(完整版)新人教版八年级数学上册期末复习题

合集下载

2021-2022学年新人教版八年级上学期期末数学复习复习卷(一)(含答案解析)

2021-2022学年新人教版八年级上学期期末数学复习复习卷(一)(含答案解析)

2021-2022学年新人教版八年级上学期期末数学复习复习卷(一)一、选择题(本大题共10小题,共30.0分)1.已知等腰三角形的两条边长分别为4和8,则它的周长为()A. 16B. 20C. 16或20D. 142.从图中的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是轴对称图形的卡片的概率是()A. 14B. 12C. 34D. 13.若2x 2+1与4x 2−2x−5互为相反数,则x为A. −1或B. 1或C. 1或D. 1或4.10.如图,在ΔABC中,∠ABC的平分线与三角形的外角∠ACE的平分线交于点D,则∠A与∠D的关系为A. ∠A+∠D=90°B. ∠A=2∠DC. 2∠A+∠D=180°D. 以上都不对5.若x2+bx+c=(x+5)(x−3),其中b、c为常数,则点P(b,c)关于y轴对称的点的坐标是()A. (−2,−15)B. (2,15)C. (−2,15)D. (2,−15)6.若2x+3y−2=0,则4x×8y+5的值为()A. 2B. 8C. 7D. 97.如图,正方形ABCD和正方形EFGO的边长都是1,正方形EFGO绕点O旋转时,两个正方形重叠部分的面积是()A. 14B. 12C. 13D. 不能确定8.已知x+1x =4,则x2x4+x2+1=()A. 10B. 15C. 110D. 1159.某车间原计划小时生产一批零件,后来每小时多生产件,用了小时不但完成了任务,而且还多生产件.设原计划每小时生产个零件,则所列方程为()A. B.C. D.10.如图,DB=DC,∠BAC=∠BDC=120°,DM⊥AC,E为BA延长线上的点,∠BAC的角平分线交BC于N,∠ABC的外角平分线交CA的延长线于点P,连接PN交AB于K,连接CK,则下列结论正确的是()①∠ABD=∠ACD;②DA平分∠EAC;③当点A在DB左侧运动时,AC+ABAM为定值;④∠CKN=30°A. ①③④B. ②③④C. ①②④D. ①②③二、填空题(本大题共8小题,共24.0分)11.如图,小明从P点出发,沿直线前进5米后向右转α,接着沿直线前进5米,再向右转α,…,照这样走下去,第一次回到出发地点P时,一共走了120米,则α的度数是______.12.因式分解:x2(a−b)+4(b−a)=______.13.由于自然环境的日益恶化,我们赖以生存的空气质量正在悄悄地变化.净化的空气的单位体积质量为0.00124g/cm3,将它用科学记数表示为______g/cm3.14.已知等腰三角形的周长为80,腰长为x,底边长为y.请写出y关于x的函数解析式,并求出定义域______.15.如图所示,已知AB=DC,要得到△ABC≌△DCB,还需加一个条件是______ .(一个即可)16.如图,在面积为4的等边三角形ABC中,AD是BC边上的高,点E、F是AD上的两点,则图中阴影部分的面积是______ .17.如果二次三项式x2+kx+49是一个整式的平方,则k的值是______.18.若关于x的不等式组{6x+4+a>03x2−1≤x2+2有4个整数解,且关于y的分式方程ay−1−21−y=1的解为正数,则满足条件所有整数a的值之和为______三、计算题(本大题共1小题,共6.0分)19.解分式方程(1)xx−1−31−x=3(2)x−3x−2+1=32−x.四、解答题(本大题共7小题,共60.0分)20.在△ABC中,AB=CB,∠ABC=90°,E为CB延长线上一点,点F在AB上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=60°,求∠ACF的度数.21.如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(−2,4),B(−2,1),C(−5,2).(1)请画出△ABC关于x轴对称的△A1B1C1.(2)以原点O为位似中心,在第一象限画出△A1B1C1的位似图形△A2B2C2,相似比为1:2.22. 先化简,再求值:(1−1x+1)÷x 2−xx 2−2x+1,其中x =√2−1.23. 2019年1月重庆潮童时装周在重庆渝北举行了八场走秀,云集了八大国内外潮童品牌,不仅为大家带来了一场品牌走秀盛会,更让人们将目光转移到了00后、10后童模群体身上,开启服装新秀潮流某大型商场抓住这次商机购进A 、B 两款新童装进行试销售该商场用6000元购买A 款童装,用9000元购买B 款童装,且每件A 款童装进价与每件B 款童装进价相同,购买A 款童装的数量比B 款童装的数量少20件,若该商场本次以每件A 款童装按进价加价100元进行销售,每件B 款童装按进价加价60%进行销售,全部销售完. (1)求购进A 、B 两款童装各多少件?(2)春节期间该商场按上次进价又购进与上一次一样数量的A 、B 两款童装,并展开了降价促销活动,在促销期间,该商场将每件A 款童装按进价提高(m +10)%进行销售,每件B 款童装按上次售价降低13m%销售.结果全部销售完后销售利润比上次利润少了3040元,求m 的值.24. 如图,在△ABC 中,AB =AC ,AM 平分∠BAC ,交BC 于点M ,D 为AC 上一点,延长AB 到点E ,使CD =BE ,连接DE ,交BC 于点F ,过点D 作DH//AB ,交BC 于点H ,G 是CH 的中点. (1)求证:DF =EF .(2)试判断GH ,HF ,BC 之间的数量关系,并说明理由.25.如图,在△ABC中,∠BAD=∠DAC,DF⊥AB,DM⊥AC,AB=16cm,AF=10cm,AC=14cm,动点E以2cm/s的速度从A点向B点运动,动点G以1cm/s的速度从C点向A点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t(s).