和流变性质等)、微观结构和消化特性的改变及其对植物多酚的保护及缓释作用,以期为植物多酚在淀粉的加工、贮藏及其他相关领域的资源化利用提供有益的帮助与参考。
关键词:植物多酚,淀粉,分子相互作用,理化性质,微观结构,缓释作用本文网刊:中图分类号:TS202.1 文献标识码:A 文章编号:1002−0306(2023)02−0497−09DOI: 10.13386/j.issn1002-0306.2022040140A Review of the Molecular Interaction between PlantPolyphenols and StarchCHEN Nan 1,GAO Haoxiang 1,HE Qiang 2, *,ZENG Weicai 1,2, *(1.Department of Food Engineering, Sichuan University, Chengdu 610065, China ;2.Key Laboratory of Food Science and Technology of Sichuan Province of Education,Sichuan University, Chengdu 610065, China )Abstract :Starch is the important raw material for food industry, and it is also the main bioenergy source for human body.Plant polyphenols are a kind of active substances that widely exist in plants, and they are beneficial to human health. And the molecular interaction between plant polyphenols and starch can affect the quality (such as texture, flavor, color and so on) and nutrition of starch food during processing and storage. On the basis of consulting a lot of literature and studies, this paper reviews the molecular interaction between plant polyphenols and starch and its influence on the related properties of starch and plant polyphenols, these include the formation of complexes between plant polyphenols and starch (including V-type inclusion facilitated by hydrophobic effect and complex most through hydrogen bonds), the change of their interaction on the physicochemical properties (such as pasting, retrogradation, rheological properties, etc.), microstructure and digestive properties of starch, as well as the effect of protection and slow release on plant polyphenols, which would provide useful guidance for the resource utilization of plant polyphenols in starch processing and storage and other related fields.Key words :plant polyphenols ;starch ;molecular interaction ;physicochemical properties ;microstructure ;sustained release收稿日期:2022−04−14基金项目:国家自然科学基金项目(31801548);四川省科技计划项目(2021YFH0072);中央高校创新科技计划项目(2021CDLZ-21);国家重点研发计划(2019YFE0103800)。
Drug Master File Procedures

13
Procedure – Use (3)
ASMF holder → Competent Authorities The ASMF (applicant + restricted part) either once or for each MA application (depends on national requirements) Letter of access Discussion between ASMs and competent authorities/ EMEA related to ASMF “legally” not possible however ………..
15
General considerations (2)
The quality control methods should be kept in line with the current regulatory and scientific requirements Compliance with GMP Responsibility of Manufacturing Authorisation Holder (finished product) MAH can use different QC methods full description needed in application file In case of more than one supplier, there should be one single compiled specification for each supplier: responsibility MAH
5
ASMF Guideline - Structure
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
arX iv:709.1465v1[co nd -m a t .s o f t ] 10 Se p 2007Fluctuations and Rheology in Active Bacterial SuspensionsD.T.N.Chen,u,2L.A.Hough,1M.F.Islam,1M.Goulian,1T.C.Lubensky,1and A.G.Yodh 11Department of Physics and Astronomy,University of Pennsylvania,Philadelphia,PA 191042Department of Physics,Florida Atlantic University,Boca Raton,FL 33431(Dated:February 1,2008)We probe non-equilibrium properties of an active bacterial bath through measurements of corre-lations of passive tracer particles and the response function of a driven,optically trapped tracer.These measurements demonstrate violation of the fluctuation-dissipation theorem and enable us to extract the power spectrum of the active stress fluctuations.In some cases,we observe 1/√ω.Existing theories of activemedia [12]predict long-time tails and anomalous correc-tions to diffusion but not superdiffusion.We propose aFIG.1:1-pt (open symbols)and 2-pt (closed symbols)mean square displacements divided by the lag time,∆t ,for 2a =2µm particles in bath of wild-type RP437(triangles)and tumbling RP1616(circles)bacteria at φ=.003.In-set:RD rr (R,∆t =.067sec)demonstrating D rr ∼1/R for R ≥10µm,and implying correlation length ξU ≤10µm .theoretical model,following Ref.[13],that accounts for our experimental observations.We used two strains of E.coli ,a rod-shaped bac-terium with dimensions 3×1µm,in these studies:RP437,the “wild-type”,which runs and tumbles [17]and RP1616,the “tumbler”,which predominantly tum-bles [18].Overnight cultures were diluted 1/300in Luria Broth (Difco)and grown at 25◦C for 6hrs.Subsequently,they were centrifuged for 10minutes at 5000rpm and re-suspended to the desired concentration in a buffer com-prised of 10mM K 2HPO 4,0.1mM EDTA,and 0.2wt %glucose (pH =8.2),which was added to maintain bac-terial motility.We added a small amount (φs =10−4)of fluorescently labeled polystyrene spheres (Duke Sci-entific)of radius a to the bacterial suspension,and to density match them,we added 15wt %sucrose to