=______;(1)求:AM=______cm,S△ABDS△ACD(2)求证:在运动过程中,无论t取何值,都有S△AED=2S△DGC;(3)当t取何值时,△DFE与△DMG全等.26.如图,在平面坐标系中,点A、点B分别在x轴、y轴的正半轴上,且OA=OB,另有两点C(a,b)和D(b,−a)(a、b均大于0);(1)连接OD、OC、CD,请判断△OCD的形状为______(不需要证明);(2)连接CO、CB、CA,若CB=1,CO=2,CA=3,求∠OCB的度数;(3)若点E在线段OA上,且AE=2,CE=5,AC=√41,动点P以每秒2个单位的速度从点E出发沿射线EO方向运动,运动时间为t秒,在点P的运动过程中,△APC能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.参考答案及解析1.答案:B解析:解:若4为腰,8为底边,此时4+4=8,不能构成三角形,故4不能为腰;若4为底边,8为腰,此时三角形的三边分别为4,8,8,周长为4+8+8=20,综上三角形的周长为20.故选:B.因为等腰三角形的腰与底边不确定,故以4为底边和腰两种情况考虑:若4为腰,则另外一腰也为4,底边就为8,根据4+4=8,不符合三角形的两边之和大于第三边,即不能构成三角形;若4为底边,腰长为8,符合构成三角形的条件,求出此时三角形的周长即可.此题考查了等腰三角形的性质,以及三条线段构成三角形的条件,利用了分类讨论的数学思想,由等腰三角形的底边与腰长不确定,故分两种情况考虑,同时根据三角形的两边之和大于第三边,舍去不能构成三角形的情况.2.答案:B解析:解:这4个汽车标志中,是轴对称图形的有2个,所以从这4张印有汽车品牌标志图案的卡片中任取一张,是轴对称图形的卡片的概率是24=12,故选:B.根据概率的意义求解即可.本题考查概率公式,轴对称图形,掌握轴对称图形和概率的意义是正确解答的关键.3.答案:B解析:解:根据与互为相反数可以得到+=0化简得:因式分解得:(3x+2)(x−1)=0解得:.故答案为:B.4.答案:B解析:解析:本题考查的是三角形角平分线的定义和三角形外角的性质,属于中等题目,解决问题的关键是根据角平分线的定义及三角形的外角性质可表示出∠A与∠D,从而不难发现两者的数量关系.∵∠ABC的平分线交∠ACE的平分线于点D,∴∠ABC=2∠DBC,∠ACE=2∠DCE,∵∠DCE是△BCD的外角,∴∠D=∠DCE−∠DBE,∵∠ACE是△ABC的外角,∠A=∠ACE−∠ABC=2∠DCE−2∠DBE=2(∠DCE−∠DBE),∴∠A=2∠D.故选B.5.答案:A解析:解:∵x2+bx+c=(x+5)(x−3),∴x2+bx+c=x2+2x−15,∴b=2,c=−15,则点P(2,−15)关于y轴对称的点的坐标是:(−2,−5).故选:A.直接多项式乘法得出b,c的值,再利用关于y轴对称点的性质得出答案.此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.6.答案:D解析:解:原式=22x+23y+5=22x+3y+5,∵2x+3y=2,∴原式=4+5=9,故选:D.根据幂的运算法则即可求出答案.本题考查整式运算,解题的关键是熟练整式的运算法则,本题属于基础题型.7.答案:A解析:本题考查了正方形的性质,旋转的性质,全等三角形的性质和判定等知识,能推出四边形OMBN的面积等于三角形BOC的面积是解此题的关键.根据正方形的性质得出OB=OC,∠OBA=∠OCB=45°,∠BOC=∠EOG=90°,推出∠BON=∠MOC,证出△OBN≌△OCM.解:∵四边形ABCD和四边形OEFG都是正方形,∴OB=OC,∠OBC=∠OCB=45°,∠BOC=∠EOG=90°,∴∠BON+∠BOM=∠MOC+∠BOM=90°∴∠BON=∠MOC.在△OBN与△OCM中,{∠OBN=∠OCM OB=OC∠BON=∠COM,∴△OBN≌△OCM(ASA),∴S△OBN=S△OCM,∴S四边形OMBN =S△OBC=14S正方形ABCD=14×1×1=14.故选:A.8.答案:D 解析:本题主要考查分式的值,条件分式求值是较难的一种题型,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.由x+1x =4得x2+1x2=14,代入原式=1x2+1+1x2计算可得.解:∵x+1x=4,∴x2+2+1x2=16,则x2+1x2=14,∴原式=1x2+1+1x2=114+1=115,故选:D.9.答案:A解析:10.答案:C解析:解:如图,∵∠BAC=∠BDC=120°,∴A,B,C,D四点共圆,DB=DC,作四边形ABCD的外接圆⊙O,∴∠ABD=∠ACD,故①正确,作DN⊥AE于N.∵DM⊥AC,∴∠DMC=∠DNB=90°,∵∠DCM=∠DBN,DC=DB,∴△DMC≌△DNB(AAS),∴DM=DN,BN=CM,∵DN⊥AE,DM⊥AC,∴DA平分∠EAC,故②正确,∵∠DNA=∠DMA=90°,AD=AD,DN=DM,∴AN=AM,∴AC+AB=BN−AN+AM+CM=2CM,∴AC+ABAM =2CMAM≠定值,故③错误,作KG⊥AP于G,KH⊥AN于H,延长AN,在AN上取一点J,使得KJ=KC.∵∠BAC=120°,AN平分∠BAC,∴∠PAB=∠BAN=60°,∴KG=KH,∵∠KGC=∠KHJ=90°,KJ=KC,KH=KG,∴Rt△KHJ≌Rt△KGC(HL),∴∠HKJ=∠GKC,∴∠CKJ=∠KGH=∠AKG+∠AHK=30°+30°=60°,∵KJ=KC,∴△KJC是等边三角形,∴∠KCJ=∠KJC=∠CKJ=60°,作PT⊥JA交JA的延长线于T,PR⊥CB于R,PW⊥AB于W,KL⊥BC于L.∵BP平分∠ABR,PA平分∠TAB,∴PE=PW,PW=PT,∴PR=PT,∵PR⊥NR,PT⊥NT,∴PN平分∠RNT,∵KH⊥NT,KL⊥NR,∴KL=KH,∵KH=KG,∴KL=KG,∵KL⊥CL,KG⊥CG,∴∠KCG=∠KCL=∠NJK,∵∠KCJ=∠KJC,∴∠NCJ=∠NJC,∴NC=NJ,∵KN=KN,AC=KJ,∴∠NKC=∠NKJ=30°,故④正确.故选:C.①正确.利用圆周角定理证明即可.②正确,构造全等三角形解决问题即可.