the solution.To prevent bacterial adhesion,we prepared the chambers from BSA coated glass slides and coverslips.We used parafilm spacers to bring the thickness of the chambers to ∼240µm;and we recorded quasi-2D image slices from the middle of the 3D chamber.Samples were loaded into the chamber and sealed with optical glue just2prior to each run.We quantified thefluctuations in the bacterial bath bycomputing MSDs from the motions of embedded micron-sized tracers[15].The one-point displacement(MSD1)is defined by ∆r2(∆t) 1= i ∆r i(t,∆t)∆r i(t,∆t) , where∆r i(t,∆t)=r i(t+∆t)−r i(t)is the par-ticle displacement in the i=(x,y,z)direction in time∆t,and the brackets denote time and ensem-ble averaging.The two-point displacement(MSD2) is defined as ∆r2(∆t) 2=(2R/a)D rr(R,∆t),where D rr(R,∆t)is the longitudinal component D rr(R,∆t)= D ij R i R j/R2of the two-point tensor D ij(R,∆t)= ∆r(1)i(t,∆t)∆r(2)j(t,∆t) ,which measures correlations of two distinct particles(1,2)with an initial separation R.Over the time scale of our experiments,R lies in the focus plane of our microscope and its magnitude R≡|R| is greater than that of individual particles’displacements. The main advantage of two-point microrheology is that it provides a more reliable measure of length scale de-pendentfluctuations in media where the length scale of heterogeneities and tracer boundary conditions are not a priori known[2,15].Indeed,since D ij(R,∆t)is ensem-ble averaged over tracer pairs with R≫a,it reflects the dynamics of the medium on larger length scales than the tracer size,permitting quantitative measurements even in the presence of heterogeneities.In general,MSD2will equal MSD1if heterogeneities in the medium have length scales smaller than the tracer size,otherwise they will differ in both magnitude and functional form.Typical MSD data are presented in Fig.1,which shows that the one-point MSD in both bacterial strains dis-plays a crossover from superdiffusive behavior at short lag times( ∆r2 1∼∆tα,1<α<1.5)to diffusive be-havior(α=1)at long lag times.This observation is similar to that of Ref.[7].However,our two-point data for the wild-type,by contrast,exhibit a nearly power-law superdiffusion( ∆r2 2∼∆t1.5)over2.5decades of ob-servation time.We also verified that D rr(R,∆t)∼1/R (see inset of Fig.1),indicating that the bacterial bath, though an active medium,can be treated on the separa-tion scale R as a coarse-grained continuum whose proper-ties can be probed with two-point microrheology[2,15]. That MSDs exhibit superdiffusion is suggestive of but not a proof of violation of FDT,which requires an indepen-dent measurement of the rheological response function. Response measurements were performed using an os-cillating optical tweezer setup similar to that of Ref.[16].Briefly,an optical trap with typical trap stiffnessof∼1×10−3pN/nm was formed by focusing an∼100 mW laser beam(λ=1054nm)through a1.3NA oil im-mersion objective(Zeiss).The trapping beam position was sinusoidally scanned using a galvo-mirror at frequen-cies from0.5to500Hz.A4.0µm PS sphere was trapped ∼6µm from the coverslip.The position of the tracer was detected using forward scattered light from a co-linearly aligned HeNe laser beam focused onto a split photodi-ode(Hamamatsu S4204).The photodiode signal was fed into a lock-in amplifier(Stanford Research Systems530)FIG.2:(color online)Frequency dependent viscosity derived from oscillating trap measurements for4.0µm sphere in wa-ter(solid squares),the tumbler(solid circles),and the wild-type(solid triangles)atφ=.003.Viscositiesη2(ω)derived from the averaged two-point measurements using the general-ized Stokes-Einstein relation are plotted for the tumbler(open circles),the wild-type(open triangles),and a bead in water (open squares).Inset:Normalized Displacement of a4.0µm sphere in the optical trap as a function of driving frequency for wild-type(triangles),tumbler(circles),and water(squares). Line is afit to d(ω)(see text).along with the reference from the driving function gener-ator signal.The displacement and phase of the trapped particle output by the lock-in amplifier were logged into a PC running LabView(National Instruments).The equation of motion for a particle of radius a trapped in an oscillating harmonic potential may be writ-ten as:6πηa˙x=−k[x−A cos(ωt)],whereηis the vis-cosity of the medium,k is the stiffness of the trap,and A is the driving amplitude.Its steady state solution yields the normalized displacement of the sphere in the trap: d(ω)= 1+[6πaη(ω)ω/k]2 −1/2.The inset of Fig.2shows the raw normalized dis-placement data for a particle in water and for a par-ticle in an active bacterial bath(RP1616).The solid line is afit to d(ω)withη=0.001Pa·s,trap stiffness k=8×10−4pN/nm,and radius a=2.0µm.Both sets of experimental data agree with each other and with the theoretical