③错误,作DN⊥AE于N.证明△ADN≌△ADM(HL),推出AN=AM,推出AC+AB=BN−AN+AM+CM=2CM,推出AC+ABAM =2CMAM≠定值.④正确.作KG⊥AP于G,KH⊥AN于H,延长AN,在AN上取一点J,使得KJ=KC.作PT⊥JA交JA的延长线于T,PR⊥CB于R,PW⊥AB于W,KL⊥BC于L.想办法证明△KCJ是等边三角形,证明△KNC≌△KNJ(SSS)即可解决问题.本题属于三角形综合题,考查了圆周角定理,角平分线的性质定理,全等三角形的判定和性质,等边三角形的判定和性质等知识,解题的关键是学会添加辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.11.答案:15°解析:解:向左转的次数120÷5=24(次),则左转的角度是360°÷24=15°.故答案是:15°.根据共走了120米,每前进5米左转一次可求得左转的次数,则已知多边形的边数,再根据外角和计算左转的角度.本题考查了多边形的计算,正确理解多边形的外角和是360°是关键.12.答案:(a−b)(x+2)(x−2)解析:解:x2(a−b)+4(b−a)=(a−b)(x2−4)=(a−b)(x+2)(x−2).故答案为:(a−b)(x+2)(x−2).先提取公因式(a−b),再根据平方差公式进行二次分解即可求得答案.本题考查了提公因式法,公式法分解因式.注意提取公因式后利用平方差公式进行二次分解,注意分解要彻底.13.答案:1.24×10−3解析:解:0.00124g/cm3,将它用科学记数表示为1.24×10−3,故答案为:1.24×10−3.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.答案:y=80−2x(20<x<40)解析:解:由题意得:80=2x+y∴可得:y=80−2x,根据三角形两边之和大于第三边,两边之差小于第三边可得:y<2x,2x<80,∴可得20<x<40,故答案为:y=80−2x(20<x<40).根据周长等于三边之和可得出y和x的关系式,再由三边关系可得出x的取值范围.此题主要考查了等腰三角形的性质,根据实际问题列一次函数关系式,根据题意得出正确等量关系是解题关键.15.答案:AC=DB解析:解:添加条件为:AC=DB.在△ABC和△DCB中,{AB=DC AC=DB BC=CB,∴△ABC≌△DCB(SSS).故答案为:AC=DB.可以添加条件,满足SSS或SAS判定定理.本题考查了全等三角形的判定,解答本题的关键是掌握全等三角形的判定定理.16.答案:2√3解析:解:∵AD是等边三角形的高,∴AD是线段BC的垂直平分线,BD=12BC=12×4=2,∴BE=CE,BF=CF,EF=EF,∴△EBF≌△ECF,∴S阴影=S△ABD,∴AD=AB⋅sin∠ABD=4×√32=2√3,∴S阴影=12BD⋅AD=12×2×2√3=2√3.故答案为:2√3.根据AD是等边三角形的高可知,AD是线段BC的垂直平分线,由线段垂直平分线的性质及三角形全等的判定定理可求出△EBF≌△ECF,故阴影部分的面积等于△ABD的面积,由锐角三角函数的定义可求出AD的长,再由三角形的面积公式即可求解.本题考查的是等边三角形的性质,即等边三角形底边上的高、垂直平分线及顶角的角平分线三线合一.17.答案:±14解析:解:∵二次三项式x2+kx+49是一个整式的平方,∴kx=±2×7x,解得k=±14.故答案为:±14.先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.18.答案:27解析:解:原不等式组的解集为−4−a6<x≤3,有4个整数解,所以−2<−4−a6≤−1解得2≤a<8.原分式方程的解为y=a+3,因为原分式方程的解为正数,所以y>0,即a+3>0,解得a>−3,所以2≤a<8.所以满足条件所有整数a的值之和为2+3+4+5+6+7=27.故答案为27.先解不等式组确定a的取值范围,再解分式方程,解为正数从而确定a的取值范围,即可得所有满足条件的整数a的和.本题考查了不等式组的整数解、分式方程,解决本题的关键是根据不等式组的整数解确定a的取值范围.19.答案:解:(1)去分母得:x+3=3x−3,解得:x=3,经检验x=3是分式方程的解;(2)去分母得:x−3+x−2=−3,解得:x=1,经检验x=1是分式方程的解.解析:两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.答案:证明:(1)在Rt△ABE和Rt△CBF中,∵{AE=CFAB=CB,∴Rt△ABE≌Rt△CBF(HL);解:(2)∵在△ABC中,AB=CB,∠ABC=90°,∴∠ACB=∠CAB=45°,∴∠BAE=∠CAE−∠CAB=15°.又由(1)知,Rt△ABE≌Rt△CBF,∴∠BAE=∠BCF=15°,∴∠ACF=∠ACB−∠BCF=30°,即∠ACF的度数是30°.解析:本题考查了全等三角形的判定与性质,等腰三角形的性质有关知识,(1)在Rt△ABE和Rt△CBF中,由于AB=CB,AE=CF,利用HL可证Rt△ABE≌Rt△CBF;(2)由等腰直角三角形的性质易求∠BAE=∠CAE−∠CAB=15°.利用(1)中全等三角形的对应角相等得到∠BAE=∠BCF=15°,则∠ACF=∠ACB−∠BCF=30°.即∠ACF的度数是30°.21.答案:解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.解析:(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置进而得出答案.本题考查了轴对称变换、位似变换等知识,根据题意得出对应点位置是解题关键.22.答案:解:原式=x+1−1x+1⋅(x−1)2 x(x−1)=x−1x+1,当x=√2−1时,原式=√2−1−1√2−1+1=√2−2√2=1−√2.解析:先把括号内通分和除法运算化为乘法运算,再约分得到原式=x−1x+1,然后把x的值代入计算即可.本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.23.答案:解:(1)设购进A款童装x件,则购进B款童装(x+20)件,依题意,得:6000x =9000x+20,解得:x=40,经检验,x=40是所列分式方程的解,且符合题意,∴x+20=60.答:购进A款童装40件,购进B款童装60件.(2)A、B两款童装的进价为6000÷40=150(元).依题意,得:(150+100)×40+150×(1+60%)×60−150[1+(m+10)%]×40−150×(1+ 60%)(1−13m%)×60=3040,整理,得:12m−360=0,解得:m=30.答:m的值为30.解析:(1)设购进A款童装x件,则购进B款童装(x+20)件,根据单价=总价÷数量结合每件A款童装进价与每件B款童装进价相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)利用单价=总价÷数量可求出A、B两款童装的进价,再由总价=单价×数量结合第二次全部销售完后销售总额比第一次少了3040元,即可得出关于m的一元一次方程,解之即可得出结论.本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.24.答案:证明:(1)∵AB=AC,∴∠C=∠ABC,∵DH//AB,∴∠DHC=∠ABC,∠DHF=∠EBF,∴DH=DC,∵DC=BE,∴DH=BE,在△DHF和△EBF中,{∠DHF=∠EBF ∠DFH=∠EFB DH=BE,∴△DHF≌△EBF(AAS),∴DF=EF.(2)结论:GH+HF=12BC.理由:∵△DGF≌△EBF,∴FH=BF,∵CG=GH,∴GH+FH=12CH+12BH=12(CH+BH)=12BC.解析:(1)欲证明DF=EF,只要证明△DHF≌△EBF即可.(2)结论:GH+HF=12BC.只要证明FH=FB,由CG=GH,由此即可解决问题.本题考查全等三角形的判定和性质、平行线的性质、等腰三角形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于基础题,中考常考题型.25.答案:10 87解析:(1)解:∵∠BAD =∠DAC ,DF ⊥AB ,DM ⊥AC ,∴DF =DM ,在Rt △ADF 和Rt △ADM 中,{DF =DM AD =AD, ∴Rt △ADF≌Rt △ADM(HL)∴AM =AF =10cm ,S △ABDS △ACD =12×AB×DF 12×AC×DM =1614=87,故答案为:10;87;(2)证明:由题意得,AE =2t ,CG =t ,则S △AED =12×AE ×DF =t ⋅DF ,S △DGC =12×CG ×DM =12t ⋅DM ,∵DF =DM ,∴S △AED =2S △DGC ;(3)解:∵AM =AF =10,∴CM =14−10=4,当点G 在线段CM 上时,∵DF =DM ,∴FE =MG 时,△DFE≌△DMG ,即10−2t =4−t ,解得,t =6(不合题意),当点G 在线段AM 上时,∵DF =DM ,∴FE =MG 时,△DFE≌△DMG ,即2t −10=t −4,解得,t =6,则当t =6时,△DFE 与△DMG 全等.(1)证明Rt △ADF≌Rt △ADM ,根据全等三角形的性质得到AM =AF =10cm ,根据三角形的面积公式求出S △ABDS △ACD ;(2)分别用t表示出S△AED和2S△DGC,即可证明;(3)分点G在线段CM上、点G在线段AM上两种情况,根据全等三角形的性质列式计算即可.本题考查的是全等三角形的判定和性质、角平分线的性质、三角形的面积计算,掌握角平分线的性质定理、全等三角形的判定定理和性质定理是解题的关键.26.答案:(1)等腰直角三角形;(2)如图2,连接DA.在△OCB与△ODA中,∵{OB=OA∠BOC=∠AOD=90°−∠COA OC=OD,∴△OCB≌△ODA(SAS),∴AD=CB=1,∠OCB=∠ODA.∵OC=OD=2,∴CD=2√2.∵AD2+CD2=1+8=9,AC2=9,∴AD2+CD2=AC2,∴∠ADC=90°,∴∠OCB=∠ODA=90°+45°=135°;(3)△APC能成为等腰三角形,如图3,过点C作CF⊥OA于点F,设EF =x ,则CF 2=CE 2−EF 2=52−x 2=25−x 2, 又∵CF 2=AC 2−AF 2=(√41)2−(2+x)2, ∴25−x 2=(√41)2−(2+x)2,解得:x =3,即EF =3,CF =4,①当AP =PC 时,PC =AP =2+2t , ∵AF =5,∴PF =5−(2+2t)=−2t +3,由PF 2+CF 2=PC 2得(3−2t)2+42=(2+2t)2, 解得t =2120;②当AP =AC 时,2+2t =√41,解得t =√41−22;③当AC =PC 时,AP =2AF ,即2+2t =10, 解得t =4;综上,当t =2120或t =√41−22或t =4时,△APC 是等腰三角形. 解析:解:(1)△OCD 是等腰直角三角形,如图1,过C 点、D 点向x 轴、y 轴作垂线,垂足分别为M 、N .∵C(a,b),D(b,−a)(a、b均大于0),∴OM=ON=a,CM=DN=b,∴△OCM≌△ODN(SAS),∴∠COM=∠DON.∵∠DON+∠MOD=90°,∴∠COM+∠MOD=90°,∵OC=OD=√a2+b2,∴△COD是等腰直角三角形,故答案为:等腰直角三角形;(2)见答案;(3)见答案.(1)过C点、D点向x轴、y轴作垂线,运用勾股定理计算,结合全等可证;(2)连接DA,证△OCB≌△ODA(SAS),可得AD=CB=1,而OC=OD=2,故CD=2√2,根据勾股定理逆定理可证∠ADC=90°,易得∠OCB=∠ODA=135°;(3)作CF⊥OA,设EF=x,由勾股定理得CF2=CE2−EF=25−x2,CF2=AC2−AF2=(√41)2−(2+x)2,从而求出x=3,即可知EF=3,CF=4,再分AP=AC、AP=PC、AC=PC分别计算可得.本题是三角形的综合问题,考查了全等三角形、等腰直角三角形的判定与性质,勾股定理,有一定难度.准确作出辅助线是解题的关键.。