curve.From them,we extract the viscosity η(ω)shown in the main graph of Fig.2.Clearly,the presence of actively swimming bacteria at volume frac-tion10−3does not modify the viscosity of the medium from that of water,η(ω)=η0=0.001Pa·s.We mea-sured the sameη(ω)using a capillary viscometer. While recent theories of active systems predict novel enhancement in the viscosity[13],our experiments are well below the concentration at which these effects are observable.Instead,our results are consistent with the Einstein result for hard spheres:η=η0(1+5FIG.3:(color online)(a)Collapsed1-pt(open symbols)andradius collapsed averaged2-pt(closed symbols)MSDs for the tumblers atφ=.003.The solid line is the master curve:γ+(1−γ)(1−e−x)/x.Circles,triangles,and squares are for particle diameters2a=2.0,5.0,and10.0µm,respectively. Inset:Raw1-pt(open symbols)and2-pt(closed symbols) MSDs for tumblers.(b)Radius rescaled2-pt(closed symbols) MSDs for the wild-types atφ=.003.Circles,triangles,and squares are for particle diameters2a=2.0,5.0,and10.0µm, respectively.Inset:Radius rescaled1-pt MSD(open symbols) for the sameφand particle size data.placement(MSD2)[15]:η2(ω)=kBT/3πω2a ∆r2(ω) 2,as shown in Fig.2.The difference betweenη(ω)and η2(ω)explicitly indicates a strong violation of FDT. Next,to access the heterogeneity of the bacterial bath, we explored the length-scale dependence offluctuations by systematically varying the size of the tracers at afixed bacterial concentration.The inset of Fig.3a shows MSDs obtained for spheres in the tumbler bath.All samples and all tracer sizes exhibit a crossover from superdif-fusion to diffusion on similar timescales,with an en-hanced diffusion coefficient D=γD T,whereγ=4.3and D T=k B T/(6πη0a)is the equilibrium coefficient.More-over,MSD1and MSD2are nearly equal in magnitude and functional form.Rescaling time by the crossover time τand the MSDs by2D T∆t collapses all the data onto a master curve:[ ∆r2x(∆t) 1, ∆r2(∆t) 2]/(2D T∆t)=γ+(1−γ)(1−e−x)/x,where x=∆t/τ.Figure3a shows the collapsed MSD data along with the master curve withτ=0.1s.The MSDs for the wild-type are strikingly different:the MSD1exhibits a crossover dependent on tracer size, while all of the MSD2exhibit superdiffusion with nearly the same exponent of1.5over 2.5decades of time, independent of the tracer size.The trivial rescaling a ∆r2(∆t) 2collapsed the respective MSD2data[Fig. 3b].Under this rescaling,however,(and other simple scaling functional forms as well)the wild-type MSD1 failed to collapse[inset of Fig.3b],signaling the pres-ence of heterogeneity on the tracer length scale.The superdiffusive exponent of the MSD1approaches that of the two-point data(α∼1.5)as a increases.This sug-gests that one-point measurements are intrinsically am-biguous:the activity inferred depends on the tracer size and boundary conditions[2,19].Two-point measure-ments,in contrast,provide a more robust characteriza-tion of the long-wavelengthfluctuations of the medium than one-point measurements.We employ a recently developed phenomenological the-oretical framework for an active medium to interpret the experimental MSD data[2].The bacterial activity gives rise to non-thermal stressfluctuations whose power spec-trum∆(ω)can unambiguously be extracted from two-point microrheology data viaD rr(R,ω)=∆(ω)3δijδkl for both tumblers and wild-types.The power spectrum in Eq.(1)is related to ∆σ(q,ω)by∆(ω)=∆σ(q=0,ω).The linearized equation for Q A ij(A=U,B)is∂t Q A ij=−τ−1A 1−ξ2A∇2 Q A ij+s ij,whereτA is the relaxation time,ξA the correlation length of Q A ij,and s ij is a spatial-temporal white noise with zero mean.Interactions among bacteria favor long-range order in Q U ij but not inFIG.4:(a)The spectrum∆(ω)of active stressfluctuations obtained from two-point microrheology and active response measurements.The triangles are the wild-types,circles are the tumblers(bothφ=.003),squares are water(φ=0).(b) Linear dependence of the prefactor∆0in∆(ω)on the volume fractionφof the wild-type bacteria;∆T≡2ηk B T.Q B ij,implying thatτB≪τU andξB≪ξU.In both cases, the concentration of bacteria obeys the continuity equa-tion:∂tδc=−∇·J with J i=−D∂iδc−α2c0∂j Q A ij+δJ i, where c0is the average concentration,D is the diffu-sion constant,δJ i is a random current,and the second term stems from the nonequilibrium driving of massflow [4].These equations lead after Gaussian decoupling to ∆σ(q,ω)=∆σ(qξσA,ω)withξσA≃ξA.In tumblersξB is very small,and∆σ(ω)can be replaced by a Lorentzian ∆(ω)with characteristic timeτB∼0.1s(Fig.4)[20] in both MSD1and MSD2implying agreement between ∆r2(∆t) 1and ∆r2(∆t) 2.In wild-types,∆σ(qξU,ω) can be replaced by∆(ω)in MSD2when R>ξU[with ξU≤10µm(see inset of Fig.1)],but not in MSD1when it probes lengths shorter thanξU,implying different val-ues for ∆r2(∆t) 1and ∆r2(∆t) 2[Fig.1].Our calcula-tions yield∆(ω)∼c0/√。