最新人教版八年级数学(上册)期末试题及答案(完美版)

最新人教版八年级数学(上册)期末试题及答案(完美版)

最新人教版八年级数学(上册)期末试题及答案(完美版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .13.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 6.如果2a a 2a 1-+,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.下列图形中,是轴对称图形的是()A.B. C.D.8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图, BD 是△ABC 的角平分线, AE⊥ BD ,垂足为 F ,若∠ABC=35°,∠ C=50°,则∠CDE 的度数为()A.35°B.40°C.45°D.50°10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a-=__________.2x1-有意义,则x的取值范围是▲.3.如果不等式组841x xx m+<-⎧⎨>⎩的解集是3x>,那么m的取值范围是________.4.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN.若AB=7,BE=5,则MN=________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简,再求值:22x 4x 4x 1x 1x 11x ⎛⎫-+-+÷ ⎪--⎝⎭,其中x 满足2x x 20+-=.3.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.4.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D5、D6、C7、B8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、()()33a a +-2、x 1≥.3、3m ≤.4、﹣2<x <25、49136、132三、解答题(本大题共6小题,共72分)1、2x =2、112x -;15.3、(1)12,32-;(2)略.4、(1) 65°;(2) 25°.5、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.6、(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.。

最新人教版八年级数学上册期末试题

最新人教版八年级数学上册期末试题

人教版八年级数学上册期末试题一、选择题(本大题共12小题,每小题3分,共42分)1.下列四个图形是四款车的标志,其中轴对称图形有几个()A.1个B.2个C.3个D.4个2.将数据0.0000025用科学记数法表示为()A.25×10﹣7B.0.25×10﹣8C.2.5×10﹣7D.2.5×10﹣6 3.如图所示,△ABC中AC边上的高线是()A.线段DA B.线段BA C.线段BC D.线段BD 4.如图,△ABC≌△CDA,则下列结论错误的是()A.AC=CA B.AB=AD C.∠ACB=∠CAD D.∠B=∠D 5.若分式有意义,则x的取值范围是()A.x≠0 B.x≠1 C.x≠3 D.x≠0且x≠1 6.下列计算正确的是()A.a6÷a2=a4B.(2a2)3=6a6C.(a2)3=a5D.(a+b)2=a2+b27.已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形8.已知实数x,y满足|x﹣4|+(y﹣8)2=0,则以x,y的值为两边长的等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对9.解分式方程+=3时,去分母后变形为()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3(1﹣x)D.2﹣(x+2)=3(x﹣1)10.如图,在△ABC中,∠A =60度,点D,E分别在AB,AC上,则∠1+∠2的大小为多少度()A.140 B.190 C.320 D.24011.如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.∠EBC=∠BAC B.∠EBC=∠ABE C.AE=EC D.AE=BE12.如图,将四边形纸片ABCD沿AE向上折叠,使点B 落在DC边上的点F处.若△AFD的周长为18,△ECF的周长为6,四边形纸片ABCD的周长为()A.20 B.24 C.32 D.4813.一件工作,甲单独完成需要a天,乙单独完成需要b天,如果甲、乙二人合作,那么每天的工作效率是()A.a+b B.+C.D.14.已知∠AOB=30°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB 对称,则△P1OP2是()A.含30°角的直角三角形B.顶角是30°的等腰三角形C.等边三角形D.等腰直角三角形二.填空题(本大题共5小题,每小题3分,共15分)15.因式分解:x3﹣2x2+x=.16.我们规定:等腰三角形的顶角与一个底角度数的比值叫作等腰三角形的“特征值”,记作k.若k=2,则该等腰三角形的顶角为度.17.如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.18.如图,∠AOC=∠BOC=15°,CD⊥OA,CE∥OA,若CD=6,则CE=.19.数学家发明了一个魔术盒,当任意数对(a,b)进入其中时,会得到一个新的数:(a﹣2)(b﹣1).现将数对(m,2)放入其中,得到数n,再将数对(n,m)放入其中后,最后得到的数是.(结果要化简)三.解答题(共7小题,63分)20.(8分)(1)计算:(a﹣b)(a2+ab+b2)(2)利用所学知识以及(1)所得等式,化简代数式÷.21.(8分)先化简,再求值:(﹣1)÷,其中a=﹣3.22.(8分)解分式方程:.23.(8分)如图,已知∠A=∠D,AB=DB,点E在AC边上,∠AED=∠CBE,AB和DE相交于点F.(1)求证:△ABC≌△DBE.(2)若∠CBE=50°,求∠BED的度数.24.(9分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)若△A1B1C1与△ABC关于y轴成轴对称,则△A1B1C1三个顶点坐标分别为A1,B1,C1;(2)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标是.(3)在y轴上是否存在点Q.使得S△ACQ=S△ABC,如果存在,求出点Q的坐标,如果不存在,说明理由.25.(10分)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场,一汽贸公司经销某品牌新能源汽车,去年销售总额为5000万元,今年1﹣5月份.每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年整年的少20%.今年1﹣5月份每辆车的销售价格是多少万元?26.(12分)在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连结CE.(1)如图1,当点D在线段BC上时,如果∠BAC=90°,则∠BCE=°.(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由.②当点D在直线BC上移动时,α,β之间有怎样的数量关系?请你在备用图上画出图形,并直接写出你的结论.人教版八年级数学上册第三次月考试题一、单项选择题:(本大题共10个小题,每小题3分,共30分.)1.下列四个图案中,不是轴对称图案的是()A.B.C.D.2.已知点A的坐标为(﹣2,3),则点A关于y轴的对称点的坐标是()A.(﹣2,3)B.(2,3)C.(2,﹣3)D.(﹣2,﹣3)3.下列计算中正确的是()A.a2+b3=2a5B.a4÷a=a4C.a2•a4=a8D.(﹣a2)3=﹣a6 4.若x2+mxy+4y2是一个完全平方式,那么m的值是()A.±4 B.﹣2 C.±2 D.45.若3x =4,9y=7,则3x﹣2y的值为()A.B.C.﹣3 D .6.如图1,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是()A.(a+b)(a﹣b)=a2﹣b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab7.如图,已知∠ACB=∠DBC,添加以下条件,不能判定△ABC≌△DCB的是()A.∠ABC=∠DCB B.∠ABD=∠DCA C.AC=DB D.AB=DC8.如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,点P是AD上一个动点,则BP+EP 的最小值等于线段()的长度.A.BC B.CE C.AD D.AC9.如图,在△ABC中,AB =AC,BE=CD,BD=CF,则∠EDF的度数为()A.45°∠A B.90∠A C.90°﹣∠A D.180°﹣∠A 10.如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.AD 的长是()A.5 B.6 C.7 D.8 二.填空题(本大题共6个小题,每小题3分,共18分.)11.使分式的值为0,这时x=.12.232﹣1可以被10和20之间某两个整数整除,则这两个数是.13.目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=10﹣9米,用科学记数法将16纳米表示为米.14.如图,△ABC≌△DEC,其中AB与DE是对应边,AC与DC是对应边,若∠A=∠30°,∠CEB=70°,则∠ACD=°.15.有一程序,如果机器人在平地上按如图所示的路线行走,那么机器人回到A点处行走的路程是.16.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF =EC;④AE=EC,其中正确的是(填序号)三.解答题(共7小题,72分)17.(18分)计算下列各题.①(x2+3)(3x2﹣1)②(4x2y﹣8x3y3)÷(﹣2x2y)③[(m+3)(m﹣3)]2 ④10﹣2×100+103÷105⑤⑥,其中x满足x2﹣x﹣1=0.18.(8分)解方程.①②19.(8分)如图,在下列带有坐标系的网格中,△ABC的顶点都在边长为1的小正方形的顶点上.(1)直接写出坐标:A,B;(2)画出△ABC关于y轴的对称的△DEC(点D与点A对应).(3)用无刻度的直尺,运用全等的知识作出△ABC的高线BF(保留作图痕迹).20.(8分)仔细阅读下面例题解答问题【例题】已知关于x的多项式x2﹣4x+m有一个因式是(x+3),求另一个因式及m 的值.解:设另一个因式为(x+n),则x2﹣4x+m=(x+3)(x+n),即x2﹣4x+m=x2+(n+3)x+3n,.∴解得∴另一个因式为(x﹣7),m的值为﹣21.【问题】仿照以上方法解答下面问题:(1)已知关于x的多项式x2+7x+a有一个因式是(x﹣2),求另一个因式及a的值.(2)已知关于x的多项式2x2+3x﹣k有一个因式是(x+4),求k的值.21.(10分)已知:如图,在Rt△ABC中,∠ACB=90°,∠B=60°,AD,CE是角平分线,AD与CE相交于点F,FM⊥AB,FN⊥BC,垂足分别为M,N.求证:FE=FD.22.(10分)因汽车尾气污染引发的雾霾天气备受关注,经市大气污染防治工作领导组研究决定,在市区范围实施机动车单双号限行措施限行期间为方便市民出行,某路公交车每天比原来的运行增加20车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,限行期间这路公交车平均每天共运送乘客7000人,且平均每车次运送乘客与原来的数量基本相同,问限行期间这路公交车每天运行多少车次?23.(10分)如图1,在△ABC和△ADE中,∠BAC=∠EAD,AB =AC,AD=AE,连接CD、AE交于点F.(1)求证:BE=CD.(2)当∠BAC=∠EAD=30°,AD⊥AB时(如图2),延长DC、AB交于点G,请直接写出图中除△ABC、△ADE以外的等腰三角形.。

人教版八年级上学期期末考试数学试卷(附带答案)精选全文

人教版八年级上学期期末考试数学试卷(附带答案)精选全文

精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。

最新人教版八年级数学(上册)期末必考题及答案

最新人教版八年级数学(上册)期末必考题及答案

最新人教版八年级数学(上册)期末必考题及答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是()A.2-B.2 C.12-D.122.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-63.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>04.化简)A B C D5.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是( )A.7086480x yx y+=⎧⎨+=⎩B.7068480x yx y+=⎧⎨+=⎩C.4806870x yx y+=⎧⎨+=⎩D.4808670x yx y+=⎧⎨+=⎩6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4 B.6 C.7 D.107.下列四个图形中,线段BE是△ABC的高的是()A. B.C. D.8.如图,小华剪了两条宽为1的纸条,交叉叠放在一起,且它们较小的交角为60,则它们重叠部分的面积为()A.1 B.2 C 3 D.23 39.如图,在下列条件中,不能证明△ABD≌△ACD的是().A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD 二、填空题(本大题共6小题,每小题3分,共18分)13x x,则x=__________2.函数132y x x =--+中自变量x 的取值范围是__________. 3.使x 2-有意义的x 的取值范围是________.4.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简,再求值:(x +2)(x -2)+x(4-x),其中x =14.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.如图,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA=10,OC=8.在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求D ,E 两点的坐标.5.如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC =63°,求∠DAC 的度数.6.某公司计划购买A ,B 两种型号的机器人搬运材料.已知A 型机器人比B 型机器人每小时多搬运30kg 材料,且A 型机器人搬运1000kg 材料所用的时间与B 型机器人搬运800kg 材料所用的时间相同.(1)求A ,B 两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A ,B 两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg ,则至少购进A 型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、D4、C5、A6、B7、D8、D9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、0或1.2、23x -<≤3、x 2≥4、8.5、1(21,2)n n -- 6、32°三、解答题(本大题共6小题,共72分)1、2x =2、-3.3、(1)略(2)1或24、E (4,8) D (0,5)5、24°.6、(1)A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)至少购进A 型机器人14台.。

人教版八年级数学上册期末考试综合复习练习题(含答案)

人教版八年级数学上册期末考试综合复习练习题(含答案)

人教版八年级数学上册期末考试综合复习练习题(含答案)一、选择题(本题共10个小题,每小题3分,共 30分。

下列各题,每小题只有一个选项符合题意。

)1. 下面四个图形中,是轴对称图形的是( ) A. B. C. D.2. 熔喷布,俗称口罩的“心脏”,是口罩中间的过滤层,能过滤细菌,阻止病菌传播.经测量,医用外科口罩的熔喷布厚度约为0.000156米,将0.000156用科学记数法表示应为( )A. 30.15610-⨯B. 31.5610-⨯C. 41.5610-⨯D. 415.610-⨯3. 下列计算正确的是( )A. x •x 3=x 4B. x 4+x 4=x 8C. (x 2)3=x 5D. x ﹣1=﹣x 4. 若分式224x x +-有意义,则x 的取值范围是( ) A. x ≠2 B. x ≠±2 C. x ≠﹣2 D. x ≥﹣25. 已知正多边形的一个内角是135°,则这个正多边形的边数是( )A. 3B. 4C. 6D. 86. 若点A (﹣3,a )与B (b ,2)关于x 轴对称,则点M (a ,b )所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 如图,已知∠ABD =∠BAC ,添加下列条件还不能判定△ABC ≌△BAD 的依据是( )A. AC =BDB. ∠DAB =∠CBAC. ∠C =∠DD. BC =AD8. 计算a ﹣2b 2•(a 2b ﹣2)﹣2正确的结果是( ) A. 66a b B. 66b a C. a 6b 6 D. 661a b9. 如图,等边ABC ∆的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点,若2AE =,当EF CF +取得最小值时,则ECF ∠的度数为( )A. 15︒B. 22.5︒C. 30D. 45︒10. 瓜达尔港是我国实施“一带一路”战略构想的重要一步,为了增进中巴友谊,促进全球经济一体化发展,我国施工队预计把距离港口420km 的普通公路升级成同等长度的高速公路,升级后汽车行驶的平均速度比原来提高50%,行驶时间缩短2h ,那么汽车原来的平均速度为( )A. 80km/hB. 75km/hC. 70km/hD. 65km/h二.填空题(共5题,总计 15分)11. 分解因式:5x 4﹣5x 2=________________.12. 若4,8x y a b ==,则232x y -可表示为________(用含a 、b 的代数式表示).13. 若△ABC ≌△DEF ,△ABC 的周长为100,AB =30,DF =25,则BC 为 ________.14. 如图,DE AB ⊥于E ,AD 平分BAC ∠,BD DC =,10AC =cm ,6AB =cm ,则AE =______.15. 如图,△ABC 中,∠BAC =60°,∠BAC 的平分线AD 与边BC 的垂直平分线MD 相交于D ,DE ⊥AB 交AB 的延长线于E ,DF ⊥AC 于F ,现有下列结论:①DE =DF ;②DE +DF =AD ;③DM 平分∠EDF ;④AB +AC =2AE ;其中正确的有________.(填写序号)三.解答题(共8题,总计75分)16. (1)计算:()32(2)32x x x x ---; (2)分解因式:229()()6()x x y y y x xy y x ---+-;17. 先化简,再求值:221x 4x 41x 1x 1-+⎛⎫-÷ ⎪--⎝⎭,其中x=3.18. 如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出关于y 轴对称的111A B C △.(2)写出点111,,A B C 的坐标(直接写答案).(3)111A B C △的面积为___________19. 如图,已知BF ⊥AC 于F ,CE ⊥AB 于E ,BF 交CE 于D ,且BD =CD ,求证:点D 在∠BAC 的平分线上.20. 如图,直线m 是中BC 边的垂直平分线,点P 是直线m 上的一动点,若6AB =,4AC =,7BC =.(1)求PA PB +的最小值,并说明理由.(2)求APC △周长的最小值.21. [阅读理解]我们常将一些公式变形,以简化运算过程.如:可以把公式“()2222a b a ab b +=++”变形成()2222a b a b ab +=+-或()()2222ab a b a b =+-+等形式,问题:若x 满足()()203010x x --=,求()()222030x x -+-的值. 我们可以作如下解答;设20a x =-,30b x =-,则()()203010x x ab --==, 即:()()2030203010a b x x +=-+-=-=-.所以()()()()222222203021021080x x a b a b ab -+-=+=+-=--⨯=. 请根据你对上述内容的理解,解答下列问题:(1)若x 满足()()807010x x --=-,求()()228070x x -+-的值. (2)若x 满足()()22202020174051x x -+-=,求()()20202017x x --的值.22. 一水果店主分两批购进某一种水果,第一批所用资金为2400元,因天气原因,水果涨价,第二批所用资金是2700元,但由于第二批单价比第一批单价每箱多10元,以致购买的数量比第一批少25%.(1)该水果店主购进第一批这种水果的单价是多少元?(2)该水果店主计两批水果的售价均定为每箱40元,实际销售时按计划无损耗售完第一批后,发现第二批水果品质不如第一批,于是该店主将售价下降a %销售,结果还是出现了20%的损耗,但这两批水果销售完后仍赚了不低于1716元,求a 的最大值.23. 如图,已知和均为等腰三角形,AB AC =,AD AE =,将这两个三角形放置在一起,使点B ,D ,E 在同一直线上,连接CE .(1)如图1,若50ABC ACB ADE AED ∠=∠=∠=∠=︒,求证:BAD CAE ≌;(2)在(1)的条件下,求BEC ∠的度数;拓广探索:(3)如图2,若120CAB EAD ∠=∠=︒,4BD =,CF 为BAD 中BE 边上的高,请直接写出BEC ∠的度数和EF 的长度。

最新人教版八年级上册数学期末测试题(附答案)

最新人教版八年级上册数学期末测试题(附答案)

最新人教版八年级上册数学期末测试题(附答案)过池塘,分别测量AC和BC的长度,再利用勾股定理求出AB的长度。

已知AC=15m,BC=20m,求AB的长度。

解题思路:根据勾股定理,设AB=x,则有x²=15²+20²,解得x=25.因此,AB的长度为25m。

19.(本小题满分6分)已知点A(2,-3),B(5,1),C(-1,4),求三角形ABC的周长。

解题思路:根据两点间距离公式,可求出AB、BC、CA的长度,然后将它们相加即可得到三角形ABC的周长。

计算过程如下:AB的长度:√[(5-2)²+(1-(-3))²] = √34BC的长度:√[(5-(-1))²+(1-4)²] = √41CA的长度:√[(2-(-1))²+(-3-4)²] = √74因此,三角形ABC的周长为√34+√41+√74.20.(本小题满分8分)已知函数f(x)=3x²-4x+5,求f(2a)与f(a+1)的值,并判断它们的大小关系。

解题思路:将2a和a+1代入函数f(x)中,即可求出f(2a)和f(a+1)的值。

计算过程如下:f(2a) = 3(2a)²-4(2a)+5 = 12a²-8a+5f(a+1) = 3(a+1)²-4(a+1)+5 = 3a²+2a+4因此,f(2a) = 12a²-8a+5,f(a+1) = 3a²+2a+4.接下来判断它们的大小关系,即f(2a)与f(a+1)的大小关系。

将它们相减,得到12a²-11a+1,根据一元二次方程的解法,可得a=1或a=1/12.将这两个值代入12a²-11a+1的值,发现当a=1时,f(2a)>f(a+1);当a=1/12时,f(2a)f(a+1)的解集为a∈(0,1/12)U(1/12,∞),而f(2a)<f(a+1)的解集为a=1/12.21.(本小题满分8分)如图,在平面直角坐标系中,点A(1,2)、B(-3,4)、C(-2,-1)、D(2,-3)依次连线,得到四边形ABCD。

2024年最新人教版八年级数学(上册)期末试卷及答案(各版本)

2024年最新人教版八年级数学(上册)期末试卷及答案(各版本)

2024年最新人教版八年级数学(上册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 若x是实数,下列不等式恒成立的是()A. x² > 0B. x² ≥ 0C. x² < 0D. x² ≤ 02. 下列函数中,其图像是直线的是()A. y = x²B. y = xC. y = 1/xD. y = x³3. 下列图形中,属于轴对称图形的是()A. 正方形B. 圆C. 等腰三角形D. 正六边形4. 下列关于圆的命题中,正确的是()A. 圆的直径等于半径的两倍B. 圆的周长等于直径的四倍C. 圆的面积等于半径的平方D. 圆的周长等于半径的四倍5. 下列关于角的命题中,正确的是()A. 直角是90度B. 钝角是大于90度小于180度的角C. 锐角是小于90度的角D. 平角是180度的角二、填空题(每题5分,共20分)6. 若a² = b²,则a和b的关系是__________。

7. 下列函数中,其图像是抛物线的是__________。

8. 下列图形中,属于中心对称图形的是__________。

9. 下列关于圆的命题中,错误的是__________。

10. 下列关于角的命题中,错误的是__________。

三、解答题(每题10分,共40分)11. 解方程:2x 5 = 3x + 4。

12. 解不等式:3x 2 < 2x + 5。

13. 解三角形:已知三角形的两边长分别为5cm和8cm,夹角为60度,求第三边的长度。

14. 解圆的方程:x² + y² 6x 8y + 9 = 0。

四、证明题(每题10分,共20分)15. 证明:若a² = b²,则a = b或a = b。

16. 证明:若x² + y² = r²,则x和y是半径为r的圆上的点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

i
n
g
s
n
八年级数学期末考试卷
(测试时间:120分钟满分:100分)题号一二三总分
得分
一、选择题(每题3分,共24分)
1、下列计算中正确的是( ).
A.235
2
a b a
+=B.44
a a a

C.248
·
a a a
=D.236
()
a a
-=-
2、以下五家银行行标中,是轴对称图形的有()
A、1个 B. 2个 C. 3个 D. 4个
3、如图1,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几
何原理是( )
A.垂线段最短B.两点之间线段最短
C.两点确定一条直线D.三角形的稳定性
4、等腰三角形一个角是30°,则它的顶角是()
A. 30°
B. 120°
C. 30°或120°
D. 150°
5、已知△ABC≌△FED,若∠FED=37°,∠BCA=100°,则∠BAC的度数是()
A. 100°
B. 80°
C. 43°
D. 37°
6、在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分
剪拼成一个矩形,通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是()
l
A
A.a2-b2=(a+b)(a-b)
B. (a+b)2=a+2ab+b2
C.(a-b)2=a2-2ab+b2
D.a2-ab=a(a-b)
7、如图2,在△ABC中,∠C=90°,AD平分∠BAC,BC=10 cm,BD=6 cm,
则点D到AB的距离是( )
A.4 cm B. 6 cm
C.8 cm D.10 cm
图1 图2
8.甲、乙两班学生植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植树x棵,则根据题意列出的方程是( ).
A.
8070
5
x x
=
-
B.
8070
5
x x
=
+
C.
8070
5
x x
=
+
D.
8070
5
x x
=
-
二、填空题(每题3分,共18分)
9、当x ____ __时,分式
x
x
-
+
1
2
1
有意义.
10、如图3,已知AC=BD,D
A∠
=
∠,请你添一个直接条件,
,使△AFC≌△DEB.
的垂直平分线,AE=3cm,△ABD的周长为13cm,
C
B
A
n g
r e g
o 则△ABC 的周长为____________.
12、如图5,在Rt△ABC 中,∠C=90°,∠A=30°,AB +BC=12㎝,则AB=
__㎝;
13、如图6,在△ABC 中,D 是BC 延长线上的一个点,∠B=40°,
∠ACD=120°,则∠A=___________
图5 图614、观察下列各等式:
1111212=-⨯,1112323=-⨯,111
3434
=-⨯,…,根据你发现的规律计算:
2222122334(1)
n n +++⋅⋅⋅+⨯⨯⨯+=__________(n 为正整数).15、如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点出发
共有条__________条对角线。

三、解答题(55分)
16、(10分)先化简,再求值:
(1)32322222b b ab b a b a a b ab b a ++÷--+-,其中1
,25
a b ==(2)2(x -3)(x +2)-(3+a )(3-a ),其中,a =-2,x =1.
C
B
A
17、(8分)因式分解
(1)2216ay ax - (2)a
a a 1812223-+-(3) (x +2)(x -6)+16 (4) 1222-+-
b ab a
18、(本题满分7分)△ABC 在平面直角坐标系中的位置如图7所示.
(1)画出△ABC 关于y 轴对称的三角形111A B C ∆并写出111B C A 、、的坐标;
(2)将△ABC 向下平移3个单位长度,画出平移后的222A B C ∆
并写出
222B C A 、、的坐标.
图7
19、(7分)已知:如图8,点A 、E 、F 、C 在同一直线上,
AD ∥BC ,AD=CB ,AE=CF 。

求证:∠B=∠D .
20、(9分)已知:如图9:△ABC 中,D 、E 分别是AC ,AB 上的点,BD 与CE
交于O 点,给出下列4个条件:
①∠EBO=∠DCO ;②∠BEO=∠CDO ;③BE=CD ;④OB=OC. (1)上述四个条件中,哪两个条件可判定△ABC 是等腰三角形? (2)用(1)中所选条件证明△ABC 是等腰三角形
21求证:(1)△ABC ≌△DEF ;
(2)GF=GC .
图8
A
E
B
C
F
D
图10
22、(6分)为帮助特困同学,朝阳中学团总支组织了一次捐款活动.小华同学
对甲、乙两班捐款的情况进行了统计,得到如下三条信息:
信息1:甲班共捐款300元,乙班共捐款232元;
信息2:乙班平均每人捐款钱数是甲班平均每人捐款钱数的4
5

信息3:甲班比乙班多2人.
请你根据以上三条信息,求甲班平均每人捐款多少元?。

相关文档
最新文档